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1. Introduction. Throughout this paper we consider associative rings with identity
and assume that all modules are unitary. As is well known, cyclic modules play an
important role in ring theory. Many nice properties of rings can be characterized by their
cyclic modules, even by their simple modules. See, for example, [2], [3], [6], [7], [13],
[14], [15], [16], [18], [21]. One of the most important results in this direction is the result
of Osofsky [14, Theorem] which says: a ring R is semisimple (i.e. right artinian with zero
Jacobson radical) if and only if every cyclic right /^-module is injective. The other one is
due to Vamos [18]: a ring R is right artinian if and only if every cyclic right R -module is
finitely embedded.

Starting from the Osofsky's result, Boyle has introduced an interesting class of rings
whose proper cyclic right modules are injective (the right PCI rings for short). Right PCI
rings and related rings have drawn the attention of many authors (see, for example, [3],
[4], [7], [9]). One other type of investigation in this direction is to characterize rings by
means of their cyclic right modules all of which are assumed to satisfy some decomposi-
tion properties (see, for example, [15], [16], [2], [6]). Following the investigation of Smith
in [15], Chatters [2, Theorem 3.1] obtained a nice characterization of right noetherian
rings as rings whose cyclic right modules are direct sums of a projective module and a
noetherian module.

In connection with all that above, we shall prove the following theorem.

THEOREM 1.1. A ring R is right artinian if and only if every cyclic right R-module is a
direct sum of an injective module and a finitely embedded module.

Using this theorem, we can improve the module characterization of hereditarily
artinian rings given in [6, Theorem 1] and prove some related results (Theorem 4.1,
Propositions 4.2, 4.3).

2. Preliminaries. Let R be a ring. For a module M, MR means that M is a right
R-module, Soc(MR) denotes the socle of MR, + and © stand for a module and ring
theoretic direct sum, respectively. A submodule H of a module M is called essential in M
if for each non-zero submodule N of M, H D N =£ 0. A module M is defined to be finitely
embedded if Soc(M) is finitely generated and essential in M. Now, we say that a ring R
satisfies the property (P) if every cyclic right R-module is a direct sum of an injective
module and a finitely embedded module.

LEMMA 2.1. If R is a ring satisfying (P) then every homomorphic image of R satisfies
(P) too.

Proof. Straightforward.
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A ring R is called right self-injective if RR is injective, and R is called regular (in the
sense of von Neumann) if a e aRa for any a e R. The following statement was proved by
Osofsky [14, Lemma 5].

LEMMA 2.2. Let R be a right self-injective regular ring and {e,}°°=1 an infinite set of
orthogonal idempotents of R. Then R/(Y,?=i+ e/R) is not injective over R.

LEMMA 2.3. Let R be a regular ring and e an idempotent of R. Then, for any a e R,
there exists an idempotent f e R such that ef =fe = 0 and eR + aR = eR 4-/7?.

Proof. See Lambek [12, p. 111].

A ring R is called an RM ring if, for each non-zero ideal / of R, R/I is right artinian.
As a generalization of the Vamos result mentioned in the introduction, Armendariz and
Hummel [1, Proposition 3.1] proved the following result.

LEMMA 2.4. Let R be a ring such that, for each non-zero ideal I of R, R/I is a finitely
embedded right R/I-module. Then R is an RM ring.

3. Proof of Theorem 1.1. It is clear that every right artinian ring satisfies (P).
Assume now that R is a ring satisfying (P). We first consider the case that R is semiprime.
By (P) we have

RR=A + B, (1)

where AR is a finitely embedded module and BR is injective. Since R is semiprime, it is
easy to see that AR = Soc{AR) is a direct sum of finitely many minimal idempotent right
ideals of R. Without loss of generality, we can assume that AR contains no non-zero
injective submodules. Let C be the sum of all non-injective simple submodules of RR.
Then C is an ideal of R, obviously. Since A c C w e get, by (1), C = A + CHB. Since
SOC(CK) = C, every minimal submodule of CR is non-injective. On the other hand, every
minimal submodule of BR is injective by the injectivity of BR and semiprimeness of R.
Hence CC\B = 0, which implies C = A. Then the fact that R is semiprime forces
R = A ® B at once. From this A is a semisimple ring and B is a right self-injective regular
ring satisfying (P).

In order to show that B is right artinian, it is enough to show that B does not contain
an infinite set of orthogonal idempotents. Assume the contrary that B contains an infinite
set {e,}°Li of orthogonal idempotents e,. Put

Then the cyclic right B-module B - BID has a direct decomposition

B = K + H,

where KB is injective and HB is finitely embedded. Let H be the inverse image of H in
B. Then B/H is injective over B and H/D is finitely embedded over B. We first show that
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HB is injective. If B = H, the statement is clear. We consider now the case B±H. It
follows that

00

H = aB + 2 e,B
1=1

for some aeH. For aB + exB, Lemma 2.3 shows the existence of an idempotent f0 of B
with /o/i =/i/0 = 0 (here we set /i = ex) and aB + etB =f0B +fiB. Using Lemma 2.3, we
can inductively show that

...+enB=f0B+flB + ...+fnB

holds for each n = 1, 2, . . . , where {/j}"=0 is a system of orthogonal idempotents. Hence

H=\J(aB + eiB + .. .+enB) = U (/0B + . . . +fnB) = %+fiB.

Since B//f is injective, Lemma 2.2 allows only finitely many non-zero ft to occur in
{fj}J=0, say/o, . . . ,fm. Let / =/0 + . . . +fm. Then H=fB; therefore HB is injective.

Since the right B-module HID has a finitely generated essential socle, HID clearly
has finite Goldie dimension, k say. Let I1, . . . , Ik+l be infinite subsets of the index set
{1,2, . . .} such that

/ 1 U / 2 U . . . U 4 + 1 = {1,2, . . .}

and /, D Ij: = 0 for i #y. Put

5, = 2 + ^ (e>l6{cjr-i). (2)

Then

D = 5, + . . . + 5 t + 1 .

Let £(£,) be the injective hull of 5, in / / with E(S,) 3 5,. Then we get

By (2) and since H is cyclic, 5, ¥= £(5,) for each i = 1,. . . , k + 1. From this, it is easy to
see that the Goldie dimension of HID is at least k + 1, a contradiction. Hence B does not
contain infinite sets of orthogonal idempotents. It follows that B and therefore R is a
semisimple ring.

Now we go to the general case. Let N be the prime radical of R. Then R = R/N is a
semisimple ring by Lemma 2.1 and the consideration above. As is well known, RR has the
direct decomposition

where each etR is a minimal right ideal of R and {e,}^! is a set of orthogonal idempotents
of R. Since N is a nil ideal of R, there are orthogonal idempotents e, of R with e, e e, such
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that e = ex + .. . + em is the identity of R and

R = exR + ...+emR, (3)

where each etR is an indecomposable right fl-module. Then by (P), every e,/? is injective
or it contains a finitely generated essential socle. Suppose for example that etR is
injective. If exR C\N = 0, exR is a minimal right ideal of R. For the case exR DN^O, let x
be a non-zero element in exR D N. Since ;d? can not contain non-zero injective
submodules, xR contains a finitely generated essential socle by (P). In particular, exR
contains a minimal submodule M. Then the injective hull of M in exR must coincide with
exR. Hence Soc{exR) = M. On the other hand we have, by (3),

Soc(RR) = Soc(exR) + . . . + Soc(emR).

Combining these facts we get that Soc(RR) is finitely generated and essential in RR. From
this and Lemma 2.1, every homomorphic image of R has also this property. Then Lemma
2.4 shows that R is an RM ring. Since Soc(RR) =t 0, R is right artinian.

The proof of Theorem 1.1 is now complete.

REMARKS. A ring R is called right PCI if every proper (i.e. not isomorphic to RR)
cyclic right i?-module is injective (cf. [7, p. 363]). As we have mentioned in the
introduction, the right PCI rings have drawn the attention of many authors. It is
remarkable to mention that every right PCI ring is right noetherian, see [4]. Now,
similarly we could call a ring R right PCIA if every proper cyclic right fl-module is a
direct sum of an injective module and an artinian module. Then, in the connection with
Theorem 1.1, it would be worth while to test for example whether or not a right PCIA
ring is right noetherian. If it were the case then the problem raised by Camillo and Krause
in [22, Open problems] could be answered positively.

In [2, Theorem 3.1], Chatters characterized right noetherian rings as those rings
whose cyclic right modules are direct sums of a projective module and a noetherian
module. Concerning this we consider the ring Z of all integers. It is clear that every cyclic
Z-module is either projective or finite. Thus, the property that every cyclic right module is
a direct sum of a projective module and a module with finite length cannot characterize
the class of right artinian rings.

4. Rings whose ideals are right artinian rings. A ring R is called hereditarily artinian
if every ideal of R is a right artinian ring. Every semisimple ring is hereditarily artinian,
however the converse is not true in general. The structure of hereditarily artinian rings
was investigated in [11], [19], [20] and recently in [6]. Using Theorem 1.1, we now
improve a result given in [6, Theorem 1].

THEOREM 4.1. For a ring R the following conditions are equivalent:
(a) R is hereditarily artinian;
(b) R and each prime ideal of R are right artinian rings;
(c) R = S ® F, where S is semisimple and F is finite;
(d) R and the prime radical N of R are right artinian rings;
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(e) R is right artinian and N/N2 is finite;
(f) every cyclic right R-module is a direct sum of an injective module whose factor

modules contain no non-zero finite submodules and a finite module;
(g) every cyclic right R-module is a direct sum of an injective module and a finite

module;
(h) every cyclic right R-module is a direct sum of an injective module and a module

with a finite essential submodule.

Proof. (a)=>(b)^(c)^(d)=>(e)=>(f) are proved in [6, Theorem 1]; (f)=>(g)=>
(h) are evident. Assume now that R satisfies (h). Then R is right artinian by Theorem 1.1.
Let F be the largest finite ideal of R. Then R/F is a right artinian ring without non-zero
finite right ideals, (cf. [5, Theorem 2]). By a similar argument to Lemma 2.1, R/F satisfies
(h) too. Hence every principal right ideal of R/F is injective over R/F; therefore R/F is
semisimple. Thus (a) holds.

The proof of Theorem 4.1 is now complete.

An element c of a ring R is called regular if c is not a right or left zero-divisor of R.
Let R c Q be rings. Then R is defined to be a right order in Q if every regular element of
R is a unit in Q and every element q of Q has the form q = ac~x with a, c e R and c
regular. In this case one says also that Q is the classical right quotient ring of R. Using
Theorem 4.1(c) and some well-known facts about orders in artinian rings, we prove the
following proposition.

PROPOSITION 4.2. A ring R is a right order in a hereditarily artinian ring if and only if
R is a direct sum of a semiprime right Goldie ring and a finite ring.

Proof. Let R be a right order in a hereditarily artinian ring Q, and let F be the
largest finite ideal of Q. Then, by Theorem 4.1, we have

Q = Qi®F, (l)

where Qx is a semisimple ring. Now, F = (FC\R)Q. Since FDR is finite, c(FDR) =
(Fr\R)c = FnR for all regular elements c of R; therefore c"1(Fflfi) = (Fnfi)c"1 =
FDR. Hence F = (FHR)Q = Q(FDR) = FnRcR. In particular, F is an ideal of R
containing an identity by (1). It follows that R = S ® F. Comparing with (1), we get that 5
is a right order in Ql. Hence 5 is a semiprime right Goldie ring.

The converse is clear.

REMARKS. In Proposition 4.2 one can prove more: if R is a right order in a
hereditarily artinian ring then R is a direct sum of a hereditarily artinian ring and a
semiprime right Goldie ring with a zero socle.

In [5, Theorem 4(a)] it was proved that the largest finite ideal of a right and left
artinian ring R is a direct summand of R. From this we can, by the same as above, show
that if R is a right order in a right and left artinian ring then R contains a largest finite
ideal which is a direct summand of R. Now let R be a right and left order in a right and
left artinian ring. Then we can show that RR contains a largest artinian submodule A and
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RR contains a largest artinian submodule B. In general A=£ B and they are not direct
summands of R. This shows, for example, in the matrix ring

Z i

where Z is the ring of integers and Q is the field of rational numbers. We do not know
whether in case A = B, A is a direct summand of R. Assume in addition that R is right
and left noetherian, then A (=B) is a direct summand of R (see [8]).

As is well known, for a ring R with the classical right quotient ring Q, Q is
semisimple if and only if every right Q-module is injective over R (cf. [17, p. 58]). For the
hereditarily artinian case we can prove the following result.

PROPOSITION 4.3. For a ring R with the classical right quotient ring Q the following
conditions are equivalent:

(i) Q is hereditarily artinian;
(ii) every cyclic right Q-module is a direct sum of an injective right R-module and a

finite right R-module.

Proof. (i)=>(ii). By Theorem 4.1 and Proposition 4.2, we have

Q = Qx ® E, R = Rl®E,

where E is finite, Qx is semisimple and Rx is a right order in Qx. Let M be a cyclic right
Q-module. Then MQ = MQX + ME. Clearly, ME is finite. By [17, Proposition 3.8, p. 58],
MQX is injective over Rx, and so also over R, which proves (ii).

(ii)z>(i). Let M be a cyclic right Q-module. By (ii),

MR = 1 + F, (1)

where IR is injective and FR is finite. Let x el. Then for each regular element c of R,
xc~xeM. By (1), xc~l = xx +x2 (xxel, x2eF); hence x = (xc~1)c =xxc +x2c; therefore
x — xxc = x2c eIC\F = 0, i.e. xc~1 = xx el. This shows that / is a right Q-module.
Similarly, F is a right Q-module too. Now, let cp be a Q-homomorphism of a right ideal H
of Q into IQ. Then cp can be considered as an /?-homomorphism of HR into IR. Since lR is
injective, there is an /?-homomorphism xp of QR into IR such that (p = xpr, where r is the
inclusion map of H into Q. Let x and q be elements of Q, q = ac~l, a, ceR, c regular.
Then \l>{xq)c = tp(xac~1)c = %p(xa) = ip(x)a; therefore ip(xq) = %l)(x)ac~1 = ip(x)q. This
shows that xp is a Q-homomorphism of Q into IQ, hence IQ is injective. By Theorem 4.1,
Q is then hereditarily artinian. This completes the proof of Proposition 4.3.
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