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SEMI-BAER MODULES OVER DOMAINS

SANG BUM LEE

For a commutative domain R with 1, an .R-module M is called a semi-Baer
module if Ext}j (M, D) = 0 for all divisible .R-modules D. We show that finitely
generated modules of projective dimension at most 1 are semi-Baer modules and
if R is Priifer or Matlis, then all modules of projective dimension at most 1 are
semi-Baer modules.

In his seminal paper [l] on mixed Abelian groups, Baer proved that a countable
Abelian group B had to be free if Ext^ (B,T) = 0 for all torsion Abelian groups T.
The problem of determining those uncountable groups B with this property turned out
to be extremely difficult. Only 30 years later was it settled by Griffith [7] who showed
that B had to be free, no matter what its cardinality was.

The problem of characterising Baer modules B over arbitrary domains R (that
is, .R-modules B with Ext^(5,T) = 0 for all torsion .R-modules T) was raised by
Kaplansky [8]. He established two lemmas which led Eklof and Fuchs [2] to show that
Baer modules over valuation domains likewise had to be free. With a lemma in that
paper which dealt with regular cardinals as well as a version of Shelah's compactness
theorem, Eklof, Fuchs and Shelah [3] proved a reduction theorem which reduces the
problem of Baer modules to countably generated modules. As an application of the
theorem, they proved that a module over an /i-local Priifer domain is a Baer module
exactly if it is projective. Very recently, Fuchs and Sake [6, p.568] eliminated h-
localness from the hypothesis and proved that a module over a Priifer domain is a Baer
module if and only if it is projective.

In this note, we study a weaker form of Baer modules. An .R-module M is called
a semi-Baer module if Ext}j (M, D) — 0 for all divisible .R-modules D (D is divisible
if rD = D for all 0 ^ r € R). It turns out that these modules can be characterised in
the same way as Baer modules (see Theorem 1). We also obtain a characterisation of
divisible modules which might lead to a new study of divisible modules (see Corollary 4).
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22 S.B. Lee [2]

Throughout this note, R is a commutative domain with 1 which is not a field. For

unexplained terminology, we refer to Fuchs and Salce [5].

In view of Kaplansky [8], we have

LEMMA 1. Semi-Baer modules have projective dimension at most 1.

This is one of the two key properties of Baer modules which played a major role in
their characterisations. The other one, flatness, is no longer guaranteed for semi-Baer
modules as is illustrated by the module d (see Fuchs and Salce [5, p.124]). Note also that
we can restrict ourselves to torsion modules of projective dimension 1 regarding their
semi-Baer property; to see this consider an exact sequence 0 —> F —> M —> T —• 0 where
F is a free submodule of M of projective dimension 1. Then T is a torsion module of
projective dimension 1 and the induced exact sequence Ext}j (T, D) —> Extjj (M, D) —>
Ext]j (F, D) = 0 for a divisible module D establishes the claim.

Recall that a submodule N of M is called tight if the projective dimension of N
and the projective dimension of M/N are both less than or equal to the projective
dimension of M. As in the case of Baer modules, we have

LEMMA 2 . Tight submodules of semi-Baer modules are again semi-Baer modules.

P R O O F : Let N be a tight submodule of a semi-Baer module M. Consider the
exact sequence 0 -» N —• M —> M/N —» 0 and the induced exact sequence 0 =
Extjj (M, D) -> Extjj (N, D) -> Ext^ (M/N, £>) -> . . . where D is a divisible module.
Since the projective dimension of M/N is at most 1 by Lemma 1, Ext^ {M/N, D)=0.
Hence, Extjj (N,D)=0, that is, N is a semi-Baer module. D

It is shown in [3] that countably generated, flat modules have projective dimension
at most 1 and are countably presented. More generally, it can be shown that any
countably generated module of projective dimension at most 1 is countably presented.
Hence we have

COROLLARY 1 . Countably generated semi-Baer modules are countably pre-
sented.

A submodule N of M is said to be a DEP-submodule (Divisible Extension Prop-
erty) if, for each divisible module D, the map Hom^ (M, D) —> Hom,R (N, D) induced
by the inclusion N —> M is surjective.

LEMMA 3 . Let N be a submodule of a semi-Baer module M. Then it is a DEP-
submodule of M exactly if M/N is a semi-Baer module.

P R O O F : The induced exact sequence

(M, D) -> Horn* (N, D) -> Extjj (M/N, D) -> Ext^ (M, D) = 0

induced from the inclusion N —> M, where D is a divisible module establishes the
result. D
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COROLLARY 2 . DEP-submodules of semi-Baer modules are tight. They are
therefore semi-Baer modules.

The proof of the following lemma which is a verbatim version of Baer modules is
the same as that of [2, Lemma 9] with the only change of TEP-submodules into DEP-
submodules. For a module M, we denote the cardinality of a minimal generating set
of M by gen M.

LEMMA 4 . Let n be an uncountable regular cardinal and M a module with
genM = K. Suppose

0 = Mo < Mi < • • • < Mft < ... (fi< K)

is a continuous well-ordered ascending chain of submodules of M such that

(a) M = U M»

(b) gen MM < n for each fi < K

(c) MM is a semi-Baer module for each fj, < K.

If the set

E = {fj. < K\ there exists /3 > \i such that Mp/M^ is not semi-Baer}

is stationary in K , then M is not a semi-Baer module.

With the aid of Lemma 4, we can prove:

THEOREM 1 . A module M is a semi-Baer module if and only if there exists a
weii-ordered continuous ascending chain of submodules

0 = Mo < Mi < . . . < Mp < ... < MK = M (fi < K)

for some ordinal K such that, for each fi < n, M^+i/M^ is a countably generated
semi-Baer module.

PROOF: The proof is basically the same as that of [3, Theorem 10 and Theorem A]
except that we start from the set N of all countably generated semi-Baer modules
instead of countably generated Baer modules. They are still countably presented by
Corollary 1 and thus fit the proof. Q

Now we consider the converse of Lemma 1. Recall that a domain R with its field
of quotients Q is called a Matlis domain if the projective dimension of Q equals 1. For
a characterisation of Matlis domains, see Lee [9].

THEOREM 2 . Let R be a Priifer or Matlis domain and M an R-module. Then

M is a semi-Baer module exactly if the projective dimension of M is at most 1.

PROOF: If M is an .R-module of projective dimension 1 over a Priifer domain
R, then M is the union of a well-ordered continuous ascending chain of submodules
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0 = Mo < Mi < • • • < MM < • • • < MK = M (n < K) such that M^+i/Mp is finitely
presented and cyclic for each /J, < K. Hence each M^+i/M^ is cyclic of projective
dimension at most 1 and thus is a semi-Baer module by [5, p.36]. Then again by [5,
p.74], M is also a semi-Baer module. Now suppose R is a Matlis domain. Then every
divisible module D is /i-divisible. The exact sequence 0-*H-*E-*D-*0 where E
is an injective module induces an exact sequence 0 = Ext}j (M, E) -* Extjj (M, D) -»
Extf i (M, i f ) . The last Ext is 0 since the projective dimension of M is at most 1,
proving the result. D

Semi-Baer modules are abundant. Baer modules are trivial examples. The divisible
module d and its tight submodules are semi-Baer modules. By the same argument as
in the case of d, all simply presented modules are also semi-Baer modules (see Fuchs
[4]). It is shown in [5, p.41] that all RD-projective modules are semi-Baer modules.
Now we try to identify a new class of semi-Baer modules.

LEMMA 5 . If M is a module of projective dimension 1, then Torf (M, A) = 0
for all torsion-free modules A.

P R O O F : Consider a projective resolution 0—> H —> F —> M —>• 0 of the mod-
ule M where F is free and H is projective. From the induced exact sequence
0 -> Homfl (M, E) -» Homfl (F, E) -> Homfl (if, E) -t 0 where E is an injective
module, we derive that the injective dimension of Homfl (M, E) is at most 1 since
both Homfl (F, E) and Homfl (if, E) are injective. The isomorphism

Extfl(Q, Homfl (M, E)) Si Homfl (Torf (Q, M), E)=0

implies that Homfl (M,E) is a cotorsion module by [5, p.243]. We obtain 0 =
Extfl(,4, Homfl (M,E)) =* Hom/e (Torf (A, M), E). The choice of E implies that
Torf (M,A)=0. D

Let K denote the i?-module Q/R. We call a module D K -injective if Extfl (K, D)
= 0. It is easy to show that A"-injective modules are /i-divisible. Note also that over
Matlis domains, .fiT-injectivity, h-divisibility and divisibility are equivalent.

The next lemma is an analog of the well-known theorem that a module F is flat if
and only if its character module F* = Hom^ (F, Q/Z) is injective if and only if Fb is
absolutely pure.

LEMMA 6 . For a module A, the following are equivalent:

(a) A is torsion-free;
(b) Homfl (A, E) is K-injective for all injective modules E;

(c) Homfl (A, E) is h-divisible for all injective modules E;
(d) Homfl (A, E) is divisible for all injective modules E.
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P R O O F : (a) => (b) Since Torf {K,A) - 0 for all torsion-free modules A, 0 =
Hom R (Torf (K,A),E) ** Ext}j(A", Hotn/i {A,E)) for all injective modules E. This
implies that HoraR{A,E) is if-injective.

(b) => (c) =*• (d) are trivial.

(d) => (a) Let tA be the torsion submodule of A. The inclusion tA —> A induces
an RD-exact sequence 0 -> Hom^ (A/tA, E) -¥ Koran (A, E) ->• Homfl (tA, E) -> 0.
Here Homji (tA, E) is reduced and is at the same time divisible as an epic image of the
divisible module Homji (.A, E). Thus it is 0. The choice of E implies that tA is 0, and
A is torsion-free. D

Recall that a finitely generated module has a finite projective resolution if it has a
long projective resolution with finitely generated projective modules.

LEMMA 7 . For a module M of projective dimension 1, the following are equiva-
lent

(a) M is finitely generated;
(b) M is finitely presented;
(c) M has a finite projective resolution.

PROOF: We have only to show that (a) => (b). Consider a projective resolution
0—¥ H —> F —> M —> 0 o f M where F is finitely generated, free and H is projective.
Since H is of finite rank, H is a summand of a finitely generated, free module F\.
Hence H is trivially finitely generated, and M is finitely presented. D

Note that a finitely presented module M of projective dimension 2 has always a
finite projective resolution. Now we prove our main result.

THEOREM 3 . All finitely generated modules of projective dimension at most 1
are semi-Baer modules.

PROOF: Let M be a finitely generated module of projective dimension at most 1
and D a divisible module. By Lemma 7, M has a finite projective resolution and thus
we obtain a natural isomorphism (see Rotman [10, p.257])

Torf (M, Horn* (D, E)) 3 Homfl(Ext)j (M, D), E)

where E is an injective module. Since Hom^ (D, E) is torsion-free, the Tor is 0 by
Lemma 5 and thus the Horn on the right hand side is 0. The choice of E implies that
Extjj (M, D) — 0, and M is a semi-Baer module. D

COROLLARY 3 . Let M be a module of projective dimension at most 1. If there

is a well-ordered continuous ascending chain

0 = Mo < Mi < • • • < MM < • • • < MK = M (n< K)
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26 S.B. Lee [6]

of submodules of M such that for each p. < K, M^+I/M^ is finitely generated and of

projective dimension at most 1, then M is a semi-Baer module.

Note that a module P is absolutely pure if and only if Extjj (N, P) = 0 for all
finitely presented modules N. All /i-divisible modules H satisfy Ext# (M,H) = 0 for
all modules M of projective dimension at most 1. The next corollary is an analog of
these results.

COROLLARY 4 . The following conditions on a module D are equivalent:

(a) D is divisible;
(b) Extjj (R/Rr,£>) = 0 for every r e R;
(c) Ext}j (R/L, D) = 0 for every projective ideal L of R;

(d) Extjj (M, D) = 0 for every finitely generated module M of projective
dimension at most 1.

P R O O F : See [5, p.36] and Theorem 3. D
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