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COMPUTING ZETA FUNCTIONS OF ARTIN–SCHREIER CURVES
OVER FINITE FIELDS

ALAN G. B. LAUDER and DAQING WAN

Abstract

The authors present a practical polynomial-time algorithm for com-
puting the zeta function of certain Artin–Schreier curves over finite
fields. This yields a method for computing the order of the Jacobian
of an elliptic curve in characteristic 2, and more generally, any hyper-
elliptic curve in characteristic 2 whose affine equation is of a particu-
lar form. The algorithm is based upon an efficient reduction method
for the Dwork cohomology of one-variable exponential sums.

1. Introduction

We present a low-degree polynomial-time algorithm for computing the zeta function of
certain Artin–Schreier curves defined over finite fields. One consequence is a practical
method for computing the order of the Jacobian of an elliptic curve in characteristic 2,
and (more generally), any hyperelliptic curve whose affine equation is of a particular form.
Hyperelliptic curves have been proposed for use in public key cryptosystems by Koblitz
[2, 13]. Our algorithm provides the first method of finding ‘random’ hyperelliptic curves
of arbitrary genus, defined over large finite fields of characteristic 2, whose Jacobians have
orders suitable for cryptographic use. Our method can be extended to more general curves,
and we plan to present one such generalisation in a sequel paper.

We now introduce some notation that will allow us to explain our results. Letp denote
a prime number, anda a positive integer. Defineq = pa , and denote byFq the finite field
with q elements. Fix an algebraic closureSFq of Fq , and letFqk be the unique subfield of

orderqk. We writeSF∗
q for the set of non-zero elements inSFq . The Artin–Schreier curves

overFq that we consider in this paper are defined by an equation of the form

Zp − Z = f (X), (1)

wheref ∈ Fq [X,X−1] is a Laurent polynomial. Specifically, we denote byCf the curve
embedded inSF∗

q × SFq with equation (1), and we letC̃f be the unique smooth projective
curve that is birational toCf . Let d denote the largest absolute value of any exponent that
occurs in a non-zero term off . For example, iff ∈ Fq [X], this is just the degree. Our main
theorem is as follows.

Theorem 1. The zeta function of the smooth projective curveC̃f may be computed
deterministically inÕ(p4a3d5+δ) bit operations. Hereδ = 0 for p > 2, and δ = 1
for p = 2.
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Zeta functions and Artin–Schreier curves

Here we use the Soft-Oh notatioñO, which ignores logarithmic factors, as in [14, Sec-
tion 6.3]. More details of the complexity when using different methods of arithmetic, and
also the space complexity, can be found in Section8.2.

We now explain how our algorithm may be applied to certain hyperelliptic curves in
characteristic 2. LetC denote the affine curve with equation

Y 2 +XmY = h(X),

whereh(X) ∈ F2a [X] is of degree 2g+1 andm is a non-negative integer not greater thang.
Let C̃ be the unique smooth projective curve birational toC. ThenC̃ is birational to an
Artin–Schreier curve, as explained in Note5, and thus one may compute the zeta function
of C̃ in the complexity bounds of Theorem1. From this, the next corollary follows.

Corollary 2. The order of the Jacobian of the curveC̃ may be computed deterministically
in Õ(a3g6) bit operations.

This algorithm for hyperelliptic curves in characteristic 2 has been implemented by Ver-
cauteren.With regard to the dependence ona, we note that our method, when restricted
to elliptic curves, has comparable time complexity to [17]. Moreover, it is the first practi-
cal algorithm for hyperelliptic curves in characteristic 2 that has polynomial-time growth
in both the field size and the genus. (The problem of polynomial-time computability for
arbitrary varieties in small characteristic has already been solved in [14], but the general
algorithm there is not very practical. Also, a practical algorithm for hyperelliptic curves in
odd characteristic is presented in [12] using different, though related, methods.) We refer
to the references in [2] for the large literature on point counting, including [7, 18,19], and
the more recent work in [8,9, 10,11,12,16,17,22,23,25].

Sections2,3,4and5lay the mathematical foundation of our algorithm: it is based mainly
upon an extension of the work of Dwork [6], due to Adolphson and Sperber [1]. Section6
contains a statement of the algorithm for what we call ‘Type 1 Artin–Schreier curves’,
and Section7 describes exactly how to perform the main steps. In particular, we present
an efficient reduction method for the Dwork cohomology of one-variable exponential sums
over the torus. This lies at the heart of our point-counting algorithm, and is the main original
contribution of the paper. The complexity analysis is tied up in Section8, and Section9
discusses the remaining type of Artin–Schreier curve in a more condensed fashion. As in
[14], we aim to give a largely self-contained presentation.

2. L-functions and Artin–Schreier curves

2.1. General theory

Let SQ denote an algebraic closure of the rationalsQ. Let9 : Fp → SQ be a non-trivial
additive character, and let Trk : Fqk → Fp be the absolute trace map. A specific9 will be
constructed in Section4.2, but for now it may be arbitrary. Define9k : Fqk → SQ to be the
non-trivial additive character9 ◦ Trk.

Forf ∈ Fq [X,X−1], define

S∗
k (f,9) :=

∑
x∈F∗

qk

9k(f (x)) (2)

L∗(f,9, T ) := exp

( ∞∑
k=1

S∗
k (f,9)

k
T k

)
. (3)
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Zeta functions and Artin–Schreier curves

For simplicity, we shall omit the9 in this notation. LetCf be the curve embedded inSF∗
q×SFq

with equation
Zp − Z = f (X).

Let C̃f denote the unique smooth projective curve birational toCf .

Lemma 3. For eachx ∈ F∗
qk

, there are exactlynx points of the form(x, z) ∈ F∗
qk

× Fqk

onCf , where

nx =
{
p, if Trk(f (x)) = 0,

0, if Trk(f (x)) 6= 0.

Proof. This follows from [15, Theorem 2.25].

Denote byCf (Fqk ) the set ofFqk -rational points onCf . From Lemma3, one deduces
that

#(Cf (Fqk )) =
p−1∑
j=0

∑
x∈F∗

qk

9k(jf (x)) =
∑
θ∈G

θ(S∗
k (f ))+ (qk − 1),

whereG is the Galois group ofQ(ζ ) overQ, with ζ := 9(1) a primitivepth root of unity.
Writing Z(Cf , T ) for the zeta function ofCf (see [14, Section 1]), it follows that

Z(Cf , T ) =
{ ∏

θ∈G θ(L∗(f, T ))
}
(1 − T )

(1 − qT )
. (4)

Here,G acts on the power seriesQ(ζ )[[T ]] coefficient-wise, fixing the monomialsT k.
To proceed further, it is necessary to split the possible Laurent polynomialsf into three

types.

2.2. Three types of Artin–Schreier curves

Type1: Assume thatf ∈ Fq [X] has degreed not divisible byp. Here we can also define

Sk(f ) :=
∑
x∈F

qk

9k(f (x)) = S∗
k (f )+9(k Tr1(f (0))); (5)

L(f, T ) := exp

( ∞∑
k=1

Sk(f )

k
T k

)
= L∗(f, T )(1 −9(Tr1(f (0)))T )

−1. (6)

Hence, from (4),

Z(Cf , T ) =
{ ∏

θ∈G θ(L(f, T ))
}
(1 − T )

(1 − qT )
{ ∏

θ∈G θ(1 −9(Tr1(f (0)))T )
} .

(The latter term on the denominator is(1 − T )p−1 or 1 + T + . . . + T p−1, depending
upon whether Tr1(f (0)) is zero or not, although this does not concern us.) By Weil, the
L-function L(f, T ) is a polynomial of degreed − 1, and all of its reciprocal roots have
complex absolute value

√
q under all complex embeddings ofSQ. Thus

∏
θ∈G θ(L(f, T ))

is a polynomial of degree(p− 1)(d− 1), pure of weight 1. (A complex number has weight
i for i = 0, 1,2 if it has absolute valueqi/2, and a rational function with algebraic integer
coefficients is pure of weighti if its roots all have weighti under any complex embedding
[24, Section 3].)
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Zeta functions and Artin–Schreier curves

Let Z(C̃f , T ) denote the zeta function of the smooth projective curveC̃f . Let g be the
genus ofC̃f . Again, by Weil, we know that

Z(C̃f , T ) = P
(
C̃f , T

)
(1 − T )(1 − qT )

,

where the numerator is a polynomial of degree 2g, pure of weight 1. SinceCf andC̃f are
birational, they differ by a finite number of points, and hence their zeta functions differ by
a factor of weight 0. Comparing the pure weight 1 parts inZ(Cf , T ) andZ(C̃f , T ), we
deduce that

P(C̃f , T ) =
∏
θ∈G

θ(L(f, T )). (7)

In particular, the genusg of the curveC̃f is given by the formula

g = (p − 1)(d − 1)/2. (8)

Type2: Assume thatf ∈ Fq [X−1] has negative degreed−, not divisible byp. That
is, d− is the lowest exponent occurring inf . ThenCf is birational toCf ∗ , wheref ∗ :=
f (X−1), and we have reduced to Type 1.

Type3: Assume thatf ∈ Fq [X,X−1], but thatf /∈ Fq [X] ∪ Fq [X−1]. Let the negative
degree bed− and the positive degree bed+. Assume thatp does not divided−d+. In this
case, by Weil,L∗(f, T ) is a polynomial of degreed+ −d−, pure of weight 1. By comparing
the pure weight 1 parts inZ(Cf , T ) andZ

(
C̃f , T

)
, we find that

P(C̃f , T ) =
∏
θ∈G

θ(L∗(f, T )), (9)

is the numerator ofZ(C̃f , T ). In particular, the genusg of the curveC̃f is given by the
formula

g = (p − 1)(d+ − d−)/2.

Thus in all cases the computation of the zeta function of the smooth projective curveC̃f
reduces to the evaluation of the L-function of certain one-variable exponential sums.

Note 4. The degree conditions onf are essential for cohomological arguments; however,
given a Laurent polynomialf that does not satisfy them, one may replace it by a new
polynomial f̃ which does, such thatCf andC

f̃
are isomorphic. For each termajpXjp,

the isomorphismZ → Z + bjX
j (X → X) shows that we can replace the termajpXjp

with bjXj , wherebj := a
1/p
jp ∈ Fq . Repeat this procedure until no term has a non-zero

exponent divisible byp. The resulting polynomial̃f has no terms with non-zero exponents
divisible byp, and thus it certainly satisfies any necessary degree restrictions.

Note 5. Let C be the curve in Corollary2. ThenC is birational to the curveCf with
equationZ2 + Z = f (X), wheref := X−2mh. This can be seen by making the change
of variableY = ZXm. ThusC̃, as in Corollary2, is birational toC̃f , and the zeta function
of C̃f can then be computed using Note4 (to getf in the correct form) and the algorithm
that we shall present later. By the special value formula for the zeta function atT = 1, the
order of the Jacobian is the numerator of the zeta function evaluated atT = 1 [2, p. 175].
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Zeta functions and Artin–Schreier curves

Similar comments apply to curves overFq of the formYp −XmY = h(X), whereq = pa

andp − 1 dividesm. Also, general hyperelliptic curves in characteristic 2 are birational to
Artin–Schreier curves of the formZ2 +Z = f (X) for f a rational function. As such, they
may be tackled using a generalisation of our approach.

2.3. Type1 Artin–Schreier curves

In Sections3, 4, 5, 6, 7 and8, we shall denote byf a polynomial inFq [X], of degreed,
not divisible byp. We writef = ∑

j∈J ajXj , whereaj 6= 0. In these sections we shall
explain how to compute the zeta function of the smooth projective curveC̃f . That is, we
shall cover classical ‘Type 1’ Artin–Schreier curves. In Section9, we shall discuss the
modifications required whenf ∈ Fq [X,X−1] is a Laurent polynomial with both positive
and negative exponents. These are ‘Type 3’ Artin–Schreier curves. As mentioned before,
‘Type 2’ curves may be reduced to ‘Type 1’, so we shall not discuss them again.

3. p-adic theory

3.1. p-adic rings

Let Qp denote thep-adic numbers with ring of integersZp. Fix� the completion of an
algebraic closure ofQp. Denote byε a primitive(q−1)th root of unity in�, and byπ ∈ �
an element that satisfiesπp−1 = −p. Define

A := Zp[ε, π ]. (10)

In particular,Ahas residue fieldFq . Elements inAmay be represented viaπ -adic expansions
whose coefficients are taken from some distinct set of representatives for the quotient
A/(π) of sizeq. By binomial expansion and Hensel’s lemma, one sees that the equation
(1 + πt)p = 1 has exactlyp distinct solutionst in Zp[π ]. Thus for any primitivepth root
of unity ζ , we haveZp[ζ ] = Zp[π ], and soA contains the exponential sums defined in
the previous section. LetG denote the group of automorphismsθj : Qp(π) → Qp(π) for
1 6 j 6 p − 1, where eachθj fixesQp and

θj (π) := ηjπ. (11)

Hereη ∈ Zp is a primitive (p − 1)th root of unity. ThenG is the Galois group of the
extensionQp(π)/Qp. (Its action onζ is θj : ζ 7→ ζ η

j modp, although we shall not need
this explicitly.)

It will be convenient to work in complete rings that contain arbitrary rootsπr of π , for
r a rational number. To this end, let5 = ∪z∈N{π1/z}, and letÃ denote the completion of
the ringZp[ε,5]. HereN denotes the positive integers.

Denote byτ the endomorphism oñA defined as

τ(ε) := εp, τ fixesZp[5] and is continuous. (12)

Let ord and|.|p denote thep-adic valuation and norm oñA normalised so that ord(p) = 1
and|p|p = 1/p.

Note that the ringA can be easily constructed and computed; see [14, Section 3] for more
details onp-adic fields. (The larger ring̃A is introduced only for mathematical convenience;
all of our computations are performed inA.)
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3.2. A weight function

As in [14, Section 4] we define a weight function: for each non-negative integeru ∈ Z>0,
let

wt(u) := du/de.
Hered∗e is the least integer not less than∗, andd is the degree of the polynomialf ∈ Fq [X].
Definew̃t(u) := u/d, and sodw̃t(u)e = wt(u). Notice thatπwt(r) ∈ A andπ w̃t(r) ∈ Ã

for everyr ∈ Z>0.

3.3. Banach modules

Let B denote a complete subring of�. A Banach module overB is an ultrametrically
normed complete moduleE overB, such that‖re‖ = |r|p‖e‖ for r ∈ B ande ∈ E, where
‖.‖ is the module norm. An orthonormal basis forE is a set{ei | i ∈ N} such that every
element inE can be written uniquely in the form

∑
i biei wherebi ∈ B with |bi |p → 0 as

i → ∞. (See [20, Section 1] and [4, Section A].) In the case thatB is a field, we call it a
Banach space.

Definition 6. For each rational numberδ > 0, letL̃(δ) be the Banach module overÃwhose
orthonormal basis consists of all termsπ w̃t(r)δXr for r ∈ Z>0. LetA{X} andÃ{X} denote
the Banach module overA or Ã, respectively, whose orthonormal basis consists of all terms
Xr for r ∈ Z>0.

Note thatL̃(δ′) ⊂ L̃(δ) for δ′ > δ, and all the above spaces lie iñA{X}. One may check
that all the above spaces are closed under multiplication, and are in fact rings. Extendτ to
act on each power series in the ringÃ{X} by taking

τ(X) := X, τ is a continuous endomorphism. (13)

4. Analytic representation of additive characters

4.1. Dwork’s splitting functions

We now present the analytic construction of an additive character due to Dwork (see
[5, Section 1] and [6, pp. 55-57], referring to [14] for more details). Letθ(t) denote the
splitting function [14, Section 4.1]

θ(t) := θ1(t) = exp(π(t − tp)). (14)

Write
f̂ :=

∑
j∈J

âjX
j (15)

for the polynomial overA obtained by taking the Teicḧmuller lifting of each coefficient
of f .

Lemma 7. For each termâjXj in f̂ , we haveθ(âjXj ) ∈ L̃(δ) for any

δ <

(
p − 1

p

)2

.

Proof. Writing θ(t) =: ∑∞
r=0 λr t

r , we see from [14, Section 4] that

ord(λr) > (p − 1)r/p2.

39https://doi.org/10.1112/S1461157000000681 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000681


Zeta functions and Artin–Schreier curves

Terms inθ(âjXj ) are of the formλr ârj X
jr for r a non-negative integer. Now ord(λr ârj ) >

(p − 1)r/p2 since ord(âj ) = 0. Also, 06 j 6 d, and sow̃t(jr) = jr/d 6 r. Thus

ord
(
λr â

r
j

)
> p − 1

p2
r > p − 1

p2
w̃t(jr).

Also, for δ < ((p − 1)/p)2 we have

ord
(
πδw̃t(jr)) < p − 1

p2
w̃t(jr),

and the result follows.

Definition 8. Let F andF (a) be defined as follows:

F :=
∏
j∈J

θ
(
âjX

j
); (16)

F (a) :=
a−1∏
i=0

τ i
(
F

(
Xp

i ))
. (17)

Recall here thatq = pa . BothF andF (a) are one-way infinite power series inA{X}.
By Lemma7 and the fact that each̃L(δ) is a ring, we have the next lemma.

Lemma 9. The power seriesF ∈ L̃(δ) for any

δ <

(
p − 1

p

)2

.

4.2. Dwork’s additive character

Fork > 1, define

8k(t) :=
ak−1∏
i=0

θ
(
tp

i ) ∈ Zp[π ][[t]],

and let

8(t) :=
a−1∏
i=0

θ
(
tp

i ) ∈ Zp[π ][[t]].

Denote by ‘Teich’ the Teichmüller lifting map fromSFq to Zunram
p , whereZunram

p is the
unramified integral closure ofZp in �. Then

9k := 8k ◦ Teich and 9 := 8 ◦ Teich

are non-trivial characters fromFqk and Fp, respectively, toZp[π ]. We see that
9k(x) = 9(Trk(x)), where Trk is the trace map fromFqk to Fp. (See [14, Lemma 6].)

The following lemma is proved exactly as [14, Proposition 9]. It gives an analytic ex-
pression for the exponential sumS∗

k (f ) := S∗
k (f,9).

Lemma 10. Let S∗
k (f ) be the exponential sum defined in equation(2) using Dwork’s ad-

ditive character9, and letF (a)(X) be the power series from Definition8. Then

S∗
k (f ) =

∑
xq
k−1=1

F (a)(x)F (a)(xq) . . . F (a)
(
xq

k−1)
.

Here, the sum is over the Teichmüller liftings inZunram
p of the points on the torusF∗

qk
.
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4.3. Completely continuous maps

The next step is to introduce operators onÃ{X} so that the right-hand side of the above
expression can be interpreted as the ‘trace’ of a map on a certain Banach module.

Definition 11. Letψp be the map oñA{X} that acts on monomials as

ψp(X
r) :=

{
Xr/p, if p dividesr,

0, otherwise,

and extends to all of̃A{X} by τ−1-linearity and continuity. Specifically,ψp(
∑
r ArX

r) =∑
r, p|r τ−1(Ar)X

r/p. Write ψq := ψap , a linear map sinceτ−a is the identity onÃ.
Let α := ψp ◦ F and let αa := ψq ◦ F (a). Precisely,α is multiplication byF followed
by the mapψp, and likewise forαa (see [14, Definitions 20, 21]).

Lemma 12. The maps satisfyαa = αa .

Proof. This is proved exactly as in [14, Lemma 22].

Lemma 13. The mapα is stable onL̃(δ) for

δ <
(p − 1)2

p
.

Proof. We first claim thatψp(L̃(δ)) ⊆ L̃(pδ) for any rationalδ > 0. For this, it is enough
to observe that

ψp(π
w̃t(r)δXr) = π w̃t(r/p)pδXr/p

for any r divisible by p. Now let G ∈ L̃(δ), whereδ satisfies the necessary inequal-
ity, depending onp. Then, by Lemma9, F ∈ L̃(δ/p), and so (since alsoG ∈ L̃(δ/p)

by closure under multiplication) we find thatFG ∈ L̃(δ/p). Henceψp(FG) ∈ L̃(δ);
that is,α(G) ∈ L̃(δ), as required.

Definition 14. LetL be defined as

L :=
{
L̃(1)∩ A{X}, if p > 2,

(L̃(γ ) ∩ A{X})⊗ Q, if p = 2.

Hereγ may be taken to be any rational number in the range 1/(2+ (1/2d)) < γ < 1/2.
The key point is thatα is stable onL̃(γ ), sinceγ < 1/2, and the spacẽL(γ ) is small
enough such that an ad hoc argument that we shall present later (Lemma28) works. Thus
for p > 2, we see thatL is just the Banach module overAwith orthonormal basis the terms
πwt(u)Xu for non-negative integersu. For p= 2 it is the Banach space overA ⊗ Q with
orthonormal basis the termsπdγ w̃t(u)eXu for non-negativeu.

Lemma 15. The mapsα andαa are stable onL.

Proof. First, suppose thatp > 2. Thenα is stable onL̃(1), by Lemma13. Certainly,α is
stable on the ring of convergent power seriesA{X}, sinceF ∈ A{X}. Thusα is stable on
L̃(1)∩ A{X} = L. Thatαa is stable onL now follows from Lemma12. Second, consider
the casep = 2. Puttingp = 2 in Lemma13, we find thatα is stable onL̃(γ ) ∩ A{X},
sinceγ < 1/2. GivenG ∈ L, we have mG∈ L̃(γ ) ∩ A{X} for somep-adic integerm.
The result now follows easily.
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Note 16. The ringsÃ andL̃(δ) and the functioñwt were introduced to prove the above
result in as simple a manner as possible; we shall have little further need for them, working
from now on mainly withA andL.

For certain classes of linear maps on Banach modules, the trace and determinant are de-
fined. This is done in the usual way, via matrices for the maps with respect to an orthonormal
basis. We refer to [20, Section 5] and [4, Section A2] for definitions. The key result is the
chain-level Dwork trace formula.

Theorem 17. WithS∗
k (f ) andL∗(f, T ) the exponential sum and the L-function defined as

in (2) and(3) using Dwork’s additive character9 (Section4.2), andαa the map onL given
in Definition11, we have

S∗
k (f ) = (qk − 1)Tr(αka |L).

Thus we have

L∗(f, T ) = det(1 − T αa|L)
det(1 − T qαa|L).

Here the trace and the determinant are defined via matrices for the maps with respect to
the orthonormal basis ofL.

Proof. This is in essence a case of [14, Theorem 25] (withn = 0). Note that the matrixMa

in [14, Theorem 25] is that for the mapαa with respect to a ‘formal basis’ [14, Section 5.2]
of the form{Xi | i ∈ Z>0}. For the above formulae we require a matrix with respect to
the orthonormal basis{πwt(i)Xi | i ∈ Z>0} (whenp > 2, with a slightly different basis
for p = 2). One may verify that the traces of the powers of these two matrices are
the same.

These formulae may be used to compute the zeta function in a similar fashion to [14].
In other words, a finite matrix may be computed that represents the mapα acting on some
appropriate modular reduction ofL. This matrix is then used to compute the characteristic
polynomial ofαa itself, up to a necessaryp-adic accuracy. (This algorithm has been im-
plemented by Vercauteren). However, this ‘chain-level’ method results, for example, in a
time complexity ofÕ(a4.38) with spaceÕ(a4) bits, using the fastest methods for matrix
multiplication and ring arithmetic. Using some homological algebra, one can derive a bet-
ter ‘cohomological’ formula, leading to an improved algorithm. That is what we do in this
paper.

At this stage, sincef is an ordinary polynomial rather than a Laurent polynomial with
negative and positive terms, we can do a little more work to derive a better chain-level
formula, as follows. LetL>0 denote the Banach module comprising those power series in
L with zero constant term. Forp > 2, the moduleL>0 is defined overA, and forp = 2,
overA⊗ Q. The next lemma follows easily from Lemma15.

Lemma 18. The mapsα andαa are stable onL>0.

Now one may check via a matrix for the mapαa with respect to the orthonormal basis
{πwt(r)Xr}r>0 for p > 2, and{πdγ w̃t(r)eXr}r>0 for p = 2, that

det(1 − T αa|L) = (
1 − F (a)(0)T

)
det(1 − T αa|L>0).

Here
F (a)(0) = 9(Tr1(a0))

is a root of unity, where9 is Dwork’s additive character fromFp to Zp[π ].
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LetSk(f ) andL(f, T ) be as in (5) and (6). Then one hasSk(f ) = S∗
k (f )+9(k Tr1(a0)),

and soL(f, T ) = L∗(f, T )(1 − F (a)(0)T )−1. Hence we have the following theorem.

Theorem 19. Let L(f, T ) be the L-function for the exponential sum over the affine line
from equation(6). Then

L(f, T ) = det(1 − T αa|L>0)

det(1 − T qαa|L) .

5. Dwork cohomology

LetH be the polynomial inL defined as

H = πf̂ . (18)

(In fact,H ∈ L̃(1) ∩ A{X} in all cases, and this latter ring equalsL for p > 2, and lies
strictly withinL for p = 2.)

LetD be the operator onL defined as

D = X
d

dX
+HX,

where

HX := X
dH

dX
.

Hered/dX is the usual differential operator on polynomials extended to power series by
continuity, withX andHX just acting by multiplication. NowX(d/dX) is stable onL, and
L is a ring. From this it follows thatD is stable onL, and in fact mapsL toL>0.

Note 20. We pause to explain the motivation behind the above definitions. Defineθ̂ (t) :=∏∞
i=0 θ(t

pi ). One may check that̂θ(t) = exp(πt). Now F = ∏
j∈J θ(âjXj ). Defining

F̂ (X) := ∏
j∈J θ̂(âjXj ), we find that this equals exp(πf̂ ), which is just exp(H), with H

as in (18). Sincêaqj = âj andτ i(âj ) = â
pi

j for eachj ∈ J , it follows from Definition8 that
F (a)(X) = F̂ (X)/F̂ (Xq). From this, we see thatαa = ψq◦F (a) = exp(−H)◦ψq◦ exp(H).
Define the operatorE := X(d/dX), and soE ◦ (qψq) = ψq ◦ E. Then, withD as above,
one may check thatD = E+E(H) = exp(−H)◦E ◦exp(H). ThusD andαa are obtained
from E andψq by some kind of twisting; also, it now follows thatD ◦ (qαa) = αa ◦ D,
which is the crucial relation. (See [6, pp. 55–60] and [21, pp. 267–270] for more details.)

Let L be the complex

0 −→ L
D−→ L>0 −→ 0.

This is a complex ofA-modules whenp > 2 andA⊗ Q-spaces forp = 2. Denote byH1
andH0 the kernel and co-kernel of the mapD. In particular,H0 := L>0/D(L).

Proposition 21. The mapD is injective, and soH1 = 0. Moreover, forp > 2 andp = 2,
H0 is respectively a finite freeA-module or anA⊗ Q-space, of rankd − 1. A basis forH0
may be taken as the set of terms{

πwt(i)Xi |0< i < d
} = {

πX, πX2, . . . , πXd−1}.
Proof. Over the formal power series ring�[[X]], the formal solutions of the first-order
linear differential equationD = 0 is the one-dimensional subspace generated by exp(−H).
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But the power series exp(−H) 6∈ L (the decay rate of coefficients is too slow). This shows
that the restriction of the operatorD to L is injective. The second part of the proposition
follows from the normal form computations in Section7.

By Note20, we have

D ◦ qαa = αa ◦D.
Thus the mapαa defines a chain map onL:

0 −→ L
D−→ L>0 −→ 0

↓ qαa ↓ αa
0 −→ L

D−→ L>0 −→ 0.

Denote byH0(αa)andH1(qαa) the maps induced on the homologiesH0 andH1 by this chain
map, and by det(1 −H0(αa)T ) and det(1 −H1(qαa)T ) the corresponding determinants.

Theorem 22. The L-function from Theorem19satisfies

L(f, T ) = det(1 −H0(αa)T ).

Proof. We have
det(1 − T αa|L>0)

det(1 − T qαa|L) = det(1 −H0(αa)T )

det(1 −H1(qαa)T )
.

This identity is proved in the same way that [20, Proposition 9] is derived from [20, Lemma
2]. NowH1 = 0, and so the denominator on the right-hand side is 1. The expression for the
L-function now follows from Theorem19.

Corollary 23. The zeta functionZ(C̃f , T ) of the smooth projective curvẽCf birational to
the affine curve with equationZp − Z = f (X) satisfies

Z(C̃f , T ) =
∏p−1
j=1 θj (det(1 −H0(αa)T ))

(1 − T )(1 − qT )
.

Hereθj are the automorphisms(11) of Zp[π ] extended to act on polynomials by fixingT .
The numerator is a polynomial of degree(p − 1)(d − 1).

Proof. This follows from Theorem22and equation (7).

Thus the strategy of the algorithm is to compute the determinant of the mapH0(αa) on
the zeroth homologyH0, up to a suitable modular precision. This may be done efficiently
via the following lemma, which is an immediate consequence of Lemma12.

Lemma 24. LetH0(α) denote the map induced onH0 byα. ThenH0(αa) = H0(α)
a .

It will be enough to compute the coefficients of the characteristic polynomial of Frobenius
modulopN for

N = b(p − 1)(d − 1)(1+ a/2)+ 1c.
This follows since the L-function of the exponential sumL(f, T ) has reciprocal roots
whose complex absolute values are

√
q. Thus the coefficient ofT k in the polynomial∏

θj∈G θj (L(f, T )) are integers of absolute value at most
(2g
k

)
pak/2 6 22gpak/2. Since the

polynomial
∏
θj∈G θj (L(f, T )) has degree 2g = (p−1)(d−1), it follows that determining
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the coefficients modulopN forN > (p−1)(d−1)(1+a/2) is sufficient. (Due to a certain
‘loss of accuracy’ when one performs the homological reduction, it is initially necessary to
compute the coefficients ofF modulopε(N+1), for a small positive integerε, whose precise
value we shall determine.)

6. The algorithm

We now present our point-counting algorithm for Type 1 Artin–Schreier curves (see
Section2 for our classification of Artin–Schreier curves).

Algorithm 25 (Artin–Schreier Type 1).
Input: An equationZp − Z = f (X) overFq , wheref ∈ Fq [X] andq = pa .
Output: The zeta functionZ(C̃f , T ) of the unique smooth projective curve birational to the
affine curve defined by this equation.

Step0: Replacef by a polynomial all of whose terms have exponents not divisible byp,
in the manner explained in Note4. Denote this new polynomial also byf . This will not
change the zeta function. SetN := b(p − 1)(d − 1)(1+ a/2)+ 1c, whered is the degree
of f . Let ε := 4 whenp > 2, andε := (4d + 1) whenp = 2. We shall compute the
coefficients of the numerator of the zeta function modulopN .

Step1: Compute the power seriesF given in Definition8 with coefficients determined
modulopε(N+1). Let α be the map on the ringL (Definition 6), defined asα = ψp ◦ F
(Definition11). LetH0(α) be the map induced on the zeroth homologyH0 of the complex
L by α.

Step2: LetπX, πX2, . . . , πXd−1 be the basis for the zeroth homologyH0. For each basis
elemente, compute the imageH0(α)(e) ∈ H0 with coefficients determined modulopN .
ConstructM, defined as the matrix representing the mapH0(α) with respect to the basis,
with coefficients determined modulopN . Specifically,M = (mij ), wherei is the row index
andj the column index, andH0(α)(πX

j ) = ∑d−1
i=1 mij (πX

i) modpN for 1 6 j 6 d−1.

Step3: Compute

Ma := Mτ−1(M)τ−2(M) . . . τ−(a−1)(M)

modulopN , where the mapτ is the lifting of Frobenius toA as given in (12). ThusMa is
a matrix for the mapH0(αa).

Step4: Output the rational function

Z(C̃f , T ) :=
∏p−1
j=1 θj (det(I −MaT ))

(1 − T )(1 − qT )
,

whereθj is the automorphism from (11) extended to act onZp[π ][T ] by fixing monomials.

The correctness of the algorithm follows from Corollary23 and Lemma24, along with
the discussion of the choice ofN at the end of Section5, and the choice ofε from Lemmas
27 and31. The matrixM is called theabsolute Frobenius matrix, and det(I −MaT ) the
characteristic polynomial of Frobenius. In Section7 we shall describe exactly how this first
matrix is computed, allowing us to give a complexity analysis of the algorithm in Section8.
This will complete the proof of Theorem1 for Types 1 and 2 Artin–Schreier curves. We
present the algorithm for Type 3 curves in Section9.
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Note 26. The above algorithm can be improved in practice by using the functional equation

T 2gqgP

(
C̃f ,

1

qT

)
= P

(
C̃f , T

)
.

This functional equation shows that it is enough to determine the coefficients modulopN
′
,

whereN ′ := b(p − 1)(d − 1)(1+ a/4) + 1c, computing only the first half of the coeffi-
cients directly inP(C̃f , T ), and then recovering the second half by the functional equation.
Moreover, our choice ofε is perhaps rather large, especially in the casep = 2. It may be
enough in practice, as observed by Vercauteren, to work initially top-adic accuracyN ′ +δ,
whereδ is some small variable that can be determined ‘experimentally’ (see also Note32).

7. Performing the main steps

We shall work with elements inL with coefficients determined modulopε(N+1). (In the
casep = 2 by this we mean that, givenG ∈ L, we haveG = G′ + pε(N+1)G′′, whereG′
is a known polynomial overA⊗ Q andG′′ is a power series with coefficients inA.) If an
element is given to this accuracy, we say that it lies inL modpε(N+1). Similarly,H0 is the
free module overA whenp > 2, andA⊗ Q the free module whenp = 2, spanned by the
basis monomials {

πX, πX2, . . . , πXd−1}. (19)

We writes ∈ H0 modpN if an elements is given inH0 with coefficients modulopN . In
the next two sections we shall explain how, given an elementG ∈ L>0 modpε(N+1), we
can computes ∈ H0 modpN such that

G = D(r)+ s modpN

for somer ∈ L. We call this process ‘finding a normal form’ inL>0 modpε(N+1) and
say thats is ‘cohomologous’ toG. (Here, we identifyH0 with a subspace ofL. Also, for
an arbitraryG ∈ L>0 the choice ofε would in fact depend upon the decay rate of the
coefficients ofG. As such, in what followsε should be thought of as a variable; in Lemmas
27and31we determine which values forε suffice in the cases of interest.)

7.1. Normal forms inL>0/D(L): Casep > 2

In the casep > 2, because of the decay rate of power series inL, working inL>0/D(L)

is particularly simple. From (15) and (18),

H = π

d∑
j=0

âjX
j , and thus HX = π

d∑
j=1

âj jX
j ,

where ord(âdd) = 0 sinced 6= 0 in Fq . Consider the basis monomialπwt(u)Xu for the
Banach moduleL, whereu > d. We have the trivial identity

πwt(u)Xu =
(
π

( d∑
j=1

âj jX
j

)
+X

d

dX

)(
(âdd)

−1πwt(u)−1Xu−d
)

−
(
π

( d−1∑
j=1

âj jX
j

)
+X

d

dX

)(
(âdd)

−1πwt(u)−1Xu−d
)

=: D(r)+ r ′, (20)
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wherer ∈ L andr ′ ∈ L>0. Moreover,r ′ is a sum of monomials of degree less thanu
and greater than or equal tou − d + 1. Now letG ∈ L>0 modpε(N+1), and assume that
bπwt(u)Xu is the highest term that occurs inG for someb ∈ A. (Note that by the decay
rate on the coefficients of elements inL, we see thatu = O(εNpd).) We may suppose for
our purposes thatu > d. We can write this term asD(br) + br ′, wherebr ′ is a sum of
monomials of degree less thanu but not less thanu− d + 1. WriteG = G′ + bπwt(u)Xu.
Then inL>0/D(L) we find thatG is ‘cohomologous’ toG1 := G′ + br ′. To computeG1
requiresd multiplications inA modpε(N+1), and the same number of additions (plus a little
precomputation, which can be ignored). Now continue in this way until the highest term in
someGm has degree less thand. Precisely, we needm at mostu− d + 1 = O(εNpd).

In this way we may find a ‘normal form’ for any element inL>0. That is, givenG ∈
L>0 modpε(N+1), we can write it as

G = D(r)+ s,

wherer ∈ L, ands ∈ H0 modpN is a linear combination with coefficients inA modpN

of the basis monomials {
πX, πX2, . . . , πXd−1}.

The process above has time complexity

Õ
(
(εNpd)d(Npa)c

)
(21)

bit operations, wherec is the exponent for multiplication as defined in Section8.1. This
complexity estimate lies at the heart of our proof of Theorem1. (Strictly speaking, using
the method that we describe, the final factor in the bracket should be(εNpa)c. However,
a simple analysis based upon the proof of the next lemma shows that for each coefficient
cuX

u inGwherecu is given modulopε(N+1), one must keep track of only the firstN terms
in thep-adic expansion ofcu, not including the leading zero terms.)

The next lemma justifies the choice ofε in the casep > 2.

Lemma 27. Lete ∈ {πX, . . . , πXd−1} withα(e) cohomologous tos, a linear combination
of the basis elements. To determines modpN , it is enough to compute the coefficients of
α(e) modulop4(N+1).

Proof. Let e = πXj . By Lemma 9, terms inF(e) are of the formcvXv+j , where
ord(cv) > ((p − 1)/p)2(v/d). By the action ofψp, terms inα(e) are of the formc′uXu,
where ord(c′u) > ((p − 1)/p)2((pu− j)/d). Equality (20) shows that foru such that(

p − 1

p

)2 (
up − j

d

)
− u

d
> N,

the normal form of the termc′uXu vanishes modulopN . Thus for

u

d
> 3(N + 1)> N + 1

((p − 1)2/p)− 1

the termc′uXu does not contribute tos modpN . It is now easy to check that computing
the coefficientsc′uXu for u/d less than this bound with coefficients determined modulopb,
where

b = 3(N + 1)+ (N + 1)= 4(N + 1),

is enough to determine the normal form ofα(e) modulopN .
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7.2. Normal forms inL>0/D(L): Casep = 2

The reduction process forp = 2 is in essence the same; in other words, one uses a
trivial identity to reduce the degree at each step. However, the justification that it works is
somewhat more involved, since the power series inL decay rather more slowly.

We shall assume thatdâd = 1; the more general situation just involves some notational
complications, the essential point being that we always have ord(dâd) = 0. Let J1 :=
J − {d} be the support setJ of f excluding the elementd, and letbj := j âj . We may
assume that all non-constant terms inf have odd degree (Note4), so each integer inJ1 is
odd. (The argument below in fact works, provided only thatd is odd, the key point being
that in any case ord(bj ) = ord(j) for all j ∈ J1, and this is at least 1 forj even.) In a similar
manner to that shown above, we have the identity

Xu = D

(
1

π
Xu−d

)
−

(
(u− d)

π
Xu−d +

∑
j∈J1

bjX
u−d+j

)
. (22)

This is used to reduce a power series given in finite precision inL>0 to its normal form,
that is, a polynomial overA ⊗ Q of degree less thand with no constant term. As before,
the complexity is (21).

We must also address one theoretical problem. LetG := ∑
u cuX

u ∈ L, and suppose
that cuXu = D(ru) + su with su a polynomial of degree less thand overA ⊗ Q. Then
G = D(

∑
u ru) + ∑

u su, provided that|ru|, |su| → 0 asu → ∞. To show that these
sequences indeed converge, and to get a bound on theirp-adic orders, requires a more
careful analysis, which we now perform in a rather ad hoc fashion.

Lemma 28. We may write any monomialXu in the formXu = D(r) + s, wherer is
a polynomial of degree at mostu − d, and s is a linear combination of the monomials
X,X2, . . . , Xd−1, with coefficients inA ⊗ Q. Moreover, the coefficients ofs havep-adic
order at least−mu−1, and for anyv the coefficient ofXu−v in r has order at least−mv−2.
Here,

m := 1

2d + (1/2)
.

Proof. Our approach will be to show thatXu = D(r ′)+s′, wherer ′ satisfies the conditions
in the statement of the lemma, ands′ has the following property: it is a sum of terms of
the formcvXu−v wherev > 1 and either ord(cv) > −mv, or ord(cv) > −mv − 1 with
u − v < d. (In particular, if v > 2d + 1 with ord(cv) > −1, or v > 4d + 1 with
ord(cv) > −2, then the termcvXu−v is of the required form.) The result then follows by
induction. For simplicity, we shall consider only the remainder terms′; one may verify that
the other term,r ′, which we abbreviate as ‘∗’, has the required properties in all cases.

If u < d there is nothing to prove, so we assume thatu > d. By (22), if u− d is even,
we have finished, since then(u− d)/π is integral.

Assume then thatu − d is odd. Applying (22), we are reduced to considering the term
((u− d)/π)Xu−d . If u < 2d, thenu− d < d, and once again we have finished. Thus we
assume thatu > 2d. Applying (22) to this new term, we find that((u− d)/π)Xu−d equals
D(∗) plus

− (u− d)(u− 2d)

π2
Xu−2d − u− d

π

∑
j∈J1

bjX
u−d−(d−j). (23)
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We first examine the terms in the final summation of (23). If u− d − (d − j) < d, we have
finished. Otherwise, applying (22), we find that((u− d)/π)Xu−d−(d−j) equalsD(∗) plus

− (u− d)(u− 3d + j)

π2
Xu−3d+j − u− d

π

∑
i∈J1

biX
u−d−(d−j)−(d−i). (24)

For the first term,(u− 3d+ j) is divisible by 2, and alsou− 3d+ j 6 u− (2d + 1). Thus
this term is of the required form ‘cvXu−v ’, where ord(cv) > −1 andv > 2d + 1. For the
terms in the summation in (24), one repeatedly applies (22). The first time that one uses the
middle term on the right-hand side of (22), one gets the termcvXu−v, say. Here, the order
of the coefficientcv is −1, since(u − 2d − (d − j) − (d − i) − . . .) is even. Moreover,
we havev = 2d + (d − j) + (d − i) + . . . > 2d + 1, and once again this term is of the
required form. If one never uses the middle term, then the resulting termcvX

u−v, say, has
coefficientcv of order at least−1 andu− v < d, and once again we have finished.

It remains to consider the first term of (23). We may assume thatu > 3d, (for otherwise
it is already of the correct form). Applying (22) to this term, we getD(∗) plus

(u− d)(u− 2d)(u− 3d)

π3
Xu−3d + (u− d)(u− 2d)(u− 3d)

π2

∑
j∈J1

bjX
u−2d−(d−j). (25)

The terms in the last summation are of the required form, since(u − 2d) is even and
2d + (d − j) > 2d + 1. For the first term of (25), applying (22), we getD(∗) minus

(u− d) . . . (u− 4d)

π4
Xu−4d + (u− d)(u− 2d)(u− 3d)

π3

∑
j∈J1

bjX
u−3d−(d−j). (26)

The first term is of the required form, since(u − 2d)(u − 4d) is divisible by 23 and also
4d > 2d + 1. For the terms in the summation of (26), one repeatedly applies (22). The first
time that one uses the middle term on the right-hand side of (22), one getscvXu−v, say. Here
the order of the coefficientcv is−2, since both(u−2d) and(u−4d−(d−j)−(d−i)−. . .)
are divisible by 2. Also,v = 4d + (d − j) + (d − i) + . . . > 4d + 1, which shows that
this term is of the required form. If one never uses the middle term, then the resulting term
cvX

u−v, say, has coefficientcv of order at least−1, since(u− 2d) is even, andu− v < d,
and once again we have finished.

Corollary 29. For p = 2, the set{πX, . . . , πXd−1} is a basis forL>0/D(L).

Proof. Sinceγ > 1/(2+(1/2d)), by Lemma28and a straightforward continuity argument
we know that this set spansL>0/D(L). Any basis cannot have fewer thand − 1 elements,
by consideration of the degree of the L-functionL(f, T ) (using (8)), and so it must be a
basis.

The above result is primarily of theoretical interest. The next lemma shows that in the
case in which we are interested, denominators do not in fact occur.

Lemma 30. Letp = 2 ande ∈ {πX, πX2, . . . , πXd−1}. Thenα(e) is cohomologous to
an element

∑d−1
j=1 mj(πX

j ), wheremj ∈ A.

Proof. Dividing through byπ , we show thatα(π−1e) is cohomologous to an element∑d−1
j=1 mjX

j with mj ∈ A. Let e = Xj , where 16 j 6 d − 1. Then the terms inF(e)
are of the formcvXv+j , where ord(cv) > v/4d (from Lemma9). By the action ofψ2
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the terms inα(Xj ) are of the formc′uXu, where ord(c′u) > d(u/2d)− (j/4d)e. We claim
that such terms are cohomologous to polynomials of degree at mostd−1 overA. If u 6 2d,
the result is true by one application of (22) and induction. Foru > 2d, one proves the result
using at most two applications of (22) and induction.

The next lemma justifies the choice ofε in the casep = 2.

Lemma 31. To compute the normal form ofα(e) ∈ L modulopN , it is sufficient to deter-
mine the coefficients ofα(e) modulop(4d+1)(N+1).

Proof. Lemma28shows that foru such that

ord(cu)− u

2d + (1/2)
− 1 > N,

the normal form of the termcuXu vanishes modulopN . Sinceα(e) ∈ L, terms in this power
series are of the formcuXu, say, where ord(cu) > u/2d. For u/2d := (4d + 1)(N + 1),
we haveu/(2d + (1/2)) = 4d(N + 1) and(u/2d) − (u/(2d + (1/2)) − 1 = N , and for
u′ > u we get a strict inequality in the latter. Thus, it is enough to work modulopb where

b = 4d(N + 1)+ (N + 1)= (4d + 1)(N + 1).

7.3. Computing the absolute Frobenius matrix

We now describe how to perform the main step of the algorithm—that is, constructing
the matrix for the absolute Frobenius map with respect to the basis{πX, . . . , πXd−1}.
First, one may computeF with the coefficients determined modulopε(N+1) directly from
the formula in Definition8 and the expression forθ(t) in (14). Working with coefficients
modulopε(N+1), for each basis elemente the polynomialψp ◦ F(e) modpε(N+1) may
be constructed. The reduction method of Sections7.1 and7.2 is then used to write this
as a linear combination of the basis elementsπX, . . . , πXd−1. In this way the matrixM
is found, with coefficients determined modulopN . (Note that the entries inM arep-adic
integers for allp, by Lemma30.)

7.4. Finding the characteristic polynomial of Frobenius

One may compute the matrixMa via the formula

Ma =
a−1∏
i=0

τ−i (M). (27)

This is proved from Lemma24 in the same way as [14, Lemma 26]. (See also the sentence
following that lemma for an alternative approach.) The characteristic polynomial may then
be found deterministically by computing Tr(Mk

a ) for 1 6 k 6 d and using the Newton
identity

det(I −MaT ) = exp

(
−

∞∑
k=1

Tr(Mk
a )

k
T k

)
.

(Alternatively, one could use an interpolation method.) The numerator of the zeta function
may now be found by computing the conjugates (11) and taking a product to get a polynomial
in Zp[T ].
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8. Complexity analysis

8.1. Exponents for ring multiplication

LetA/(pr) be some modular reduction ofA, and letA/(pr)[X] be the ring of polynomi-
als in one variable overA/(pr). Denote byc the (deterministic) exponent for multiplication
in both rings. Precisely, polynomials of degreeδ in A/(pr)[X] can be multiplied inÕ(δc)
operations inA/(pr), and elements inA/(pr) can be multiplied inÕ((rpa log(p))c) bit
operations, whererpa log(p) is the logarithm of the size of the ring. Using classical meth-
ods, we takec = 2; Karatsuba’s algorithm givesc = log2(3) < 1.59, andc = 1 using Fast
Fourier Transform (FFT) methods. (Note that we ignore logarithmic factors, and the space
complexity isÕ(δ), Õ(rpa log(p)) in all cases. For polynomial multiplication using FFT
methods, we refer to [3]; we assume as in [12, Section 5] and [10, Section 4.3] that FFT
methods may be applied toA/(pr), although we do not know a convenient reference for
this.) Similarly, letω denote the exponent for deterministic multiplication of matrices over
A/(pr); thus twoδ × δ matrices can be multiplied iñO(δω) operations inA/(pr). It will
transpire that the choice ofω(6 3) does not affect the overall complexity.

8.2. Complexity of the point-counting algorithm

First, we must computeF with coefficients determined modulopε(N+1). This may be
done by multiplying together theO(d)polynomialsθ(âjXj ) in the ring ‘L̃(δ) modpε(N+1)’
for δ as in Lemma9. (Note that eachθ(t) can itself be constructed via multiplication of
truncated power series of the form exp(∗tpj ), as in [14, Lemma 29]. This part is dominated
by the computation ofF itself.) From the decay rate of the coefficients of the power series
in L̃(δ), we see that polynomialsθ(âjXj ) modpε(N+1) are linear combinations of the
monomialsπdw̃t(i)δeXi for w̃t(i) bounded so that

dw̃t(i)δe 6 ε(N + 1)(p− 1).

There areO(εNpd) such terms. Since the coefficients of the power seriesθ(âjX
j ) lie in

A, it follows that the construction ofF may be done in

Õ((εNpd)c(εNpa logp)c) = Õ((ε2N2p2ad)c) (28)

bit operations. (Here,O(εNpa logp) is the bit-size of elements in the ringA modpε(N+1).)
Second, findingψp ◦ F(e) for all d − 1 basis monomials requires

Õ(d(εNpd)(εNpa)) = Õ(ε2N2p2ad2) (29)

bit operations. Here, we use the quasi-linear time method to compute the mapτ−1 on
A modpε(N+1) suggested in [12, Section 5] and [10, Step 2] (namely, precomputation of
the map on the elementε by Newton iteration).

Third, we must compute a normal form for each such expression to find the coefficients in
the matrixM. By the time estimate (21), we see that each column ofM can be computed in

Õ(εNc+1pc+1d2ac) (30)

bit operations. We required − 1 = O(d) such computations.
Fourth, computing the matrix forMa may be done using equation (27) and the fast

exponentiation method of [14, Lemma 31] in

Õ(dω(Npa)c) (31)

bit operations.
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Finally, the computation of the characteristic polynomial takes

Õ(dω+1(Npa)c) (32)

bit operations. (Computation of the products of the conjugates using (11) is absorbed
in the other estimates.) Adding (28), (29),d × (30), (31) and (32) together, and putting
N = O(pad) with ε = O(1),O(d), we get

Õ(p4ca3cd4+c), for p > 2,

Õ(p4ca3cdmax(5c,c+5)), for p = 2,

wherec is the exponent for ring multiplication as discussed in Section8.1. (Here we have
assumed thatω 6 3.) Using FFT methods, we may takec = 1, giving the time complexity
claimed in Theorem1.

The space complexity is in all cases determined by the size of the ringL modpε(N+1)

and also the polynomialF modpε(N+1). These are both

Õ((εNpd)(εNpa)) =
{

Õ(p4a3d3), for p > 2,

Õ(a3d5), for p = 2.

This completes the proof of Theorem1 in the case of Type 1 Artin–Schreier curves, and
also Type 2, since they are easily reduced to Type 1.

Note 32. It is possible to reduce the factorsd5c andd5 in the time and space complexities,
respectively, forp = 2 to d4c andd4 using a more careful analysis: we have not taken
into account that only part (N terms) of thep-adic expansion of each coefficient inF mod
pε(N+1) needs to be computed. A much more detailed analysis of the action ofD could
perhaps reduce the value required forε whenp = 2, giving a uniform time estimate of
Õ(p4a3d5) with spaceÕ(p4a3d3) for all p.

Note 33. We briefly describe one alternative approach forp = 2, which has also been
implemented by Vercauteren.The idea is to use a more complicated splitting function to
improve the decay rate of the coefficients inF . The result is that one may useL :=
L̃(1)∩A{X} for the casep = 2, and the proof thatL>0/D(L) becomes easier. Specifically,
settingp = 2, takeθ := θ3, whereθ3 is the splitting function defined in [6, p. 55]. One may
compute the required elementγ3 ∈ Zp in the following manner: letγ ′

3 satisfy the relation

γ ′
3 = 1 + 4γ ′

3
3 − 8γ ′

3
4 + 8γ ′

3
5
.

Thenγ3 := 2γ ′
3. Let α be defined as before, but with the newθ . This time, it is stable on

L := L̃(1)∩ A{X}. DefineH to be

H :=
2∑

j=0

γ3,jτ
j
(
f̂ (Xp

j

)
)
,

where

γ3,j :=
j∑
i=0

γ
pi

3

pi
.

Then one must compute the action ofα on the homologyL>0/D(L), whereD := X(d/dX)

+HX. To do this, forj > 0 defineπjL>0 to be the Banach module overAwith orthonormal
basisπwt(u)+jXu(u > 0). Then

HX ≡ πX
df̂

dX
modπL>0.
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Now one performs the reduction process from Section7.1 coupled with a Hensel lifting
argument to revealr ands with G = D(r) + s, working moduloπjL>0 for increasing
powers ofj . Note that one may take anyN > (d−1)(1+ (a/2))+1 andε = 11/3, and all
computations are done withp-adic integers. The algorithm has complexityÕ(amax(3c,4)d6),
wherec is the exponent for multiplication and space complexityÕ(a3d3). This is slightly
slower in terms ofa due to a step in the Hensel lifting, for which we were unable to find a
fast method.

9. Artin–Schreier covers of the torus

In this section we present in a much more condensed fashion the algorithm for computing
the zeta function of the Type 3 Artin–Schreier curves.

Let f ∈ Fq [X,X−1] have negative degreed− < 0 and positive degreed+ > 0. We
shall explain how to compute the L-functionL∗(f, T ). From this one may easily compute
the zeta functions of Type 3 Artin–Schreier curves using (9).

Define a weight function wt onZ by

wt(u) :=
{

du/|d−|e, if u < 0,

du/d+e, if u > 0,

where|.| is the usual (notp-adic) absolute value. Forp > 2, letL be the Banach module
overA with orthonormal basisπwt(r)Xr for r ∈ Z. Forp = 2, letL denote the Banach
space overA ⊗ Q with orthonormal basisπdγwt(r)eXr for r ∈ Z. (Hereγ is any rational
number with 1/2> γ > 1/(2 + 1/(2d ′)), whered ′ := max(|d−|, d+).) Note thatL
contains two-way infinite power series, and in fact still forms a ring because of the decay
conditions on coefficients. Now define the power seriesF andF (a) in exactly the same
manner as before. In this case they are two-way infinite power series. Withα andαa defined
exactly as before, we find that both maps are stable onL. We have the formula

L∗(f, T ) = det(1 − T αa|L)
det(1 − T qαa|L).

In this case one cannot remove any unit root factors. LetL be the (slightly ‘larger’) complex
of modules

0 −→ L
D−→ L −→ 0.

These areA-modules forp > 2 andA⊗ Q-spaces forp = 2. HereD is defined in exactly
the same manner as before (in Section5). In this case,H0 = L/D(L) andH1 = 0, and one
recovers the cohomological trace formula

L∗(f, T ) = det(1 −H0(αa)T ).

Once again we have the crucial relationH0(αa) = H0(α)
a . A basis forH0 can be taken as{

πXd
−
, πXd

−+1, . . . , πX−1, 1, πX, . . . , πXd
+−1},

with d+−d− the dimension of this space. Computation of normal forms inL/D(L) is done
in a similar manner to before. Precisely, one first uses the method in Sections7.1 and7.2
to find an element that is cohomologous to a given element whose leading term has degree
less thand+. One then performs a similar process to increase the degree of the lowest term
so that it is not less thand−. Note that we need a finalp-adic accuracy of anyN greater than
(p− 1)(d+ − d−)(a/2+ 1). For p >2, the factorε can be taken to be 4, and forp = 2, it
is 4d ′ + 1. The complexity of the above algorithm may be checked to be identical to that in
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the case whenf is just an ordinary polynomial. More precisely, if we writed := d+ − d−,
then all the bounds in Section8 are still true. This completes the proof of Theorem1, and
Corollary2 follows from Note5.
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