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Abstract
The quaternion is a powerful and common tool to avoid singularity in rotational dynamics in three-dimensional (3D)
space. Here it has been particularly used as an alternative to Euler angles and rotation matrix. The application of the
quaternion is exercised in quadrotor modeling and control. It changes the dynamics and represents a singularity-
free attitude model. Here for the first time (for the best knowledge of authors), the state-dependent differential
Riccati equation (SDDRE) control has been implemented on the quaternion-based model of a quadcopter. The
proposed control structure is capable of aerobatic flight, and the Pugachev’s Cobra maneuver is chosen to assess the
capability of the quaternion-based SDDRE approach. The introduced control simulator is validated by comparison
with conventional dynamics based on Euler angles, controlled using a proportional-derivative (PD) controller on a
normal regulation flight. The simulator successfully performed the Cobra maneuver and also validated the proposed
structure. The more precision in regulation along with lower energy consumption demonstrated the superiority of
the introduced approach.

1. Introduction
The Euler angles and rotation matrix in three-dimensional (3D) space are vulnerable to singularities,
considering dynamics, especially in an aerobatic flight. Here we focus, particularly on multirotor drones
and quadcopters. The dynamics of the multirotor drones are usually subjected to hovering assumptions
to guarantee a stable flight [1]. To perform agile maneuvers with sudden changes in attitude, geometric
control was introduced that avoids singularities and computes the rotation matrix in another manifold
[2]. Krishna et al. used the geometric control for helicopter trajectory tracking in agile flight regarding
the attitude of the system [3]. The sliding mode was employed as the controller and the error func-
tion in the geometric domain constructed the sliding condition to prove the stability. The geometric
control was also applied on quadrotor drones subject to wind disturbance and sudden changes in atti-
tude dynamics [4]. A flip is representative of a challenging maneuver that includes passing through a
singularity that was addressed by the geometric approach [5]. The π (rad) flip in roll angle was consid-
ered, sudden motion between two stable roll angles. The change in the manifold and solving singularity
cost the user more complicated integration methods [6]. Variational integration is an effective method
[7]. Improper treatment of the integration may cause numerical drift in the results, especially in big
orientation changes.

The quaternion is another representation of the complex numbers in mathematics, with a wide range
of usage in theory and application. The focus of this work is to implement the alternative representation
of the Euler angles and rotation matrix in 3D space. The application of quaternion in control was reported
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on aircraft [8, 9], orientation and translation control of manipulators [10, 11], control of autonomous
underwater vehicles [12–15], helicopter attitude control [16], etc. Terze et al. used quaternion represen-
tation of the rotational dynamics for aircraft simulators and introduced shifting update process to ensure
precise integration in long flight simulations [8]. Kinematics control of a robotic arm was presented
using dual quaternion, aimed to present a robust controller without decoupling of the translational and
orientation dynamics [10]. Cooke et al. presented a thorough implementation of the quaternion dynam-
ics for flight simulation [17]. The performance of the quaternion-based control was validated by an
omnidirectional intelligent navigator for an underwater platform [12]. Suzuki et al. presented the simu-
lation and experimental studies on Lepton-Ex unmanned helicopter using quaternion feedback in control
[16]. Quadrotor and multicopters were also employed quaternions [18–23]. A study compared three con-
trollers, linear quadratic regulator (LQR), proportional-derivative (PD), and model predictive controller
(MPC) for trajectory tracking that revealed the PD and the LQR gained better results in an ideal condi-
tion, and the MPC was more accurate in presence of disturbance [18]. Quaternion variables in the attitude
controller provided an advantage, employment of low-cost sensors due to the high-speed capability of
the singularity-free controller [20]. Palomo et al. presented an observer-based method based on position-
yaw for the ellipsoid method [21]. Linear matrix inequalities were used to optimize the feedback of the
observer, and experimental results showed successful tracking in high speed maneuver. Euler angles are
popular in UAV modeling though they suffer from gimbal lock when two orthogonal axes align and lock
together [24]. Another disadvantage of Euler angles is the computational cost by computing so many
trigonometric functions [25], on the contrary, quaternion mathematics only involves algebraic compu-
tations [26]. Sanchez et al. used quaternion dynamics for quadrotor control based on receiving gesture
commands [27], where it was important to cope with the unpredictability of the gesture and quaternion
made it more reliable due to insensitivity to singularity.

Performing experiment on aggressive maneuvers requires more safety concerns in addition to solving
singularities. Gillula et al. used the Hamilton–Jacobi differential game approach for finding a reachable
set for aerobatic maneuvers to guarantee safety [28]. Considering the constraint of the actuators in the
flight experiment is an important issue since, during the flip, it is highly probable to put the rotors in
saturation [29]. Here in this work, the simulation of the Cobra maneuver is done and for experimentation,
actuator limits and speed of the maneuver must be considered to avoid undesired saturations in the
middle of trajectory that could be dangerous.

The state-dependent Riccati equation (SDRE) is a closed-loop optimal nonlinear controller intro-
duced in the 1960s [30]. The utilization of the quaternion in SDRE was explored in several platforms
such as satellite [31, 32], spacecraft [33–36], spacecraft in proximity operations [37], attitude control of
a rigid body [38], and remote sensing CubeSats [39]. Here we present the state-dependent differential
Riccati equation (SDDRE) control based on quaternion for quadcopter dynamic systems. For the best
knowledge of authors, a quaternion-based SDDRE controller has not been used for quadrotors in the
literature so far which makes the first contribution of this work. The SDDRE is a finite time controller
that penalizes the states (error variables) by a final boundary condition [40].

The singularity-free attitude control is the principal advantage of the quaternion. The Cobra is a
challenging aerobatic flight maneuver, performed by a jet aircraft [41, 42]. The motion turns the aircraft
vertical (even for pitch angle θ > π/2) to perform the maneuver along with sudden deceleration; the
thrust of the jet engine helps to avoid the system from falling.

A tail-sitter drone is a good choice, with a vertical thrust option, to perform the Cobra maneuver
[43]. Xu et al. presented iterative learning control for a tail sitter unmanned aerial vertical-take-off-and-
landing system for Pugachev’s Cobra maneuver [43]. They used the acceleration model that resulted in
simple dynamics without system identification. The Cobra was exercised by a quadrotor using adaptive
control [44]. The quadrotor possessed 28(g), a small lightweight platform. An adaptive backstepping
controller with a modified recursive least-square was employed to control the system.

Contributions: (1) presenting a quaternion-based SDDRE control peculiar to a quadrotor. (2)
Implementing Cobra maneuver in pitch angle in a forward flight. The performed Cobra in ref. [44]
was done in vertical ascending flight. In a forward flight, conducting a Cobra maneuver, the system will
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lose its thrust (θ ≈ π/2) and is subjected to fall. Here in this work, using SDDRE, the Cobra in forward
flight is done.

Section 2 describes the preliminaries in quaternion mathematics. Section 3 states the system dynam-
ics details. Section 4 presents the SDDRE control structure. Section 5 expresses the approximate
closed-form solution to the SDDRE. Section 6 presents the implementation and method and cas-
cade design. Simulations are reported in Section 7 which includes validation and aerobatic flight, and
concluding remarks are summarized in Section 8.

Notations: Rn denotes the n-dimensional Euclidean space, Hn denotes the n-dimensional Hamilton
space, and (·)∗ performs conjugate transpose. Rn×m is the set of n × m real matrices; (·)T is the transpose
of a matrix or a vector;

⊗
denotes Kronecker product; diag (·) means a diagonal matrix; In×n and 0n×n

denote n × n identity and zero matrices.

2. Preliminaries: Quaternion mathematics
Here we consider the quaternion definition with real-scalar part q0 and vector-imaginary part qv = q1i +
q2j + q3k, set all together

q =
[

q0

qv

]
=
⎡
⎢⎣ cos

ϑ

2

rsin
ϑ

2

⎤
⎥⎦, (1)

where r ∈R
3 is a unit rotation vector and ϑ is the corresponding rotation angle about that ref. [20]. To

solve the ambiguity of the direction of quaternions, 0 ≤ q0 ≤ 1 is chosen. A conjugate transpose of the
quaternion (1) is presented as

q* =
[

q0

−qv

]
. (2)

The multiplication product of two arbitrary quaternions q and p is defined through Kronecker product

q ⊗ p = Q(q)p =

⎡
⎢⎢⎢⎢⎣

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

p0

p1

p2

p3

⎤
⎥⎥⎥⎥⎦ . (3)

A unit quaternion can build a rotation transformation by two multiplications by Kronecker product
that could rotate an arbitrary vector v from the global coordinate to a moving coordinate q as in the form
of q ⊗ [0, vT

]T ⊗ q*. So, using definitions (2) and (3), the rotation matrix is built by replacing x, y, z in
turn into v:

Rx(q) = q ⊗ [0,1, 0,0]T ⊗ q*,

Ry(q) = q ⊗ [0,0,1,0]T ⊗ q*,

Rz(q) = q ⊗ [0,0,0,1]T ⊗ q*,

which form [25]:

R(q) = [Rx(2: 4), Ry(2: 4), Rz(2: 4)
]=
⎡
⎢⎣

q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q0q2 + 2q1q3

2q0q3 + 2q1q2 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 + 2q2q3 q2
0 − q2

1 − q2
2 + q2

3

⎤
⎥⎦ .

where that is Rx(2: 4) selects three last components of Rx.
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Fig. 1. The definition of the reference coordinates for a sample quadrotor drone.

The angular velocity vector of the quaternion is accessible (supposedly) in local moving coordinate;

it is presented by the vector ω (q, q̇):H×R
4 →R

3 where ω = [ω1,ω2,ω3]T

(
rad
s

)
. Then the derivative

of the quaternion is found [45]:

q̇ω = 1

2
q ⊗

[
0

ω

]
= 1

2
Q(q)

[
0

ω

]
, (4)

in which q̇ω(q, ω): H×R
3 →R

4 and Q(q) has been introduced in Eq. (3).
The relation between the Euler angles (ϕ, θ ,ψ) and quaternions is also needed for the control

design [25]:

q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos
ϕ

2
cos

θ

2
cos

ψ

2
+ sin

ϕ

2
sin
θ

2
sin
ψ

2

sin
ϕ

2
cos

θ

2
cos

ψ

2
− cos

ϕ

2
sin
θ

2
sin
ψ

2

cos
ϕ

2
sin
θ

2
cos

ψ

2
+ sin

ϕ

2
cos

θ

2
sin
ψ

2

cos
ϕ

2
cos

θ

2
sin
ψ

2
− sin

ϕ

2
sin
θ

2
cos

ψ

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

and also with inverse mapping, one could find:⎡
⎢⎣
ϕ

θ

ψ

⎤
⎥⎦=

⎡
⎢⎣

atan2
(
2 (q0q1 + q2q3) , q2

0 − q2
1 − q2

2 + q2
3

)
asin (2 (q0q2 − q1q3))

atan2
(
2 (q0q3 + q1q2) , q2

0 + q2
1 − q2

2 − q2
3

)
⎤
⎥⎦ .

3. Dynamics of the system
Consider a “plus-shaped” quadrotor drone with two moving and fixed reference coordinates, body frame
denoted by B, and global frame marked with M= {X, Y , Z}, with respect, see Fig. 1. The position
of the moving coordinate is defined through the vector ξ 1(t) = [xc(t), yc(t), zc(t)

]T
(m) . The kinematics

equation is

ξ̇ 1(t) = R(q(t))υ1(t), (6)

where υ1(t) = [u(t), v(t), w(t)]T
(m

s

)
, and R(q):H→R

3×3 is the quaternion-based rotation matrix; and
{ϕ, θ ,ψ} (rad) are Euler angles set in global coordinate. The local angular velocity vector set on the
body frame is also named υ2(t) = [p(t), q(t), r(t)

]T ( rad
s

)
.

To find the dynamics of the system, Newton–Euler equation could be used that results in two sets of
dynamic equations, the first set is translational:

mξ̈ 1(t) = R3(q(t))TB(t) − mge3, (7)
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where R3(q) is the last column of R(q), g = 9.81
( m

s2

)
is the gravity constant, m (kg) is the total mass of

the drone, and e3 = [0,0,1]T . The second set is rotational dynamic:
Jυ̇2(t) = τ B(t) − υ2(t) × Jυ2(t), (8)

where τ B(t) = [τx(t), τy(t), τz(t)
]T
(Nm) is the input torque vector and J = diag

(
Ixx, Iyy, Izz

) (
kgm2

)
is the

inertia matrix assigned in the body frame.
The state-vector is

[x(t)]13×1 =
[
ξ

T
1 (t), qT(t), ξ̇

T

1 (t), υ̇T
2 (t)
]T

,

which provides the state-space representation of the multi-copter using Eqs. (4)–(8) and setting
ω(t) = υ2(t) = [p, q, r

]T in Eq. (4):

ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R(q(t))υ1(t)

1

2
Q(q(t))

[
0

υ2(t)

]

1

m

(
R3(q(t))TB(t) − mge3 − Dξ̇ 1(t)

)
J−1(τB(t) − υ2(t) × Jυ2(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

In state-space Eq. (9), D ∈R
3×3 collects drag and aerodynamics parameters of the quadcopter model

and has been added to complete the model.

4. The state-dependent differential Riccati equation controller design
Consider the time-invariant affine-in-control nonlinear system

ẋ(t) = f(x(t)) + g (x(t), u(t)) , (10)
where x(t) ∈R

n is the state vector, u(t) ∈R
m is the input vector, f(x(t)): Rn →R

n and g(x(t), u(t)): Rn ×
R

m →R
n represents the dynamics and they satisfy local Lipschitz condition. n is the dimension of

the state vector and m is the total number of actuators. The system Eq. (10) is transformed into
state-dependent coefficient (SDC) parameterization [46]:

f(x(t)) = A(x(t))x(t), (11)

g(x(t), u(t)) = B(x(t))u(t), (12)

in which B(x(t)): R
n →R

n×m and A(x(t)): R
n →R

n×n are held. The pair of {A(x(t)), B(x(t))} is a
controllable parameterization of system (10) [47].

The cost function of the SDDRE is structured as

J (·)= 1

2
xT(t)Fx(t) + 1

2

tf∫
0

[
xT(t)Q(x(t))x(t) + uT(t)R(x(t))u(t)

]
dt, (13)

where tf ∈R
+ is the final time of the control task, Q(x(t)): Rn →R

n×n, R(x(t))Rn →R
m×m, and F ∈R

n×n

are weighting matrices, for states and inputs in t ∈ [0, tf) and states at the final time tf with respect.
The pair of

{
A(x(t)), Q

1
2 (x(t))

}
is an observable parameterization of system (10) where Q

1
2 (x(t)) is the

Cholesky decomposition of weighting matrix in (13).
The control law is defined by applying ∂H(x(t),u(t),λ(t))

∂u(t)
= 0, stationary condition, on Hamiltonian function

H (x(t), u(t), λ(t))= J (·)+ λT(t)ẋ(t):
u(t) = −R−1(x(t))BT(x(t))K(x(t))x(t), (14)
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where λ(t) = K(x(t))x(t) is the co-state vector and K(x(t)): Rn →R
n×n is the control gain of the control

equation, SDDRE.
Using the necessary condition for optimality, ∂H(x(t),u(t),λ(t))

∂x(t)
= −λ̇(t) and the derivative of the co-state

vector λ̇ = K̇x + Kẋ, one could find:

K̇(x) + K(x)A(x) − K(x)B(x)R−1(x)BT(x)K(x) + AT(x)K(x) + Q(x) + �(x) = 0,

where �(x) collects the derivative terms (see the complete equation in ref. [46]), then the SDDRE is
represented as [48]:

−K̇(x) = Q(x) − K(x)B(x)R−1(x)BT(x)K(x) + K(x)A(x) + AT(x)K(x), (15)

with K (x (tf))= F, a final boundary condition.

5. An approximate closed-form solution to the SDDRE
The quadrotor dynamics in Eq. (9) must be controlled by the SDDRE approach. The extended lineariza-
tion model of (9) is so-called state-dependent coefficient parameterization (or apparent linearization)
[49]. To solve the SDDRE (15) and to find the control gain, several methods could be used such as
backward integration (BI) [50], state-transition matrix [51], and Lyapunov-based approach [52]. The BI
imposes a two-round solution that might not be proper for systems that need frequent changes in ini-
tial and final conditions, nonrepetitive systems. The STM approach is not computationally robust when
the final time is long [53], then the Lyapunov-based approach has been selected for this work. It works
with both positive and negative solutions to the Riccati equation and delivers an approximate closed-
form answer, in just one round. This work uses Lyapunov-based method via negative root to the related
SDRE, K−

ss(x) to find the symmetric positive-definite solution to the SDDRE, K(x(t)) [50]. Subtracting
(15) from

AT(x)Kss(x) + Kss(x)A(x) + Q(x) − Kss(x)B(x)R−1(x)BT(x)Kss(x) = 0, (16)

generates

−K̇(x) = [K(x) − Kss(x)] A(x) + AT(x) [K(x) − Kss(x)]

− K(x)B(x)R−1(x)BT(x)K(x)

+ Kss(x)B(x)R−1(x)BT(x)Kss(x). (17)

Adding and subtracting KBR−1BTKss, KssBR−1BTK and KssBR−1BTKss to (17) result in:

−K̇(x) = AT(x) [K(x) − Kss(x)] + [K(x) − Kss(x)] A(x)

− [K(x) − Kss(x)] B(x)R−1(x)BT(x)Kss(x)

− [B(x)R−1(x)BT(x)Kss(x)
]T

[K( x) − Kss(x )]
− K(x)B(x)R−1(x)BT(x)K(x)

+ K(x)B(x)R−1(x)BT(x)Kss(x)

+ Kss(x)B(x)R−1(x)BT(x)K(x)

− Kss(x)B(x)R−1(x)BT(x)Kss(x). (18)

Rewriting (18):

−K̇(x) = [K(x) − Kss(x)] A(x) + AT(x) [K(x) − Kss(x)]

− [K(x) − Kss(x)] B(x)R−1(x)BT(x)Kss(x)

− [B(x)R−1(x)BT(x)Kss(x)
]T

[K(x) − Kss(x)]

− [K(x) − Kss(x)] B(x)R−1(x)BT(x) [K(x) − Kss(x)],
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and introducing a new variable

P−1(x) = K(x) − Kss(x),

and expressing the closed-loop matrix of the system

Acl(x) = A(x) − B(x)R−1(x)BT(x)Kss(x),

one could present

−K̇(x) = P−1(x)Acl(x) + AT
cl(x)P−1(x) − P−1(x)B(x)R−1(x)BT(x)P−1(x) (19)

Regarding that d
dt

(
P−1(x)

)= −P−1(x)Ṗ(x)P−1(x), Eq. (19) should be changed to

P−1(x)Ṗ(x)P−1(x) = P−1(x)Acl(x) + AT
cl(x)P−1(x) − P−1(x)B(x)R−1(x)B(x)P−1(x),

and consequently, results in a state-dependent differential Lyapunov Eq. [50]:

Ṗ(x) = Acl(x)P(x) + P(x)AT
cl(x) − B(x)R−1(x)BT(x), (20)

with a final boundary condition P (tf)= [F − Kss(x(t))]−1. A solution to (20) is

P(x) = E(x) + exp {Acl(x) (t − tf)} [P (tf)− E(x)] exp
{
AT

cl(x) (t − tf)
}

, (21)

in which E(x(t)) is an answer to a state-dependent algebraic Lyapunov equation:

E(x)AT
cl(x) + Acl(x)E(x) − B(x)R−1(x)BT(x) = 0. (22)

Proof of (21) could be checked by the substitution of Eq. (21) into (20):

Ė(x) + d (Acl(x) (t − tf))

dt
exp{Acl(x)(t − tf)}[P(tf) − E(x)]exp{AT

cl(x)(t − tf)}
− exp{Acl(x)(t − tf)}Ė(x)exp{AT

cl(x)(t − tf)}

+ exp{Acl(x)(t − tf)}[P(tf) − E(x)]exp{AT
cl(x)(t − tf)}d

(
AT

cl(x) (t − tf)
)

dt

= E(x)AT
cl(x) + exp{Acl(x)(t − tf)}[P(tf) − E(x)]exp{AT

cl(x)(t − tf)}AT
cl(x) + Acl(x)E(x)

+ Acl(x)exp{Acl(x)(t − tf)}[P(tf) − E(x)]exp{AT
cl(x)(t − tf)} − B(x)R−1(x)BT(x). (23)

From (22) we have

B(x)R−1(x)BT(x) = Acl(x)E(x) + E(x)AT
cl(x). (24)

The algebraic Lyapunov Eq. (22) results in Ė(x) = 0. Regarding frozen computation at each sim-
ulation time-step, we neglect the time derivative of Acl(x) and as a result, d(Acl(x)(t−tf))

dt
= Acl(x) +

Ȧcl(x) (t − tf)︸ ︷︷ ︸
0

. Substituting (24) into (23), mathematical manipulation cancels all terms and shows that

the solution (21) holds for Eq. (20). Since we neglected Ȧcl(x) (t − tf)≈ 0 in the derivative d(Acl(x)(t−tf))
dt

and considered Ė(x) = 0, this approach is so-called a closed-form approximate solution.
The positive gain of the SDDRE (15) is regarded as K (x(t))= Kss (x(t))+ P−1

(x(t)) , in which
Kss (x(t)) could be a negative definite K−

ss (x(t)) or positive definite K+
ss (x(t)) solution to the SDRE

(16). It works with both of them.
The details of the positive and negative roots of the SDRE are reported in Sections 3.1.1 and 3.3.2

of Ref. [50]. The negative root is computationally more robust than the positive one, and it has been
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used here in this work. Finally, notice that the negative definite solution to the SDRE (16) is the positive
definite answer to

−K+
n (x)A(x) − AT(x)K+

n (x) − K+
n (x)B(x)R−1(x)BT(x)K+

n (x) + Q(x) = 0,

with consideration of K−
ss (x(t))= −K+

n (x(t)).

6. Implementation of the SDDRE on quaternion-based dynamics
The state-space equation of the system (9) must be represented by SDC forms (11) and (12). On the
one hand, the dimension of the state vector (13 states) is not compatible with the cascade approach,
commonly used in quadrotor control (12 states) [5]. On the other hand, the separation of rotational and
translational dynamics was reported helpful in the control design due to different speeds of them, slow
and fast dynamic [54]. So, here we propose two subcontrollers for the translation and rotational dynam-
ics, connected through cascade design. For the translation dynamic, the set of SDC parameterization is

At(x(t)) =
⎡
⎣03×3 R(q(t))

03×3 −D
m

⎤
⎦, Bt =

⎡
⎣ 03×3

I3×3

m

⎤
⎦,

in which hovering condition has been assumed to find ξ̇ 1 = R(q)︸︷︷︸
I

υ1 ≈ υ1, to make the factorization

possible, and “t” stands for translation. For the orientation section, we neglect the scalar part of the
quaternion, the first column, and the row of Q(q(t)) in (9), then the SDC parameterization is

Ao(x(t)) =
[

03×3 [Q (2: 4, 2: 4)]3×3

03×3 −J−1[υ2 × I]3×3

]
, Bo =

[
03×3

J−1

]
,

where Q (2: 4, 2: 4) collects the second to fourth components of Q(q(t)) in columns and rows, and “o”
stands for orientation. Based on (14), the translation control law for regulation to the desired condition
rather than zero is

ut(t) = −R−1
t (x(t))BT

t Kt (x(t))

[
ξ 1(t) − ξ 1,des

ξ̇ 1(t) − ξ̇ 1,des

]
, (25)

where R, Qt, Ft, and Kt are the corresponding matrices (with proper dimension) for the translation and
Riccati equation and “des” defines the desired condition.

The computation of input law (25) is based on a fully actuated system, which is not possible in reality.
So, to transform the [ut(t)]3×1 to the scalar thrust input considering the gravity as well, we use cascade
design [55]:

TB(t) = m
([

R3(q(t))
]

1
ut,1(t) + [R3(q(t))

]
2
ut,2(t) + [R3(q(t))

]
3

(
ut,3(t) + g

))
,

where that is
[
R3(q(t))

]
1

is the first component of R3(q(t)). The cascade design delivers the necessary
desired Euler angles

θdes(t) = tan−1

(
ut,1cosψdes + ut,2sinψdes

ut,3 + g

)
, (26)

φdes(t) = sin−1

⎛
⎝ ut,1sinψdes − ut,2cosψdes√

u2
t,1 + u2

t,2 + (ut,3 + g
)2

⎞
⎠ , (27)

in which ψdes could possess an arbitrary value.
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The orientation control law is also presented as

uo(t) = −R−1
o (x(t))BT

o Ko (x(t))

[ Feq(t)

υ2(t) − υ2,des

]
, (28)

where eq(t) is quaternion error and

F =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The quaternion error in (28) is defined as

eq(t) = −qdes(t) ⊗ q∗(t) = −Q
(
qdes(t)

)
q∗(t),

where qdes(t) is defined by substituting (26), (27), and ψdes into Eq. (5).

7. Simulations
7.1. Validation
To validate the proposed controller design and the simulator, a comparison has been done with the PD
controller and a conventional sliding mode control (SMC). We consider a system based on the Euler
angles in rotational dynamics, controlled by a simple PD to have it as a reference. Then the SDDRE
controller is implemented on the quaternion-based dynamics to check the performance and also to vali-
date the correctness of the implementation. The SMC has been frequently used in UAV control [56], in
the context of robustness or combined with other techniques [57]. Based on that, the SMC is selected
for comparison to add the more detailed result.

The mass of the system is m = 0.468 (kg), the drag coefficient matrix is D =
diag (0.25, 0.25, 0.25)

( kg
s

)
, the components of the inertia matrix are Ixx = 4.856 × 10−3

(
kgm2

)
,

Iyy = 4.856 × 10−3
(
kgm2

)
, and Izz = 8.801 × 10−3

(
kgm2

)
. The time of the simulation has been set

tf = 10 (s), and the drone flies from zero coordinate to the desired position in Cartesian coordinate
(−2, 3, 1.5) (m). All of the initial conditions are set zero including position, velocity, Euler angles, and
angular velocity. The initial condition of the quaternions is found by substituting (φ (0) , θ (0) ,ψ (0))
into (5) to reach q (0)= [1, 0, 0, 0]T .

The PD control gains are set as KP,t = I3×3, KD,t = 2 × I3×3, KP,o = I3×3, and KD,o = 0.5 × I3×3. The
SDDRE controller gains are selected as follows: Rt = I3×3, Qt = diag (0.1, 0.1, 0.1, 0.2, 0.2, 0.2), Ft =
100 × Qt, Ro = I3×3, Qo = diag (2, 2, 2, 0, 0, 0), Fo = 10 × Qo.

Two separate SMC controllers are considered for translation and orientation parts, consistent with
Section 6. The sliding surface is si(X) = ˙̃Xi + �iX̃i for i = {t,o} (translation and orientation) where
X̃i = ξ i − ξ i,des and �i is a strictly positive constant matrix. The control law is also in the form of ui =
B−1

i,SMC(x)
(
ξ̈ i,des − fi,SMC(x) − Ki,SMC tanh

( si(x)
σ

))
, where Bt,SMC = 1/mI3×3, Bo,SMC(x) = J−1

c

(
ξ 2

)
, ft,SMC(x) =

− 1
m
Dξ̇ 1(t), fo,SMC(x) = −J−1

(
ξ 2

)
C
(
ξ 2, ξ̇ 2

)
ξ̇ 2, and Ki,SMC is the correction gain of the SMC. More details

on conventional dynamics, such as Jc
(
ξ 2

)= WT
(
ξ 2

)
IW
(
ξ 2

)
, can be found in ref. [54]. To avoid chat-

tering in SMC, tanh
( si(x)

σ

)
is used where σ = 0.2 in this simulation. The SMC control parameters

are selected as �t = diag (0.5, 0.5, 1), �o = 1.5 × I3×3, Kt,SMC = diag (5, 5, 1), Ko,SMC = 2.5 × I3×3, and
desired accelerations are set zero, ξ̈ i,des = 0.

Simulating the system, the results are found in the following. The position variables of the drone are
illustrated in Fig. 2 to Fig. 4 with respect. The roll and pitch angles of the multi-copter are plotted in Fig. 5
and Fig. 6 with respect. The input norm of the quadrotor is illustrated in Fig. 7 and the configuration
and trajectories of the drones are shown in Fig. 8.
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Fig. 2. x-axis regulation of the system, comparison with PD and SMC.

Fig. 3. y-axis regulation of the system, comparison with PD and SMC.

Fig. 4. z-axis regulation of the system, comparison with PD and SMC.

Fig. 5. The roll angle of the system, comparison with PD and SMC.

The error of the regulation with PD controller was gained higher than the other two and the error
of the SDDRE was obtained the least, see Table I. Since the norm of the inputs (representative of the
energy consumption) of the SDDRE is less than the PD and SMC, the performance of the proposed
system is satisfactory. The results also confirm the validity of the quaternion-based dynamics and also
the control implementation.

Validation with previous work: To confirm the correctness of the quaternion-based dynamics and the
SDDRE controller, an existing model will be employed for comparison. Xiong and Zhang used a global
fast terminal sliding mode controller (TSMC) for quadrotor regulation and also compared the results
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Table I. Comparison of PD, SMC, and SDDRE controller.

Energy consumption: the area
Position Convergence under the norm signals,

Method error (mm) Overshoot speed Fig. 7
PD 35.99 Only in orientation Second Highest, 46.3504
SMC 12.26 In translation and orientation First Middle, 46.4512
SDDRE 4.69 None Third Lowest, 46.3102

Fig. 6. The pitch angle of the system, comparison with PD and SMC.

Fig. 7. The input norm of the inputs of the system, comparison with PD and SMC.

Fig. 8. The configuration and trajectories of the quadrotor drones with PD, SMC, and SDDRE
controllers.

with conventional SMC [58]. Here the parameters of the system are substituted into the quaternion model
and the SDDRE controls the model. The results are similar to the ones in Fig. 2 of ref. [58] presented
in this section, in Fig. 9. The regulation of translation control is quite like the TSMC and regulated to
desired values around 2s, without overshoot. The controller parameters are similar to Sections 7.2.
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(a)

(b)

(c)

Fig. 9. The validation results of the quaternion-based SDDRE with previous work in ref. [58].

Fig. 10. The position variables of the system in aerobatic maneuver.

Fig. 11. The Euler angles of the drone in aerobatic maneuver.
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Fig. 12. The Cobra maneuver via the SDDRE and quaternion dynamics.

Fig. 13. The quaternions.

It should be noted that since the loop is closed, it cannot be said that the dynamics are validated;
however, observing the behavior of the system in comparison with the SMC, the closed-loop system is
validated.

7.2. Cobra maneuver
The motivation of using quaternions and avoiding Euler angles in rotational dynamics are to gain a
singularity-free controller, and as a result, obtain agile flight and aerobatic maneuvers. One of the hard-
est positions in quadrotor control in π/2 (rad) rotation either in roll or pitch angles. The Cobra maneuver
is famous for a jet aircraft to perform aerobatic shows or in combat for sudden brake, etc. For the quadro-
tors, it is the first time that this motion is simulated in a forward flight; the Cobra in ascending motion
was reported [44]. That is a challenge since, in φ = π/2 or θ = π/2, there is no thrust to compensate
the gravity; for an aircraft, a jet engine supports the gravity. This might cause a crash or fall for the mul-
tirotor. To perform the Cobra maneuver, θdes = π/2 is imposed in t ∈ [1, 1.35] (s) instead of Eq. (26).
After that, the multirotor drone tries to recover the stability and regulate to final condition. The simula-
tion time is tf = 10 (s) , and the parameters of the control are Rt = I3×3, Qt = diag (1, 1, 1, 0.5, 0.5, 0.5),
Ft = 10 × Q, Ro = I3×3, Qo = diag (2, 2, 2, 0, 0, 0), Fo = 10 × Qo. The start point of the regulation is set
at zero along with other initial conditions; the endpoint is chosen (5, 1, 1.25) (m). Simulating the drone,
the error is found 7.75 (mm) and the system successfully performed the maneuver. The position vari-
ables and attitude ones are shown in Fig. 10 and Fig. 11 with respect. The trajectory and configuration
of the system are demonstrated in Fig. 12. The quaternions are plotted in Fig. 13. The input thrust and
input torque signals are presented in Fig. 14 and Fig. 15 with respect.
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Fig. 14. The input thrust of the quadrotor.

Fig. 15. The input torque signals of the drone.

8. Conclusions
This work investigated the quaternion-based control design using the SDDRE to control a quadrotor
in aerobatic flight. The Euler angles are vulnerable to big changes in attitude and rotational dynamics,
specifically, the rotation matrix. The diagonal components of R (φ, θ ,ψ) become zero for either of
φ, θ ,ψ at π/2. This means the omission of thrust in flight and unstable conditions. Specifically, the
controllability pair will be unsatisfied. To solve this problem, quaternion representation has been used
to have a singular-free attitude control and rotation matrix. The introduced model has been validated
through a comparison with the conventional Euler dynamics controlled by a PD input law. To show the
application of the proposed method, a challenging maneuver, Cobra, has been simulated in the forward
flight, successfully controlled. The Cobra maneuver has put the drone in a position without thrust to
compensate for the gravity; however, this approach generated a stable motion to reduce the fall in that
condition.
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