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Abstract

A two-dimensional random vector in the domain of attraction of an extreme value
distributionG is said to be asymptotically independent (i.e. in the tail) ifG is the product of
its marginal distribution functions. Ledford and Tawn (1996) discussed a form of residual
dependence in this case. In this paper we give a characterization of this phenomenon
(see also Ramos and Ledford (2009)), and offer extensions to higher-dimensional spaces
and stochastic processes. Systemic risk in the banking system is treated in a similar
framework.
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1. Introduction

What is extreme residual dependence? Let us start by recalling the extreme value dependence
in multivariate extreme value theory (EVT).

In a two-dimensional setup, we consider a random vector (X1, X2) with distribution func-
tion F . Denote its independent and identically distributed (i.i.d.) copies as (X(1)1 , X

(1)
2 ),

(X
(2)
1 , X

(2)
2 ), . . . . We take partial maxima for each marginal as Mi,n = max1≤j≤n X(j)i for

i = 1, 2. Multivariate EVT assumes the following limit relation: there exist sequences of
constants ai,n > 0, bi,n ∈ R for i = 1, 2 and a distribution function G with nondegenerate
marginals, such that

lim
n→∞ P

(
M1,n − b1,n

a1,n
≤ x1,

M2,n − b2,n

a2,n
≤ x2

)
= G(x1, x2)

for all continuity points (x1, x2) of G. Then, the distribution function F is in the domain of
attraction of a multivariate extreme value distributionG. Equivalently, there exists real-valued
functions ai(t) > 0 and bi(t) for i = 1, 2 such that

lim
t→∞ t P

(
X1 − b1(t)

a1(t)
> x1 or

X2 − b2(t)

a2(t)
> x2

)
= −logG(x1, x2) (1.1)

for all continuity points (x1, x2) of G.
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218 L. DE HAAN AND C. ZHOU

LetFi, i = 1, 2, be the marginal distribution functions ofF . Suppose thatFi is a continuous
distribution function. Multivariate EVT shows that the necessary and sufficient condition for
F being in the domain of attraction can be separated into two parts: each marginal distribution
Fi belongs to the domain of attraction, as in univariate EVT with extreme value index γi (for
details on the univariate condition, see Theorem 1.1.6 of de Haan and Ferreira (2006)); and the
dependence structure satisfies, given any (x1, x2) for which 0 < G0(x1, x2) < 1,

lim
t→∞ t

(
1 − P

(
1

1 − F1(X1)
≤ tx1,

1

1 − F2(X2)
≤ tx2

))
= −logG0(x1, x2), (1.2)

whereG0(x1, x2) = G((x
γ1
1 − 1)/γ1, (x

γ2
2 − 1)/γ2).Define X̃i =1/(1 − Fi(Xi)) for i = 1, 2.

Then the marginal distributions of (X̃1, X̃2) are both standard Pareto distributions, i.e. P(X̃i > x)

= 1/x for x > 1, which does not contain marginal information of (X1, X2). Hence, rela-
tion (1.2) based on (X̃1, X̃2) is a condition only on the extreme dependence of (X1, X2). Thus,
G0(x, y) characterizes the structure of the extreme value dependence.

The extreme value dependence can be further decomposed as follows. Condition (1.2) holds
if and only if there exists a measure ν on R

2+ such that, for x1, x2 > 0,

−logG0(x1, x2) = ν{(u, v) : u > x1 or v > x2}. (1.3)

Then, for any Borel set A ⊂ R
2+ with inf(x1,x2)∈A x1 ∨ x2 > 0 and any a > 0,

ν(aA) = a−1ν(A). (1.4)

The measure ν is called the exponent measure. It has the following representation: there exists
a probability measure H on [0, 1] with mean 1

2 , such that

ν{(u, v) : u > x1 or v > x2} = 2
∫ 1

0

w

x1
∨ 1 − w

x2
H(dw). (1.5)

The measure H is called the spectral measure. The limiting distribution G0 in (1.2) is
determined by either ν or H .

Conversely, any exponent measures ν satisfying (1.4) or any probability measures H on
[0, 1] with mean 1

2 occur as in (1.2)–(1.5). This can be seen by choosing

U1 = 2R�, U2 = 2R(1 −�),

where R and � are independent random variables with distribution functions P(R > r) = 1
r

for r > 1 and P(� ≤ w) = H(w) for w ∈ [0, 1]. To see this, firstly check that FUi (x) :=
P(Ui ≤ x) = 1 − 1/x for x > 2 and i = 1, 2. Thus, 1/(1 − FUi (x)) = x for x > 2. Next,
check that, for any x1, x2 > 0,

lim
t→∞ t P(2R� > tx1 or 2R(1 −�) > tx2) = 2

∫ 1

0

w

x1
∨ 1 − w

x2
H(dw).

Then it is obvious that the random vector (U1, U2) belongs to the domain of attraction with
spectral measure H . For details, see de Haan and Resnick (1977) and de Haan and Ferreira
(2006, Chapter 6).

A special case occurs when the spectral measureH is concentrated on the points {0} and {1}
with measure 1

2 each. In that case,

ν{(u, v) : u > x1 or v > x2} = 1

x1
+ 1

x2
= ν{(u, v) : u > x1} + ν{(u, v) : v > x2}

for x1, x2 > 0, i.e. the exponent measure ν is concentrated on the coordinates. This additive
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Extreme residual dependence 219

property translates into a product property for the limit distribution function G0 in (1.2),
i.e. the distribution function G0, hence G, is the product of two marginal distributions. This
phenomenon is called asymptotic independence (cf. Geffroy (1958) and Sibuya (1960)). Fur-
thermore, we obtain

lim
t→∞ t P(X̃1 > tx1 and X̃2 > tx2) = ν{(u, v) : u > x1 and v > x2} = 0

for x1, x2 > 0. Hence, no asymptotic information about sets of the form {(u, v) : u > x1 and
v > x2} is obtained.

Ledford and Tawn in a series of papers (see Ledford and Tawn (1996), (1997), (1998),
and (2003)) filled in the gap by introducing the additional natural assumption that, for some
0 < η < 1 and all x1, x2 > 0, P(X̃1 > tx1 and X̃2 > tx2) is a regularly varying function
with index −1/η. Such an extra assumption is closely related to the second-order condition
introduced in de Haan and Resnick (1993).

In multivariate EVT, the second-order condition characterizes the speed of convergence
in (1.1) as follows: there exist a nonconstant functionψ(x1, x2) and a positive functionA(t) →
0 as t → ∞ such that

lim
t→∞

t P((X1 − b1(t))/a1(t) > x1 or (X2 − b2(t))/a2(t) > x2)+ logG(x1, x2)

A(t)

= ψ(x1, x2) < ∞ (1.6)

holds locally uniformly for 0 < x1, x2 ≤ ∞. This is a generalization of the second-order
condition in the univariate case; see de Haan and Stadtmüller (1996). The second-order
condition implies that A(t) is a regularly varying function with index ρ ≤ 0. Similarly to
the first-order case, the second-order condition (1.6) implies that each marginal distribution Fi
satisfies the univariate second-order condition and, jointly, the dependence structure satisfies

lim
t→∞

t (1 − P(X̃1 ≤ tx1, X̃2 ≤ tx2))+ logG0(x1, x2)

A(t)
= ψ0(x1, x2),

whereψ0(x1, x2) = ψ((x
γ1
1 − 1)/γ1, (x

γ2
2 − 1)/γ2).With the notation of the exponent measure

ν, we have

lim
t→∞

t P(X̃1 > tx1, X̃2 > tx2)− ν{(u, v) : u > x1 and v > x2}
A(t)

exists.

In the asymptotic independence case, this is simplified to

lim
t→∞

P(X̃1 > tx1, X̃2 > tx2)

Q(t)
exists and is positive, (1.7)

where Q(t) := A(t)/t is a positive regularly varying function with index ρ − 1 ≤ −1. By
defining η = 1/(1 − ρ), the regularly varying index of Q(t) is then −1/η and η ≤ 1. In the
case when η < 1, we get the same setup as the Ledford and Tawn model. In the case when
there is no asymptotic independence, η = 1.

We say that there is extreme residual dependence if (X1, X2) belongs to the domain of
attraction of a bivariate extreme value distribution, they are asymptotic independent, and
condition (1.7) holds. The name residual dependence reflects the fact that, after eliminating

https://doi.org/10.1239/aap/1300198520 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198520


220 L. DE HAAN AND C. ZHOU

the basic independence, there is still notable dependence for the residual part. The parameter
η is called the extreme residual coefficient. Note that the η corresponding to the case where
the initial componentsX1 andX2 are independent is 1

2 . Only in the case η > 1
2 , the ‘extremes’

of (X1, X2) are positively associated. In other words, the probability that one component is
‘extreme’ conditional on the other component being ‘extreme’ is higher than the corresponding
unconditional probability. If η < 1

2 , the ‘extremes’ of the two dimensions turn out to be
negatively associated, which is not regular for modeling joint tail events. Thus, we focus
on the former case. An example is the bivariate normal distribution with correlation coefficient
r less than 1. In this case η = (1+ r)/2. Moreover, η < 1

2 corresponds to r < 0, i.e. a negative
correlation case. For more discussion, see also Remark 2.3 below.

There are quite a few papers on the ‘Ledford and Tawn model’ in R
2. For instance, extreme

residual dependence has been discussed under the name ‘hidden regular variation’ in Resnick
(2002), Maulik and Resnick (2004), and Heffernan and Resnick (2005). Draisma et al. (2004)
studied the estimation of the extreme residual coefficient. For application, Poon et al. (2004)
applied both extreme value dependence and extreme residual dependence models in modeling
financial returns from major stock indices. By estimating the extreme residual coefficient, they
identified asymptotic dependence and independence among different pairs of stock indices.

For the characterization of extreme residual dependence, Ramos and Ledford (2009) consid-
ered bivariate regular variation and gave a characterization of extreme residual dependence in
the two-dimensional case, which relies on a spectral measure restricted by a normalization con-
dition. Due to the restriction, in application, it is not straightforward to verify the normalization
condition, how to simulate random vectors exhibiting extreme residual dependence, and how to
construct examples on extreme residual dependence from their characterization. Furthermore,
although it is stated that the characterization in Ramos and Ledford (2009) can be extended to
higher-dimensional cases, the connection with higher-dimensional EVT is not obvious.

We develop a theory characterizing the extreme residual dependence analogous to the
traditional bivariate EVT as sketched in relations (1.3)–(1.5) above. Moreover, we generalize
the Ledford and Tawn assumption into higher-dimensional Euclidean spaces as well as in the
context of stochastic processes, i.e. the infinite-dimensional case. The generalization is not
trivial in the following sense. In R

2, the Ledford and Tawn assumption on extreme residual
dependence implies a unique asymptotic independence structure on ν orH : ν must concentrate
on the coordinate axes while H must concentrate on the points {0} and {1}. However, in the
higher-dimensional case and in the stochastic process context, an analog of the Ledford and
Tawn model does not correspond to a unique extreme value dependence structure exhibiting
asymptotic independence. Instead, a variety of potential extreme value dependence structures
may occur: asymptotic dependence may exist for some subsets of the components of the
random vector but not for all components jointly. We will derive a full characterization of
the extreme residual dependence that accommodates all potential dependence structures in all
subdimensional marginals.

2. Characterization of extreme residual dependence in RRR
2

We start with condition (1.7). It is equivalent to

lim
t→∞

P(X̃1/η
1 > tx1 and X̃1/η

2 > tx2)

Q(tη)
exists and is positive

for all x1, x2 > 0. Since Q(t) is a regularly varying function with index −1/η, Q(tη) is a
regularly varying function with index −1.
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Similarly to the two-dimensional EVT, there exists a measure ν∗ on (0,+∞)2, finite on all
sets {(u, v) : u > x1 and v > x2} for x1, x2 > 0, such that

lim
t→∞

P(X̃1/η
1 > tx1 and X̃1/η

2 > tx2)

Q(tη)
= ν∗{(u, v) : u > x1 and v > x2}. (2.1)

Clearly, for a > 0 and a Borel set B ⊂ (0,+∞)2 that has a positive distance from both axes,
i.e. inf(x1,x2)∈B x1 ∧ x2 > 0, we have

ν∗(aB) = a−1ν∗(B). (2.2)

Consider the following one-to-one transformation (0,+∞)2 → (0,∞)× (0, 1):

r(u, v) = 1

1/u+ 1/v
, w(u, v) = r

u
. (2.3)

Define, for constants r > 0 and w ∈ (0, 1), the set

Br,w := {(u, v) ∈ (0,+∞)2 : r(u, v) > r and 0 < w(u, v) ≤ w}.
Note that ν∗(Br,w) < ∞ for r > 0 andw ∈ (0, 1), because Br,w ⊂ {(u, v) : u > r and v > r}.
Since Br,w = rB1,w, we have

ν∗(Br,w) = r−1ν∗(B1,w).

Set H ∗(w) := ν∗(B1,w) for 0 < w < 1. Then H ∗ is a finite measure on (0, 1). We show that
all such measures occur. This is the main result in this section.

Theorem 2.1. Let (X1, X2) be a random vector belonging to the domain of attraction of a two-
dimensional extreme value distribution. Suppose that (X1, X2) are asymptotically independent
with extreme residual dependence structure given in (2.1) and an extreme residual coefficient
η lying in ( 1

2 , 1). Then, there exists a finite measure H ∗ on (0, 1) such that

ν∗{(u, v) : u > x1 and v > x2} =
∫ 1

0

1

x1w
∧ 1

x2(1 − w)
H ∗(dw) (2.4)

for x1, x2 > 0. Conversely, for any finite measure H ∗ on (0, 1), the right-hand side of (2.4)
is positive and finite. Moreover, there exists a random vector (X1, X2) exhibiting asymptotic
independence in the two-dimensional EVT setup, and having extreme residual dependence
structure given by (2.1) and (2.4).

Proof. Firstly, with the construction of H ∗ above, we prove (2.4). Note that, for r > 0 and
0 < w < 1, the inverse of the transformation (2.3) is

u(r,w) = r

w
, v(r, w) = r

1 − w
.

The proof of (2.4) is then by calculation as follows:

ν∗{(u, v) : u > x1 and v > x2} = ν∗
{
(u, v) : r(u, v)

w(u, v)
> x1 and

r(u, v)

1 − w(u, v)
> x2

}

= ν∗{(u, v) : r(u, v) > x1w(u, v) ∨ x2(1 − w(u, v))}
=

∫
(0,1)

H ∗(dw)
∫
r>x1w∨x2(1−w)

1

r2 dr

=
∫
(0,1)

1

x1w
∧ 1

x2(1 − w)
H ∗(dw).
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Conversely, starting with any given finite measureH ∗ on (0, 1), the measure ν∗ defined via (2.4)
satisfies

ν∗{(u, v) : u > x1 and v > x2} =
∫
(0,1)

1

x1w
∧ 1

x2(1 − w)
H ∗(dw)

=
∫
(0,1)

1

x1w ∨ x2(1 − w)
H ∗(dw)

≤
∫
(0,1)

2

x1w + x2(1 − w)
H ∗(dw)

≤
∫
(0,1)

2

x1 ∧ x2
H ∗(dw)

= 2

x1 ∧ x2
H ∗(0, 1)

< ∞ (2.5)

for all x1, x2 > 0. Also, clearly, ν∗ satisfies the homogeneity property (2.2). Next, we prove that
any finite measure H ∗ on (0, 1) may occur by constructing a suitable random vector (U1, U2)

verifying all the requirements.
Our construction is separated into two steps. In the first step we construct a random vector

(Z1, Z2) satisfying the residual dependence property.

Proposition 2.1. Given any finite measureH ∗ on (0, 1), there exists a random vector (Z1, Z2)

such that, for any x1, x2 > 0,

lim
t→∞ t P(Z1 > tx1 and Z2 > tx2) =

∫
(0,1)

1

x1w
∧ 1

x2(1 − w)
H ∗(dw), (2.6)

lim
t→∞ t

η P(Zi > t) = 0 for i = 1, 2. (2.7)

Proof. Consider two independent random variables R∗ and �∗ with distribution functions
P(R∗ > x) = d/x for x ≥ d and P(�∗ < w) = d−1

∫
(0,w) H

∗(dw) for 0 < w ≤ 1, where
d = H ∗(0, 1). Since 1

2 < η < 1, there exists a constant β such that 1 < β < 1/η. Let

Z1 = R∗

�∗ ∧ (R∗)β, Z2 = R∗

1 −�∗ ∧ (R∗)β . (2.8)

We first check relation (2.6) by calculation:

lim
t→∞ t P(Z1 > tx1 and Z2 > tx2)

= lim
t→∞ t P

(
R∗

�∗ > tx1 and
R∗

1 −�∗ > tx2 and (R∗)β > t(x1 ∨ x2)

)

= lim
t→∞ t E�∗

d

tx1�∗ ∨ tx2(1 −�∗) ∨ t1/β(x1 ∨ x2)1/β

= lim
t→∞

∫
(0,1)

1

x1w ∨ x2(1 − w) ∨ t1/β−1(x1 ∨ x2)1/β
H ∗(dw)

=
∫
(0,1)

1

x1w ∨ x2(1 − w)
H ∗(dw).
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The final step comes from the Lebesgue dominated convergence theorem and the fact that the
last integral is finite. We finish the proof of the proposition by verifying relation (2.7). Since
Zi ≤ (R∗)β ,

lim sup
t→∞

tη P(Zi > t) ≤ lim sup
t→∞

tη P((R∗)β > t)

= lim sup
t→∞

tη
d

t1/β

= 0.

Now we go back to the proof of Theorem 2.1. Let (Z1, Z2) be the random vector constructed
in the proof of Proposition 2.1. Let (W1,W2) be independent random variables with distribution
function P(Wi > x) = 1/x for x ≥ 1. Let (Z1, Z2) and (W1,W2) be independent. In the
second step we assemble them by Ui := Wi ∨ Zηi , i = 1, 2. We show that (U1, U2) satisfies
all the requirements in Theorem 2.1.

Firstly, we study the marginal distributions of (U1, U2). Note that, for i = 1, 2 and x > 0,

lim
t→∞ t P(Ui > tx) = lim

t→∞ t P(Wi ∨ Zηi > tx)

= lim
t→∞ t P(Wi > tx)+ t P(Zηi > tx)− t P(Wi > tx)P(Zηi > tx)

= 1

x
, (2.9)

because, by (2.7), only the first term contributes. By defining FUi (x) := P(Ui ≤ x), we have
1/(1 − FUi (t)) ∼ t as t → ∞.

Next, we check the extremal dependence structure as in (2.1) and (2.4). From the construction
we have

lim
t→∞ t P(U1/η

1 > tx1 and U1/η
2 > tx2)

= lim
t→∞ t P({W 1/η

1 > tx1 or Z1 > tx1} and {W 1/η
2 > tx2 or Z2 > tx2})

= lim
t→∞ t P((A1 ∪ B1) ∩ (A2 ∪ B2)),

where the sets are defined as Ai := {W 1/η
i > txi} and Bi := {Zi > txi}. From the expansion

(A1 ∪ B1) ∩ (A2 ∪ B2) = (A1A2) ∪ (B1A2) ∪ (A1B2) ∪ (B1B2),

we obtain the lower and upper bounds for P((A1 ∪ B1) ∩ (A2 ∪ B2)) as

P(B1B2) ≤ P((A1 ∪ B1) ∩ (A2 ∪ B2)) ≤ P(B1B2)+ P(B1A2)+ P(A1B2)+ P(A1A2).

Proposition 2.1 shows that, as t → ∞, t P(B1B2) converges as in (2.6). To prove that t P((A1 ∪
B1)∩(A2 ∪B2)) converges to the same limit, we need to only verify that, as t → ∞, t P(B1A2),
t P(A1B2), and t P(A1A2) converge to 0. Since the random vectors (W1,W2) and (Z1, Z2) are
independent, considering (2.7) and the distribution function of Wi , we obtain

lim
t→∞ t P(B1A2) = lim

t→∞ t P(Z1 > tx1)P(W2 > tηx
η
2 )

= lim
t→∞ t · o(t

−η)O(t−η)

= lim
t→∞ t

1−2ηo(1)

= 0,
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due to 1
2 < η < 1. Similarly, we obtain limt→∞ t P(A1B2) = 0. Furthermore, since W1 and

W2 are independent, we obtain

lim
t→∞ t P(A1A2) = lim

t→∞ t ·O(t
−η)O(t−η) = lim

t→∞ t
1−2ηO(1) = 0.

Therefore, we have proved that (cf. (2.6))

lim
t→∞ t P(U1/η

1 > tx1 and U1/η
2 > tx2) = lim

t→∞ t P(Z1 > tx1 and Z2 > tx2)

=
∫
(0,1)

1

x1w
∧ 1

x2(1 − w)
H ∗(dw). (2.10)

Together with the fact that 1/(1 − FUi (t)) ∼ t as t → ∞, relation (2.10) is equivalent to the
extreme residual dependence condition (1.7).

In the last step, we check that (U1, U2) belongs to the domain of attraction of a two-
dimensional extreme value distribution with asymptotic independence. Write

t P(U1 > tx1 or U2 > tx2) = t P(U1 > tx1)+ t P(U2 > tx2)

− t P(U1 > tx1 and U2 > tx2).

From (2.9) and (2.10), the extreme value dependence structure is obvious.

Remark 2.1. Combining (2.1) and (2.4), we obtain

lim
t→∞

P(X̃1 > tx1, X̃2 > tx2)

Q(t)
=

∫ 1

0

1

x
1/η
1 w

∧ 1

x
1/η
2 (1 − w)

H ∗(dw)

for all x1, x2 > 0, which gives the limit in (1.7). The limit is a combination of the extreme
residual coefficient η and the measure H ∗. They can be independently chosen. It is different
from the characterization in Ramos and Ledford (2009), which has a side condition on the two
components.

Remark 2.2. Note that ν∗ has the same homogeneity property as the exponent measure ν;
however, a ν∗-measure is defined on Borel sets B such that inf(x1,x2)∈B x1 ∧ x2 > 0, while a
ν-measure is defined on Borel sets B such that inf(x1,x2)∈B x1 ∨ x2 > 0. Hence, any exponent
measure ν can act as a ν∗-measure, but not vice versa. A ν∗-measure can be extended to
an exponent measure if and only if ν∗{(u, v) : u > x1} and ν∗{(u, v) : v > x2} are finite
for all x1, x2 > 0. From (2.4), this is equivalent to the fact that

∫ 1
0 (1/w)H

∗(dw) and∫ 1
0 1/(1 − w)H ∗(dw) are finite. In that case, we say that H ∗ is of finite type. Otherwise,
H ∗ is called of infinite type.

Remark 2.3. Although the original Ledford and Tawn model only requires 0 < η < 1, we
consider 1

2 < η < 1. The condition is crucial for the proof. On the other hand, the case in
which η > 1

2 is usually the one of interest in applications.

Remark 2.4. Theorem 2.1 gives the theoretical characterization for extreme residual depen-
dence in the two-dimensional situation. In practice, the constructive proof gives a method for
simulating such a random vector when the measure H ∗ and the extreme residual coefficient η
are known.
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3. Examples on extreme residual dependence in RRR
2

We consider a few examples to demonstrate the application of the characterization.

Example 3.1. Let H ∗ be concentrated on 1
2 with measure 1. This is referred to as the H1-

measure.

With the H1-measure, we obtain

∫ 1

0

1

x1w ∨ x2(1 − w)
H1(dw) = 2

(
1

x1
∧ 1

x2

)
.

Hence, inequality (2.5) turns out to be an equality in this case. To construct a random vector
with such an extreme residual dependence structure, following the proof of Theorem 2.1, we
may start by constructing (Z1, Z2) as in (2.8). Note that, with the H1-measure, �∗ = 1

2 is
a constant. We obtain Z1 = Z2 = 2R∗ ∧ (R∗)β =: Z. Hence, with (W1,W2) given as in
the proof, by defining Ui = Wi ∨ Zη for i = 1, 2, (U1, U2) exhibits an extreme residual
dependence structure characterized by the H1-measure. Intuitively, this can be viewed as
attaching a common factor Zη on the asymptotically independent random vector (W1,W2). It
is an analog of the completely tail-dependent case as in bivariate EVT, i.e. the extreme residual
part exhibits the strongest dependency.

Example 3.2. LetH ∗ be the uniform probability distribution on (0, 1). We defineH2(w) = w.

With the uniform distribution, H2(dw) = dw, we obtain

∫ 1

0

1

x1w ∨ x2(1 − w)
H2(dw) =

(∫ x2/(x1+x2)

0
+

∫ 1

x2/(x1+x2)

)
1

x1w ∨ x2(1 − w)
dw

= 1

x2
log

x1 + x2

x1
+ 1

x1
log

x1 + x2

x2
.

In Example 3.1, we have

∫ 1

0

1

w
H1(dw) =

∫ 1

0

1

1 − w
H1(dw) = 2 < ∞.

In Example 3.2, we have

∫ 1

0

1

w
H2(dw) =

∫ 1

0

1

1 − w
H2(dw) = +∞.

Hence, H1 is of finite-type measure, while H2 is of infinite-type measure.
The last example is an asymmetric H ∗-measure based on the beta distribution.

Example 3.3. Consider a measure H(α,β,c)
3 defined as

H
(α,β,c)
3 (dw) = cwα−1(1 − w)β−1 dw,

where 0 < α, β ≤ +∞, and c > 0 is an arbitrary positive constant.

By choosing the normalization constant c = c(α, β) properly,H(α,β,c(α,β))
3 turns out to be a

probability measure. It is then the beta distribution with parameters α, β. It is clear that, when
α = β, H(α,β,c)

3 is an asymmetric measure on (0, 1).
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The values of α and β show how much the H(α,β,c)
3 measure concentrates on the central

part of (0, 1). Obviously, the uniform distribution in Example 3.2 corresponds to α = β = 1
and c = 1. When normalizing the H(α,β,c)

3 -measure to a probability measure, and taking
α = β → +∞, the limit is the H1-measure in Example 3.1. Hence, this example covers the
above two.

Moreover, it can be verified that
∫ 1

0 (1/w)H
(α,β,c)
3 (dw) is finite if and only if α > 1, while∫ 1

0 (1/(1 − w))H
(α,β,c)
3 (dw) is finite if and only if β > 1. Hence, for 1 < α, β ≤ +∞,H(α,β,c)

3
is of finite type, while, for 0 < α ≤ 1 or 0 < β ≤ 1, H(α,β,c)

3 of infinite type. Note that it is
possible to have one of the two integrals finite, while the other integral is infinite.

Next, we calculate the explicit extreme residual dependence structure for a few specific
values of α, β, and c.

Take α = β = 1
2 and c = 1

2 . From
∫ 1

x1/(x1+x2)

(w(1 − w))−1/2

w
dw =

√
x2

x1

we have ∫ 1

0

1

x1w ∨ x2(1 − w)
H
(1/2,1/2,1/2)
3 (dw) = 1√

x1x2
.

This is the extreme residual dependence structure from the bivariate normal distribution. As
shown in Draisma et al. (2004, Example 2.1), a bivariate normal distribution with mean 0,
variance 1, and correlation coefficient −1 < r < 1 has extreme residual coefficient
η = (1 + r)/2, and the corresponding limit in (2.1) is

√
1/x1x2. Hence, the density of the

H ∗-measure for the bivariate normal distribution is dw/2
√
w(1 − w).

Take α = 2, β = 1, and c = 2. From

∫ 1

x2/(x1+x2)

dw = x1

x1 + x2
and

∫ x2/(x1+x2)

0

w

1 − w
dw = − x2

x1 + x2
− log

x1

x1 + x2
,

we have ∫ 1

0

1

x1w ∨ x2(1 − w)
H
(2,1,2)
3 (dw) = 2

x2
log

x1 + x2

x1
.

This is aH ∗-measure of infinite type because (2/x2) log((x1 + x2)/x1) goes to +∞ as x1 tends
to 0. However, when taking x2 → 0, it converges to a finite limit 2/x1. It is an example in
which one of the two integrals is finite, while the other integral is infinite.

4. Extreme residual dependence in RRR
d, d ≥ 3

The Ledford and Tawn model on extreme residual dependence is originally defined in the
two-dimensional case. We generalize the definition of asymptotic independence and extreme
residual dependence to random vectors in higher-dimensional Euclidean space R

d , d ≥ 3.
In Section 4.1, we review the EVT in R

d , d ≥ 3, and generalize the definition of asymptotic
independence in the bivariate case to asymptotic joint independence in R

d , d ≥ 3. We provide
the necessary and sufficient condition on the extreme value dependence structure corresponding
to asymptotic joint independence.

In Section 4.2, we give the definition of extreme residual dependence in R
d , d ≥ 3, and

show the difference from the bivariate case. Roughly speaking, in the higher-dimensional
case (d ≥ 3), the extreme residual dependence condition corresponds to asymptotic joint
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independence, but does not uniquely determine the subdimensional dependence structure. We
introduce a few compatibility conditions on the extreme residual dependence structure of a high-
dimensional random vector and that of the subdimensional marginals. Under the compatibility
conditions, it is possible to give a full characterization of extreme dependence in R

d , d ≥ 3.

4.1. Extreme value dependence in RRR
d, d ≥ 3, and asymptotic joint independence

Suppose that a random vector (X1, X2, . . . , Xd)has joint distribution functionF(x1, x2, . . . ,

xd). Let Fi(xi), i = 1, 2, . . . , d, be the marginal distribution functions of F . Suppose that
all the Fi are continuous distribution functions. The distribution function F is in the domain
of attraction of a d-dimensional extreme value distribution if and only if Fi belongs to the
one-dimensional domain of attraction, and by defining X̃i := 1/(1 − Fi(Xi)), there exists a
positive measure ν such that

lim
t→∞ t P(X̃1 > tx1 or . . . or X̃d > txd) = ν{(t1, . . . , td ) : t1 > x1 or . . . or td > xd}. (4.1)

Again, the measure ν is the exponent measure. It characterizes the limiting extreme value
distribution.

For d ≥ 3, the extreme dependence can appear in several forms. Let us concentrate on the
case d = 3. There are three levels of extreme value dependence.

1. The measure ν is concentrated on the three axes. Then

lim
t→∞ t P(X̃i > txi and X̃j > txj ) = 0

for all i = j and xi, xj > 0, and, hence, for all x1, x2, x3 > 0,

lim
t→∞ t P(X̃1 > tx1 and X̃2 > tx2 and X̃3 > tx3) = 0. (4.2)

2. The measure ν is concentrated on the planes {(t1, t2, t3) : ti = 0} for i = 1, 2, 3, but not
only on the axes. Then one or more pairs (Xi,Xj ) are not asymptotically independent,
but (4.2) still holds. For the other pairs, the theory of Section 2 applies.

3. The measure ν assigns some positive measure on the open area

{(t1, t2, t3) : t1 > 0, t2 > 0, t3 > 0}.
Then (4.2) does not hold. All pairs (Xi,Xj ) are asymptotically dependent.

Hence, (4.2) should be considered in defining asymptotic independence in R
3. For the general

case d ≥ 3, we say that the random vector (X1, . . . , Xd) is asymptotically jointly independent
if and only if

lim
t→∞ t P(X̃1 > tx1 and . . . and X̃d > txd) = 0, (4.3)

or, equivalently,
ν{(t1, . . . , td ) : t1 > x1 and . . . and td > xd} = 0

for any x1, x2, . . . , xd > 0. This is the same as

ν{(t1, t2, . . . , td ) : t1 > 0 and . . . and td > 0} = 0.
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4.2. Extreme residual dependence in RRR
d, d ≥ 3

In the setup of Section 4.1, if the asymptotically jointly independent case, i.e. (4.3), holds,
as an analog of the bivariate case, we can define extreme residual dependence in R

d as follows.
If in that case there exists a regularly varying function Q(t) with index −1/η such that

lim
t→∞

P(X̃1 > tx1 and . . . and X̃d > txd)

Q(t)
exists and is positive

for any x1, x2, . . . , xd > 0, we say that there is extreme residual dependence with extreme
residual coefficient η.

As shown in the proof of Theorem 2.1 in the two-dimensional case, the extreme residual
dependence condition (2.1) automatically implies the EVT setup for X̃i, i = 1, 2, with a
unique spectral measure ν: ν must concentrate its measure on two axes, i.e. the extreme
value dependence structure under asymptotic independence is unique. However, as discussed
in the cases 1 and 2 in Section 4.1, in the case d = 3, a given extreme residual dependence
structure may not determine the three-dimensional extreme value dependence structure. In the
next example, we further show that the two-dimensional marginals can be either extreme value
dependent or extreme residual dependent, and the dependence structure in either case can be
independent of the three-dimensional extreme residual dependence structure.

Let (E1, E2) and (E3, E4) be asymptotically dependent random vectors with standard Pareto
marginals and exponent measures ν1 and ν2, i.e. P(Ei > x) = 1/x for x > 1 and i = 1, 2, 3, 4,
and

lim
t→∞ t P(E1 > tx1 and E2 > tx2) = ν1{(u, v) : u > x1 and v > x2} > 0,

lim
t→∞ t P(E3 > tx1 and E4 > tx2) = ν2{(u, v) : u > x1 and v > x2} > 0,

for all x1, x2 > 0. Suppose that the two vectors are independent. Let E5 and E6 be two
independent standard Pareto distributed random variables. Moreover, they are independent
from the two aforementioned random vectors. We construct six factors L1, . . . , L6 as follows:

Li = Ei, for i = 1, 2, Li = E
2/3
i for i = 3, 4, L5 = E5, L6 = E

2/5
6 .

Then, we construct a three-dimensional random vector (V1, V2, V3) from the six factors as

V1 = max(L1, L3, L6), V2 = max(L2, L6), V3 = max(L5, L4, L6).

It is not difficult to verify that the tail parts of the one-dimensional marginal distributions of
(V1, V2, V3) are dominated by the factors L1, L2, and L5, i.e. 1 − FVi (t) := P(Vi > t) ∼ 1/t
as t → ∞ for i = 1, 2, 3. Thus, 1/(1 − FVi (t)) ∼ t . When evaluating the joint dependence,
it is sufficient to consider Vi instead of Ṽi = 1/(1 − FVi (Vi)). We start with the extreme value
dependence structure as follows:

lim
t→∞ t P(V1 > tx1 or V2 > tx2 or V3 > tx3)

= lim
t→∞ t P(L1 > tx1 or L2 > tx2 or L5 > tx3)

= lim
t→∞ t P(E1 > tx1 or E2 > tx2)+ t P(E5 > tx3)

= ν1{(u, v) : u > x1 or v > x2} + 1

x3
.

https://doi.org/10.1239/aap/1300198520 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198520


Extreme residual dependence 229

Hence, the extreme value dependence structure of (V1,V2,V3) is the same as that of (L1, L2, L5),
and depends on the choice of ν1. With respect to the two-dimensional marginals, (V1, V2) are
tail dependent, with an extreme value dependence structure given by ν1, while (V1, V3) and
(V2, V3) are tail independent.

Next, we have the following statements.

1. (V1, V3) exhibits extreme residual dependence with an extreme residual coefficient
η{1,3} = 2

3 , while the extreme residual dependence structure is associated to ν2.

2. (V2, V3) exhibits extreme residual dependence with an extreme residual coefficient
η{2,3} = 3

5 , while the extreme residual dependence structure is given by

lim
t→∞ t

5/3 P(V2 > tx2, V3 > tx3) = 1

max(x2, x3)5/3
.

3. (V1, V2, V3) exhibits extreme residual dependence with an extreme residual coefficient
η{1,2,3} = 3

5 , while the extreme residual dependence structure is given by

lim
t→∞ t

5/3 P(V1 > tx1, V2 > tx2, V3 > tx3) = 1

max(x1, x2, x3)5/3
.

The statements can be proved by set manipulations. Roughly speaking, the extreme residual
dependence structures of (V1, V3), (V2, V3), and (V1, V2, V3) are driven by (L3, L4), (L6, L6),
and (L6, L6, L6), respectively.

From the three statements, we obtain the following facts for the constructed three-
dimensional random vector which exhibits extreme residual dependence. Firstly, since ν1
is free to choose, it implies that the three-dimensional extreme residual dependence structure
does not determine the extreme value dependence structure of the random vector. Secondly,
from the extreme value dependence structure of (V1, V2), it is possible to have extreme value
dependence for subdimensional marginals, but the extreme value dependence structure must
be the projection of that of the three-dimensional random vector. Thirdly, from the extreme
residual dependence in (V1, V3) and (V2, V3), it is possible to have extreme residual dependence
with a higher or equal extreme residual coefficient for subdimensional marginals. On the one
hand, when the subdimensional extreme residual coefficient is higher than that of the three-
dimensional random vector (η{1,3} > η{1,2,3}), the corresponding extreme residual dependence
structure is independent from that of the three-dimensional random vector. This is shown by
the fact that ν2 is free to choose. On the other hand, when the subdimensional extreme residual
coefficient is equal to that of the three-dimensional random vector (η{2,3} = η{1,2,3}), the extreme
residual dependence structure of (V2, V3)must be a projection of that of the three-dimensional
random vector.

Although having an extreme residual dependence structure for a high-dimensional random
vector does not determine the subdimensional dependence structure, some compatibility con-
ditions must be obeyed by the subdimensional dependence structure. We present the compat-
ibility conditions under a general d-dimensional framework. The proofs are straightforward
and thus omitted. Consider a d-dimensional random vector (X1, X2, . . . , Xd). By taking
X̃i = 1/(1 − Fi(Xi)), where Fi is the marginal distribution of Xi , we get the random vector
(X̃1, X̃2, . . . , X̃d). Suppose that, for any subset of index A ⊂ {1, 2, . . . , d}, there exists a
regularly varying functionQA(t)with index −1/ηA such that, for any xi > 0, i = 1, 2, . . . , d,
the limit

lim
t→∞

P(
⋂
i∈A{X̃i > txi})
QA(t)

(4.4)
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exists and is positive. By normalizing (4.4) we have

lim
t→∞

P(
⋂
i∈A{X̃1/ηA

i > txi})
QA(tηA)

= ν∗
A{(ui, i ∈ A) : ui > xi for all i ∈ A},

where ν∗
A is a finite measure on (0,+∞)|A|, homogeneous with degree −1. Note that we do not

distinguish extreme value dependence and extreme residual dependence. Instead, we regard
the extreme value dependence as a special case when ηA = 1.

Then we have the following conditions.

Condition 1: one-dimensional coefficient. For all sets A such that |A| = 1, where | · | denotes
the number of elements in a set, ηA = 1.

Condition 2: monotonicity. For any set A ⊂ B, ηA ≥ ηB .

Condition 3: consistency. If A ⊂ B and ηA = ηB , the measure ν∗
A is a projection of the

measure ν∗
B . Formally, for any Borel set S ⊂ (0,+∞)|A|, the inverse projection

π(S) ⊂ (0,+∞)|B| is defined as

π(S) := {(xi)i∈B : (xi)i∈A ∈ S, (xi)i∈B/A ∈ (0,+∞)}.
The projection ν∗

A of ν∗
B is defined as follows: for any T ⊂ (0,+∞)|A|, ν∗

A(T ) =
ν∗
B(π(T )).

Similarly to the two-dimensional case, when we confine ourselves to the case that the
‘extremes’ are positively associated, we have the following condition.

Condition 4: positive dependence. Suppose that A = A1 ∪ A2 is a nonempty partition of the
set A, i.e. A1 ∩ A2 = ∅ and Aj = ∅ for j = 1, 2. Then 1/ηA < 1/ηA1 + 1/ηA2 .

Note that if the random vector (Xi)i∈A1 is independent from (Xi)i∈A2 , 1/ηA = 1/ηA1 + 1/ηA2 .
Thus, the inequality ensures that the ‘extremes’are positively associated. In the two-dimensional
case, condition 4 turns out to be η > 1

2 . Conversely, condition 4 can be regarded as a general-
ization of the η > 1

2 condition in the two-dimensional case.
With the compatibility conditions 1–4, we have the full characterization of the extreme

dependence structure for a high-dimensional random vector.

Theorem 4.1. Let (X1, X2, . . . , Xd) be a random vector belonging to the domain of attraction
of a d-dimensional extreme value distribution, and let the extreme value dependence be charac-
terized by an exponent measure ν as in (4.1). Suppose that, for any index setA ⊂ {1, 2, . . . , d},
we have the extreme dependence structure of (Xi)i∈A characterized by ηA and ν∗

A. In the case
ηA = 1, it characterizes the extreme value dependence structure, while in the case ηA > 1,
it characterizes the extreme residual dependence structure. Then the characterization set
{(ηA, ν∗

A) : A ⊂ {1, 2, . . . , d}} must satisfy the compatibility conditions 1–3, while each ν∗
A

measure must be finite on all Borel sets in (0,+∞)|A| and homogeneous with degree −1.
Conversely, given any characterization set {(ηA, ν∗

A) : A ⊂ {1, 2, . . . , d}} satisfying the
compatibility conditions 1–4, there exists a random vector (X1, X2, . . . , Xd) such that all
subdimensional extreme dependence structures are characterized by corresponding coefficients
and ν∗-measures.

We skip the proof of Theorem 4.1 because it follows similar lines as the proof for the two-
dimensional case, while the constructed three-dimensional example gives a general idea of the
constructive proof.
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Remark 4.1. From the compatibility conditions 1 and 4, we obtain ηA > 1/|A|.

5. Extreme residual dependence for stochastic processes

We consider stochastic processes defined on the unit interval [0, 1]. Let {X(s)}s∈[0,1] be a
continuous sample path stochastic process, i.e. a random element in the spaceC[0, 1] equipped
with the L∞ norm |f |∞ := sups∈[0,1] f (s). In this section we generalize the definition of
asymptotic joint independence and extreme residual dependence to continuous sample path
stochastic processes.

In Section 5.1 we review the EVT in C[0, 1] and study the concept of asymptotic joint
independence in the infinite-dimensional case. In Section 5.2 we generalize the definition of
extreme residual dependence into C[0, 1], and give its characterization.

5.1. Extreme value dependence and asymptotic joint independence in C[0, 1]
Suppose that a continuous sample path stochastic process {X(s)}s∈[0,1] belongs to the domain

of attraction of a max-stable process (for details, see de Haan and Ferreira (2006, Chapter 9)).
Suppose that the marginal distribution function of X(s), Fs(x), is a continuous distribution
function. The domain of attraction condition is equivalent to the combination of two conditions:
firstly, Fs(x) belongs to the one-dimensional domain of attraction with extreme value index
γ (s), where γ (s) is a continuous real-valued function on [0, 1]; secondly, by defining

{X̃(s)}s∈[0,1] :=
{

1

1 − Fs(X(s))

}
s∈[0,1]

,

{X̃(s)}s∈[0,1] is also a continuous sample path stochastic process belonging to the same domain
of attraction. EVT in C[0, 1] shows that there must exist a finite measure ν on C̄+[0, 1] : =
{f ∈ C[0, 1] : f ≥ 0} such that, for all Borel sets A ⊂ C̄+[0, 1] with

inf{|f |∞ : f ∈ A} > 0

and ν(∂A) = 0,
lim
t→∞ t P(X̃ ∈ tA) = ν(A).

Moreover, ν is a homogeneous measure with degree −1. A corresponding spectral measure
ρ is given in Giné et al. (1990) (cf. Theorem 9.4.1 of de Haan and Ferreira (2006)). For any
f ∈ C̄+[0, 1] with |f |∞ > 0, we write r := |f |∞ and

f1(s) := f (s)

|f |∞ ∈ C̄+
1 [0, 1] := {f ∈ C[0, 1] : f ≥ 0, |f |∞ = 1}.

Then f is decomposed into (r, f1) ∈ (0,∞)× C̄+
1 [0, 1]. With such a decomposition, the

exponent measure ν is decomposed into a product measure as follows. There exists a finite
measure ρ on C̄+

1 [0, 1] with ∫
C̄+

1 [0,1]
f1(s) dρ(f1) = 1

for any s ∈ [0, 1] such that

ν(A) =
∫∫

rf1∈A
dr

r2 dρ(f1). (5.1)
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Again, the measures ν and ρ are called the exponent measure and the spectral measure,
respectively. Either of them characterizes the extreme value dependence for the stochastic
process {X̃(s)}s∈[0,1] and, hence, {X(s)}s∈[0,1].

We introduce the notation f > g (or f ≥ g) to indicate that two continuous functions
f (s) and g(s) defined on s ∈ [0, 1] satisfy f (s) > g(s) (or f (s) ≥ g(s)) for all s ∈ [0, 1].
Then, the extreme value dependence structure is equivalent to, for any g ∈ C+[0, 1] := {f ∈
C[0, 1] : f > 0},

lim
t→∞ t P({X̃ ≤ tg}c) = ν({f ∈ C̄+[0, 1] : f ≤ g}c) =

∫
C̄+

1 [0,1]
sup
s∈[0,1]

f1

g
dρ(f1) > 0.

Similarly to the definition of asymptotic joint independence in R
d , d ≥ 3, in (4.3), we say

that the stochastic process {X(s)}s∈[0,1] is asymptotically jointly independent if and only if, for
any g ∈ C+[0, 1], the following relation holds:

lim
t→∞ t P({X̃ > tg}) = ν({f ∈ C̄+[0, 1] : f > g}) = 0, (5.2)

i.e. no information on the sets of the type {f ∈ C̄+[0, 1] : f > g} is available.
The following theorem provides the necessary and sufficient condition on the spectral

measure which corresponds to asymptotic joint independence.

Theorem 5.1. Suppose that a continuous sample path stochastic process {X(s)}s∈[0,1] belongs
to the domain of attraction of some max-stable process with spectral measure ρ. The process
is asymptotically jointly independent if and only if its spectral measure ρ satisfies

ρ{f1 ∈ C̄+
1 [0, 1] : inf f1(s) > 0} = 0. (5.3)

Proof. With the relation between the exponent measure ν and the spectral measure ρ in
(5.1), we obtain, for any g ∈ C+[0, 1],

ν({f ∈ C̄+[0, 1] : f > g}) =
∫∫

rf 1>g

dr

r2 dρ(f1)

=
∫
C̄+

1 [0,1]

(∫
r>sup(g/f1)

dr

r2

)
dρ(f1)

=
∫
C̄+

1 [0,1]
1

sup(g/f1)
dρ(f1)

=
∫
C̄+

1 [0,1]
inf

(
f1

g

)
dρ(f1)

=
∫

{f1∈C̄+
1 [0,1] : inf f1>0}

inf

(
f1

g

)
dρ(f1).

It is then obvious that condition (5.3) implies (5.2). Conversely, suppose that (5.2) holds for all
g ∈ C+[0, 1]. Note that

inf

(
f1

g

)
≥ inf f1 inf

(
1

g

)
= inf f1

1

sup g
> 0

on the set {f1 ∈ C̄+
1 [0, 1] : inf f1 > 0}. Then, we obtain (5.3).
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Remark 5.1. It is not difficult to verify that condition (5.3) is equivalent to
∫
C̄+

1 [0,1]
inf f1(s) dρ(f1) = 0.

Note (cf. Ferreira et al. (2009)) that
∫
C̄+

1 [0,1]
inf f1(s) dρ(f1) = lim

γ↓−∞ θγ ,

where

θγ :=
∫
C̄+

1 [0,1]

(∫
s∈[0,1]

f
γ
1 (s) ds

)1/γ

dρ(f1)

is the so-called areal coefficient in Coles and Tawn (1996).

5.2. Extreme residual dependence in C[0, 1]
We generalize the definition of extreme residual dependence for stochastic processes. Since

we have infinitely many combinations of subdimensions, it is not possible give a full charac-
terization that addresses all subdimensional dependence. We focus on the characterization of
the extreme residual dependence over the index set [0, 1].

Suppose that a continuous sample path stochastic process {X(s)}s∈[0,1] belonging to the
domain of attraction of some max-stable process is asymptotically jointly independent, i.e. (5.2)
holds. Analogous to (1.7), if there exists a regularly varying function Q(t) with index −1/η
for some 0 < η < 1 such that

lim
t→∞

P({X̃ > tg})
Q(t)

exists and is positive (5.4)

for any g ∈ C+[0, 1], we say that there is extreme residual dependence with extreme residual
coefficient η.

From the definition of extreme residual dependence in (5.4) we obtain

lim
t→∞

P({X̃1/η > tg})
Q(tη)

exists and is positive.

Hence, there must exist a measure ν∗ on C+[0, 1], finite on sets of the type A∗
g := {f ∈

C[0, 1] : f > g} for any g ∈ C+[0, 1], such that

lim
t→∞

P({X̃1/η > tg})
Q(tη)

= ν∗(A∗
g).

For any a > 0, it can be verified that

ν∗(A∗
ag) = a−1ν∗(A∗

g).

Hence, we obtain
ν∗(aA) = a−1ν∗(A) (5.5)

for all A in the σ -field generated by {A∗
g : g ∈ C+[0, 1]}.
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To obtain a spectral decomposition of ν∗, we consider the following transformation. For
any f ∈ C+[0, 1], since f is a continuous function on a compact interval, we have m(f ) :=
infs∈[0,1] f (s) > 0. Moreover, by defining f2(s) := m/f (s), we have f2 ∈ C+

1 [0, 1] : = {f ∈
C+[0, 1] : |f |∞ = 1}. Thus, any f ∈ C+[0, 1] is decomposed into (m, f2) ∈ (0,+∞) ×
C+

1 [0, 1]. For any Borel set B ⊂ C+
1 [0, 1] and any r > 0, we obtain

ν∗{f : m(f ) > r, f2 ∈ B} = 1

r
ν∗{f : m(f ) > 1, f2 ∈ B}.

By defining ∗(B) := ν∗{f : m(f ) > 1, f2 ∈ B}, we decompose the measure ν∗ into a
product measure on (0,+∞)× C+

1 [0, 1]. The measures ν∗ and ∗ are connected by

ν∗(A) =
∫∫

m/f2∈A
dm

m2 d∗(f2).

Since
∗(C+

1 [0, 1]) = ν∗{f : m(f ) > 1} = ν∗{f : f > 1} < ∞,

∗ is a finite measure on C+
1 [0, 1].

Conversely, taking any finite measure ∗ on C+
1 [0, 1], we construct ν∗ as above. Then,

ν∗(A∗
g) = ν∗{f ∈ C[0, 1] : f > g}

= ν∗
{
f ∈ C[0, 1] : m

f2
> g

}

= ν∗{f ∈ C[0, 1] : m > sup(gf 2)}
=

∫
C+

1 [0,1]
1

sup(gf 2)
d∗(f2)

≤
∫
C+

1 [0,1]
1

sup f2 · inf g
d∗(f2)

= 1

inf g
∗(C+

1 [0, 1]).

Hence, for all continuous functions g > 0, ν∗(A∗
g) < ∞. Moreover, it is obvious that the

constructed ν∗-measure satisfies the homogeneity condition (5.5).
To summarize, we have shown that the extreme residual dependence condition can be

characterized by either a measure ν∗ on C+[0, 1] or a measure ∗ on C+
1 [0, 1]. The former

must be finite on all sets of the type A∗
g and satisfying (5.5), while the latter must be a finite

measure on C+
1 [0, 1].

As shown in Theorem 5.1, when the extreme residual dependence condition holds, the
spectral measure ρ must satisfy condition (5.3). The following theorem shows that all possible
extreme value dependence structures and extreme residual dependence structures can occur.

Theorem 5.2. Consider a continuous sample path stochastic process {X(s)}s∈[0,1] in the
domain of attraction of a max-stable process with spectral measureρ. Suppose that {X(s)}s∈[0,1]
is asymptotically jointly independent and exhibits extreme residual dependence characterized
by an extreme residual coefficient η in ( 1

2 , 1) and a measure ∗. Then the spectral measure ρ
must satisfy (5.3), and the measure ∗ is finite on C+

1 [0, 1].
Conversely, given a spectral measure ρ satisfying (5.3), a finite measure ∗ on C+

1 [0, 1],
and any 1

2 < η < 1, there exists a process {X(s)}s∈[0,1] belonging to the domain of attraction
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of a max-stable process with spectral measure ρ, exhibiting extreme residual dependence
characterized by the given measure ∗ and having an extreme residual coefficient η.

5.2.1. Proof of Theorem 5.2. The first part is proved by Theorem 5.1 and the construction of∗.
It is only necessary to prove the inverse part. Similarly to the two-dimensional case, we give a
constructive proof. The proof is staged in three steps.

Firstly, we construct a stochastic process {W(s)}s∈[0,1] with extreme value dependence
structure characterized by ρ. Although this has been proved in Theorem 9.4.1 of de Haan and
Ferreira (2006), we provide our own construction which is necessary for the proof later.

Define c0 = ρ(C̄+
1 [0, 1]) < ∞. Then ρ/c0 is a probability distribution on C̄+

1 [0, 1]. Let
Q0 be a random element on C̄+

1 [0, 1] following such a probability distribution. Let M0 be a
random variable independent from Q0, with distribution function P(M0 > x) = c0/x for all
x > c0. Then the constructed stochastic process W is given as

{W(s)}s∈[0,1] := {M0Q0(s)}s∈[0,1]. (5.6)

It is not difficult to verify that the marginal distributions of the stochastic process {W(s)}s∈[0,1]
follow

lim
t→∞ t P({W(s) > tx}) = 1

x
. (5.7)

Furthermore, for any g ∈ C+[0, 1],

lim
t→∞ t P({W ≤ tg}c) = lim

t→∞ t P

({
M0 > t inf

s∈[0,1]
g

Q0

})

= E
c0

infs∈[0,1] g/Q0

=
∫
C̄+

1 [0,1]
sup
s∈[0,1]

f1

g
dρ(f1). (5.8)

Together with the marginal property (5.7), the process {W(s)}s∈[0,1] is in the domain of attraction
of a max-stable process with spectral measure ρ.

Secondly, we construct a stochastic process that accommodates the extreme residual depen-
dence characterized by ∗ and η as in the following proposition.

Proposition 5.1. Given any finite measure ∗ on C+
1 [0, 1] and 1

2 < η < 1, there exists a
continuous sample path stochastic process {Z(s)}s∈[0,1] such that, for any g ∈ C+[0, 1],

lim
t→∞ t P({Z > tg}) =

∫
C+

1 [0,1]
1

sup(gf 2)
d∗(f2), (5.9)

lim
t→∞ t

η P(Z(s) > t) = 0 for s ∈ [0, 1]. (5.10)

Proof. The proof is similar to the two-dimensional case. Define c := ∗(C+
1 [0, 1]) < ∞.

Then∗/c is a probability distribution onC+
1 [0, 1]. Consider a random elementQ inC+

1 [0, 1]
following such a probability distribution. Let M be a random variable independent from Q,
with distribution function P(M > x) = c/x for all x > c. Moreover, since 1

2 < η < 1, we
take β such that 1 < β < 1/η. Consider the stochastic process {Z(s)}s∈[0,1] given as

{Z(s)}s∈[0,1] :=
{
M

Q(s)
∧Mβ

}
s∈[0,1]

.
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It is clear that {Z(s)}s∈[0,1] is a continuous sample path process. We check condition (5.9) as
follows. For any g ∈ C+[0, 1],

lim
t→∞ t P({Z > tg}) = lim

t→∞ t P
(
{M > tQg} ∩

{
Mβ > t sup

s∈[0,1]
g(s)

})

= lim
t→∞ t P({M > (t sup(Qg)) ∨ (t1/β(sup g)1/β)})

= lim
t→∞ t EQ

c

(t sup(Qg)) ∨ (t1/β(sup g)1/β)

= lim
t→∞

∫
C+

1 [0,1]
1

sup(gf 2) ∨ (t1/β−1(sup g)1/β)
d∗(f2)

=
∫
C+

1 [0,1]
1

sup(gf 2)
d∗(f2).

The last equation comes from the Lebesgue dominated convergence theorem and the fact that the
last integral is finite. The proof of relation (5.10) follows the same line as in the two-dimensional
case. The proposition is thus proved.

The last step in our construction is to assemble the constructed {W(s)}s∈[0,1] and {Z(s)}s∈[0,1].
Let

{U(s)}s∈[0,1] := {W(s) ∨ Z(s)η}s∈[0,1],
where the processes {W(s)}s∈[0,1] and {Z(s)}s∈[0,1] are independent. We show that {U(s)}s∈[0,1]
fulfills all requirements in Theorem 5.2. To achieve this, we check three relations:

(a) by denoting the marginal distributions of U(s) as Fs(x), we have 1/(1 − Fs(t)) ∼ t as
t → ∞;

(b) for all g ∈ C+[0, 1],

lim
t→∞ t P({U < tg}c) =

∫
C̄+

1 [0,1]
sup
s∈[0,1]

f1

g
dρ(f1);

(c) for all g ∈ C+[0, 1],

lim
t→∞ t P({U1/η > tg}) =

∫
C̄+

1 [0,1]
1

sups∈[0,1](gf 2)
d∗(f2).

To prove (a) note that, for any s ∈ [0, 1] and x > 0,

{U(s) > tx} = {W(s) > tx} ∪ {Z(s) > (tx)1/η}.
Hence,

t P(W(s) > tx) ≤ t P(U(s) > tx) ≤ t P(W(s) > tx)+ t P(Z(s) > (tx)1/η).

Part (a) is proved by combining (5.7) and (5.10).
(b) For any g ∈ C+[0, 1], we have

{U < tg} = {W < tg} ∩ {Zη < tg}.
Thus,

{U < tg}c = {W < tg}c ∪ {Zη < tg}c,
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which implies that

t P({W < tg}c) ≤ t P({U < tg}c) ≤ t P({W < tg}c)+ t P({Zη < tg}c).

Considering (5.8), in order to prove (b), it is sufficient to prove that

lim
t→∞ t P({Zη < tg}c) = 0.

By construction, Z(s) ≤ Mβ for all s ∈ [0, 1]. Hence,

{Zη < tg}c ⊂
{
Mβη > t inf

s∈[0,1] g
}
,

which implies that

t P({Zη < tg}c) ≤ t P({Mβη > t inf g}) = O(t1−1/(βη)).

From β < 1/η, we obtain 1 − 1/(βη) < 0. This completes part (b).
(c) Given any g ∈ C+[0, 1], on the one hand, we have

{U1/η > tg} ⊃ {Z > tg},
and, on the other hand, we have

{U1/η > tg}
⊂ {Z > tg} ∪ {W 1/η > tg}

∪ {there exist s1, s2 ∈ [0, 1] such that Z(s1) > tg(s1) and (W(s2))
1/η > tg(s2)}

:= S1 ∪ S2 ∪ S3.

Considering relation (5.9), in order to prove (c), it is sufficient to prove that limt→∞ t P(Sj ) = 0
for j = 2, 3.

Considering restriction (5.3) on the spectral measure ρ, and the construction of {W(s)}s∈[0,1]
in (5.6), we have P(infs∈[0,1]Q0(s) > 0) = 0, which implies that

P
(

inf
s∈[0,1]W(s) > 0

)
= 0.

Because S2 ⊂ {infs∈[0,1]W(s) > 0}, we obtain P(S2) = 0.
The last step is on S3. By construction, Z(s) ≤ Mβ and W(s) ≤ M0 hold for all s ∈ [0, 1].

The latter is implied by the fact that sups∈[0,1]Q0(s) = 1. Therefore, we have

S3 ⊂ {Mβ > t inf g and M1/η
0 > t inf g}.

Since M and M0 are independent, we obtain

t P(S3) ≤ t P(M > (t inf g)1/β)P(M0 > (t inf g)η)

= tO(t−1/β)O(t−η)
= O(t1−1/β−η).

From 1 < β < 1/η and 1
2 < η < 1, we obtain 1 − 1/β − η < 1 − 2η < 0. It is thus proved

that limt→∞ tP (S3) = 0, which completes the proof of part (c).
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The combination of (a) and (b) implies that the constructed process {U(s)}s∈[0,1] belongs
to the domain of attraction of a max-stable process with extreme value dependence struc-
ture characterized by the spectral measure ρ. The combination of (a) and (c) implies that
{U(s)}s∈[0,1] has extreme residual dependence characterized by the measure ∗ with extreme
residual coefficient η. Hence, Theorem 5.2 is proved.

Remark 5.2. Note that, for the stochastic process, the restriction on η is that 0 < η < 1,
i.e. there is no lower bound restriction onη in order to ensure the ‘positively associated extremes’.
This is in accordance with Remark 4.1 by considering that the number of dimensions tends to ∞.

Remark 5.3. The extreme value dependence implies that sups∈[0,1] X̃(s) has an extreme value
index 1, while the extreme residual dependence implies that infs∈[0,1] X̃(s) has an extreme
value index η.

6. Modeling systemic risk in a banking system

It is often observed that banking crises are systemical, i.e. banks are likely to experience
severe downside shocks simultaneously. This is called the systemic risk in banking system.
One potential explanation of systemic risk is that banks share similar exposures to risk factors
that are heavy tailed; see, e.g. de Vries (2005). This argument can be shown by the following
simple model.

Consider a simple banking system with two banks (B1, B2) holding a portfolio of risks on
three independent risk factors C, L1, and L2. The losses of the two banks are given by

B1 = C + L1, B2 = C + L2, (6.1)

where (C,L1, L2) indicates the losses generated by the risk factors. Here C is regarded as
the common risk shared by B1 and B2, while L1 and L2 are idiosyncratic risks taken by
individual banks, respectively. Suppose that (C,L1, L2) are independent and follow heavy-
tailed distributions. More specifically, we assume that Li has tail index α and C has tail index
β, i.e. as x → ∞,

P(Li > x) ∼ σLx
−α for i = 1, 2, P(C > x) ∼ σCx

−β, (6.2)

where σL, σC > 0 are the scales.
To examine the existence of the systemic risk, we may compare the probability of a systemic

crisis with that of an individual crisis, i.e. calculating

κ := lim
t→∞

P(B1 > t, B2 > t)

P(B2 > t)
.

In de Vries (2005), it was shown that, when α = β, 0 < κ < 1. Hence, when the systemic risk
exists, the banking system is fragile.

Deviating from the assumption that α = β provides other possibilities for modeling different
levels of systemic risk. The following theorem clarifies the different extreme dependence
structure in different cases.

Theorem 6.1. Consider the simple model of a banking system in (6.1) and (6.2). Suppose that
(C,L1, L2) are all positive random variables. The following statements hold.

(a) When β < α, (B1, B2) are completely asymptotically dependent (κ = 1).
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(b) When β = α, (B1, B2) are partially asymptotically dependent (0 < κ < 1).

(c) When α < β < 2α, (B1, B2) are asymptotically independent (κ = 0); however, by
defining B̃i = 1/(1 − Fi(Bi)), where Fi is the marginal distribution of Bi for i = 1, 2,
we have

lim
t→∞ t

β/α P(B̃1 > t, B̃2 > t) = σ
−β/α
L σC. (6.3)

(d) When β > 2α, (B1, B2) are asymptotically independent; moreover, with the same
notation B̃i as in (c),

lim
t→∞ t

2 P(B̃1 > t, B̃2 > t) = 1.

Proof. The proof of part (b) is given in de Vries (2005). It is not difficult to obtain κ =
σC/(σC + σL). We now consider the other three cases.

(a) In this case, β < α. The common risk has a heavier tail than the idiosyncratic risks.
From the Feller theorem (see Feller (1971, Section VIII 8)), we have, as t → ∞,

P(Bi > t) ∼ P(C > t).

On the other hand, for any 0 < ε < 1, from

{C > t} ⊂ {B1 > t, B2 > t} ⊂ {C > (1 − ε)t} ∪ {L1 > εt, L2 > εt}, (6.4)

and the fact that P(L1 > εt, L2 > εt) = o(P(C > t)), we obtain

1 ≤ lim inf
t→∞

P(B1 > t, B2 > t)

P(C > t)
≤ lim sup

t→∞
P(B1 > t, B2 > t)

P(C > t)
≤ (1 − ε)−β.

By taking ε → 0, we obtain, as t → ∞,

P(B1 > t, B2 > t) ∼ P(C > t) ∼ P(B2 > t).

Hence, κ = 1.
(c) In this case, α < β < 2α. As t → ∞,

P(Bi > t) ∼ P(Li > t) ∼ σLt
−α.

Hence, 1/(1 − Fi(t)) ∼ tα/σL as t → ∞.

Relation (6.4) implies that

0 ≤ P(B1 > t, B2 > t)

P(L2 > t)
≤ P(C > (1 − ε)t)+ P(L1 > εt, L2 > εt)

P(L2 > t)
.

Since β > α, P(C > (1 − ε)t) = o(P(L2 > t)). Thus, we obtain

P(B1 > t, B2 > t) = o(P(L2 > t)) = o(P(B2 > t)),

i.e. κ = 0.
Next, from (6.4), note that

P(L1 > εt, L2 > εt)= P(L1 > εt)P(L2 > εt) = O(t−α)O(t−α) = o(t−β) = o(P(C > t)).
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Similarly to case (b), we have P(B1 > t, B2 > t) ∼ P(C > t), which implies that

lim
t→∞ t

β P(B1 > t, B2 > t) = σC.

From 1/(1 − Fi(t)) ∼ tα/σL and B̃i = 1/(1 − Fi(Bi)), we obtain

P(B̃i > t) ∼ P

(
Bαi

σL
> t

)
as t → ∞ .

A similar approximation holds for the joint probability P(B̃1 > t, B̃2 > t). A straightforward
calculation yields

lim
t→∞ t

β/α P(B̃1 > t, B̃2 > t) = σ
−β/α
L σC.

(d) In this case, β > 2α. The proof of κ = 0 is similar to that in case (c). Analogous to the
proofs of (b) and (c), from the relation

{L1 > t, L2 > t} ⊂ {B1 > t, B2 > t} ⊂ {L1 > (1 − ε)t, L2 > (1 − ε)t} ∪ {C > εt},
we obtain

P(B1 > t, B2 > t) ∼ P(L1 > t)P(L2 > t) ∼ σ 2
Lt

−2α

as t → ∞. Together with the marginal tail distribution of Bi , it can be verified that

lim
t→∞ t

2 P(B̃1 > t, B̃2 > t) = 1.

Remark 6.1. In Theorem 6.1, we assumed that C and Li are all positive random variables for
simplicity. Such an assumption is not essential: assuming that the left tails of C and Li are
lighter, i.e. having higher tail indices, than the right tails is sufficient for obtaining the same
result.

Remark 6.2. When (B1, B2) are independent random variables, we have

lim
t→∞ t

2 P(B̃1 > t, B̃2 > t) = lim
t→∞ t P(B̃1 > t)t P(B̃2 > t) = 1.

Hence, Theorem 6.1(d) is comparable with the situation that systemic risk does not exist, while
in Theorem 6.1(c), systemic risk still exists in the residual part.

Remark 6.3. In Theorem 6.1(c), relation (6.3) is comparable with (2.1) with η = α/β.
Formally, with a similar set manipulation procedure, we can obtain

lim
t→∞ t

β/α P(B̃1 > tx1, B̃2 > tx2)

= lim
t→∞ t

β/α P(Bα1 > tσLx1, B
α
2 > tσLx2)

= lim
t→∞ t

β P(B1 > tσ
1/α
L x

1/α
1 , Bα2 > tσ

1/α
L x

1/α
2 )

= lim
t→∞ t

β P(C > t(σL max(x1, x2))
1/α)

= σC

(σL max(x1, x2))β/α
.

Hence, (B1, B2) are extreme residual dependent with η = α/β and

ν∗{(u, v) : u > x1 and v > x2} = σC

σ
β/α
L max(x1, x2)

.
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Such an extreme residual dependence structure is comparable with that in Example 3.1. More-
over, since α < β < 2α, we have 1

2 < η < 1.

To summarize, when the common risk factor dominates the risks taken by the banks, the
systemic risk is at the same level as the individual risk; hence, the system is in the most fragile
situation. When the common risk factor and the idiosyncratic risks have comparable tails, the
systemic risk exists, but at a level proportional to the individual risk; hence, the system is in
a less fragile situation. When the idiosyncratic risks dominate but the common risk is still
considerably heavy, i.e. α < β < 2α, the system is in the least fragile situation; however, the
systemic risk still exists in the residual part. When the common risk has a much lighter tail
than that of the idiosyncratic risk, i.e. β > 2α, the systemic risk does not exist.

Our extended model captures not only asymptotically dependent cases but also asymp-
totically independent cases with dependence in the residual parts. Although local financial
institutions from different economic regions, bearing their idiosyncratic risks as their major
risks, do not exhibit strong fragility, a global crisis may still lead to a systemic crash due to the
dependence in the residual parts. This explains the phenomenon observed in global crises: all
financial institutions get a simultaneous systemic shock even though they may not be strongly
linked. When modeling systemic risk within the banking system, it is necessary to take into
account the dependence in residual parts, in order to avoid underestimation of systemic risk.
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