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Abstract
Ethiopia has heterogeneous topographic, climatic and socio-ecological systems. Recommendations of agri-
cultural inputs and management practices based on coarse domains such as agro-ecological zones (AEZ)
may not lead to accurate targeting, mainly due to large intra-zone variations. The lack of well-targeted
recommendations may contribute to the underperformance of promising technologies. Therefore, there
is a need to define units where similar environmental and biophysical features prevail, based on which
specific recommendations can be made for similar response units (SRUs). We used unsupervised machine
learning algorithms to identify areas of high similarity or homogeneous zones called ‘SRUs’ that can guide
the targeting of agricultural technologies. SRUs are landscape entities defined by integrating relevant envi-
ronmental covariates with the intention to identify areas of similar responses. Using environmental spatial
data layers such as edaphic and ecological variables for delineation of the SRUs, we applied K- and
X-means clustering techniques to generate various granular levels of zonation and define areas of high
similarity. The results of the clustering were validated through expert consultation and by comparison
with an existing operational AEZ map of Ethiopia. We also augmented validation of the heterogeneity
of the SRUs by using field-based crop response to fertiliser application experimental data. The expert
consultation highlighted that the SRUs can provide improved clustering of areas of high similarity for
targeting interventions. Comparison with the AEZ map indicated that SRUs with the same number of
AEZ units captured heterogeneity better with less within-cluster variability of the former. In addition,
SRUs show lower within-cluster variability to optimal crop response to fertiliser application compared
with AEZs with the same number of classes. This implies that the SRUs can be used for refined agricultural
input and technology targeting. The work in this study also developed an operational framework that users
can deploy to fetch data from the cloud and generate SRUs for their areas of interest.
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Introduction
The current approximately 110 million population of Ethiopia is projected to reach 180 million
by 2050 (Bekele and Lakew, 2014; UNDESA, 2017). This requires an increase in huge tons of
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annual cereal and meat production to meet the nutritional and food security needs of
the increasing population (FAO, 2017). This situation is worsened by the fact that over 60%
of the farming households in the country operate on small plots averaging less than 1 ha
(e.g. CSA, 2015; Rahmato, 1994) and are fragmented with significant operational challenges
(Zewdie and Tamene, 2020). Because of limited cultivable land for expansion, the efficiency of
agricultural production on currently cultivated land should increase substantially to feed the
growing population. This should be achieved without compromising ecological integrity and envi-
ronmental sustainability. To realise this, resources should be targeted in a rational way to the
production systems that have the highest potential to achieve the triple wins of poverty reduction,
environmental protection and food security (Herrero et al., 2014).

One of the key constraints to enhance food security and increase the overall resilience of small-
holders in developing regions is a lack of informed decision making due to a combination of
factors such as lack of locally relevant information, conducive institutional structure and policy
issues (Aryeetey et al., 2017; Covic and Hendriks, 2016; Holdsworth et al., 2016; Shroff et al.,
2015). The major bottleneck that aggravates the impacts of these constraints is the lack of adequate
data at the appropriate resolution, desired frequency, required quality and quantity to deploy data-
driven knowledge-based decisions (Donatien, 2016). For example, the lack of site-specific infor-
mation about the topographic settings of farms, the status of soils, weather conditions and the
nutrient requirements of crops undermines effective targeting of technologies to areas where they
perform better to improve productivity.

As a result of the lack of data-driven and tailored decisions, farmers are provided with blanket
recommendations of technologies and management practices despite considerable differences in
their farming systems in terms of environmental conditions, landscape positions, soil character-
istics, crop diseases, weeds infestation and water availability. This approach ignores the need to
match ‘farming conditions’ with technology requirements and entails the need to shift from a
‘one-size-fits-all’ strategy to providing tailored recommendations based on location-specific char-
acteristics, constraints and potentials. Therefore, in regions where there are heterogeneous
farming systems, classification of sites into uniform units is a crucial step to develop location-
specific recommendations and thereby improve agricultural productivity and food security
(Penghui et al. 2020; Pennock et al., 1994).

Classification of landscapes into relatively homogenous units is done by creating uniform terri-
tories with regular and typical occurrence of interrelated combinations of geological composition,
landforms, surface and ground waters, microclimates and soil types (Salecker et al., 2019). By
matching the specifications of a given development strategy with spatially referenced similar units,
it is possible to delineate geographical areas where the strategy is likely to be successful and has a
positive impact (Notenbaert et al., 2017). This will not only enable targeting technologies to areas
where they perform better but also facilitates scaling options across wide areas (Herrero et al.,
2014; Notenbaert et al., 2013). In agriculture, the assumption is that strategies are likely to have
similar response in areas that fall within the same recommendation domain. Thus, specific types
of development policies, investments and livelihood options, and technologies are likely to result
in a desirable effect and be adopted if they are targeted based on a recommendation domain.

The past few decades have seen widespread availability of spatial data and the advancement of
robust modelling algorithms. Such developments are creating unique opportunities for optimisa-
tion of natural resource management, enhancing economic development and helping alleviate
poverty on the basis of recommendation domains (Akıncı et al., 2013; Elsheikh et al., 2013;
Freeman et al., 2008; Herrero et al., 2014; Hyman et al., 2013; Notenbaert et al., 2017, 2013;
Omamo et al., 2006). Different approaches have been used to create environmental units
where similar processes prevail, similar recommendations can be made and similar responses
can be expected. In the agricultural sector, there are several efforts to define areas of high
similarity. Examples include the development of agro-ecological zones (AEZ) (e.g. FAO, 1981;
Fischer and Antonie, 1994; IIASA/FAO, 2012), farming systems (e.g. Amede et al., 2017;
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Dixon et al., 2001; Rizzo et al., 2013), recommendation domains (e.g. Notenbaert et al., 2013;
Omamo et al., 2006; Tesfaye et al., 2015) and topographic position (e.g. Amede et al., 2020;
Gerçek, 2017; Gerçek et al., 2011). Recently, Muthoni et al. (2017) used geospatial analysis
and clustering techniques to delineate relatively similar clusters for scaling improved crop varieties
and good agronomic practices in Tanzania. In addition, Khoroshev (2020) developed a framework
aimed at considering geographical context, matter flows and dynamic processes in developing
ecological networks and identifying sites for various land use types as well as for choosing appro-
priate technologies.

Developing procedures to automatically classify landscapes into spatial entities or clusters can
be essential to defining effective management units for precision farming and for scaling site-
specific recommendations (Penghui et al., 2020). There are, however, no standard frameworks
designed to generate similar response units (SRUs) using big data and machine learning
approaches. The aim of this study is, therefore, to develop an operational framework to define
‘SRUs’ or management zones within which similar technologies and management interventions
can be recommended. We outlined a framework and approaches, with reproducible workflow and
tool piloted for Ethiopia.

Approach and Methodologies
Study area

The SRU-mapping exercise is piloted in Ethiopia, which is a country with very heterogeneous
landscapes (Figure 1), diverse AEZ and different farming systems. The country’s elevation ranges
from 116 m below sea level to over 4600 m asl and comprises more than 30 AEZs. Generally, AEZs
are defined through the combination of temperature, precipitation and elevation parameters
focusing on the climatic and edaphic requirements of crops and on the management systems
under which the crops are grown (FAO, 1996). Agriculture is the dominant means of livelihoods
in Ethiopia supporting over 80% of the population. The Ethiopian highlands (over 1500 m asl)
support the majority of the population, and this is also the part of the country where crop produc-
tion dominates. Still traditional farming dominates and its transformation will be needed for
enhancing the quality of life and improving food security. Owing to the country’s heterogeneity

Figure 1. Topography of parts of Ethiopia revealing complexity and diversity.
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and diversity of agro-climatic and farming systems, it will be essential to ensure that appropriate
options/technologies are targeted to locations with specific characteristics.

Data and data sources

Integrating key variables is crucial for the zonation of target areas into similar management units.
This study uses relevant covariates (Table 1) to develop SRUs that will have similar responses to
agricultural technologies such as integrated soil fertility management and climate-smart agricul-
ture. The major factors that determine agricultural systems and productivity are topography,
climate, soil and associated derivatives. These are thus the key covariates used to derive SRUs.

Topography and its derivatives (e.g. slope, aspect, wetness index and topographic index) deter-
mine landscape processes such as material flow as well as associated agricultural and landscape
practices. Topography is the dominant factor in controlling the flow and accumulation of water,
energy and matter in Ethiopian landscapes. It also affects the development and properties of soils
and off-site environmental conditions (e.g. soil moisture, organic carbon, mineral-forming
elements, etc.) in different ways. In this study, the 90 m SRTM digital elevation model was used
to derive key terrain variables.

Climatic conditions such as temperature, rainfall, humidity, evaporation and their variabilities
have important implications on determining the success of developed plans and interventions.
Knowledge of localised climatic conditions (weather) and variability across space and time is thus
critical to designing targeting options. The 5 km resolution CHIRIPS data set (Funk et al., 2014)
was used to represent rainfall and temperature conditions in the country; average and dekadal data
sets were used to capture spatio-temporal and seasonal dynamics. Temperature was derived from
5 km WORLDCLIM data set (Fick and Hijmans, 2017). The 4 km TERRACLIME (Abatzoglou
et al., 2018) data were used to represent solar radiation, soil moisture and potential evapotrans-
piration as input variables for clustering. A ‘climate derivative’ called the length of the growing
period (LGP), which represents overall suitability for crops and vegetation, has also been derived.
It is one of the crucial components for the agricultural domain as it not only considers both rain-
fall and temperature dynamics but also includes other important features such as soil moisture
and potential evapotranspiration.

Soil dictates the types of farming systems that can function within a defined geographical unit
and the associated management options. The amount and type of input to be applied for agricul-
tural purposes, for example, are dictated by the properties of the soil and its health. Thus, soil is the
predominant organising unit related to fertiliser and agronomic advisories. Knowledge of soil type
and key soil properties is essential to defining environmental conditions and their overall

Table 1. Key landscapes elements/variables used to drive similar response units

Variable/type Resolution Source

Topography (elevation, slope, aspect,
wetness and topographic indexes)

90 m https://srtm.csi.cgiar.org/ (Version 4.0)

Landscape (TPI) 270 m https://developers.google.com/earth-engine/datasets/
catalog/CSP_ERGo_1_0_Global_ALOS_mTPI

Landscape (TWI) ∼500 m https://www.hydrosheds.org
Rainfall ∼5 km https://data.chc.ucsb.edu/products/CHIRPS-2.0/ (Version

2.0)
Temperature (mean) ∼5 km https://www.worldclim.org/
Solar radiation, soil moisture, potential

evapotranspiration, relative humidity
∼4 km http://www.climatologylab.org/terraclimate.html

Length of growing period ∼4 km Own analysis (derived from ???)
Soil property (sand %, clay %,, SOC, CEC,

pH, total nitrogen)
250 m www.isric.org (Version 2.0)

Vegetation index (EVI, NDVI) 1 km https://developers.google.com/earth-engine/datasets/
catalog/MODIS_006_MOD13A2
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suitability. In this study, soil texture, soil organic carbon (SOC), pH, cation exchange capacity,
total nitrogen and proportion of sand and clay were used for the clustering exercise. Gridded
layers for soil chemical properties with a resolution of 250 m were downloaded from the
World Soil Information database (Poggio et al., 2021). The weighted average value of topsoil
(0–30 cm) was used as it represents the average effective rooting depth of major crops.

Vegetation indexes are useful for characterising crop health and the potential capacity of the
land to sustain vegetation. The normalised difference vegetation index (NDVI) and the enhanced
vegetation index (EVI) are two vegetation indexes commonly used to monitor vegetation states
and processes and are included in this framework. These two variables were used in the clustering
exercise of this study.

Overall, 16 variable input layers were prepared for the clustering analysis in this study
(Table 1). The key data-processing steps are presented in the following sections.

Data pre-processing

Figure 2 shows the major data-processing steps used in this study. All the data sets from global
and/or regional sources were clipped based on the Ethiopian boundary. Because the different data
sets have varied spatial resolutions, it was necessary to adjust to a common scale. In order to main-
tain the details of topographic (90 m) and soil-related information (250 m), and considering that
climate variables will not significantly change over short distances, all the other data sets were
resampled to 1 km resolution using the weighted average resampling method.

To make a comparable (and avoid spurious) impact of variables with larger ranges of values, it
was necessary to normalise data sets (Abbott, 2014). In this study, data sets from various ranges to
a common range (0–1) were normalised using a min-max scaling procedure.

Variable importance was used to assess how effectively a variable can differentiate between
clusters and determine whether to include it in the analysis. Fowlkes et al. (1988) developed a
variable selection method that focuses on a reduced variable space to make the model create
new clusters parsimoniously. In this study, a principal component analysis (PCA) was used to
reduce the data dimension and maintain the important variables by excluding those which carry
redundant information. PCA axes with eigenvalues greater than 1 were retained to ensure that
only PCA axes with a significant contribution are used for further analysis (Kaiser and Rice,
1974). Further, the quality of representation of the variables was analysed using the Cos2 indicator
represented in a factor map. Cos2 represents the gradient of quality to highlight the most impor-
tant variables in explaining the variations retained by the principal components (Kassambara,
2016). The factor map help to visualise the cluster of correlated variables in groups (ibid.).
Finally, we used moving window variance over a 10 km radius to calculate the spatial variance
of each pixel for the final list of covariates.

Clustering to define SRUs

The SRU exercise targets partitioning the heterogeneous environment into similar units where
similar processes prevail and similar interventions can be made. Clustering is an approach that
involves classifying data points into a specific group based on the premise that data points that are
in the same group/cluster would have similar properties and/or features, whereas data points in
different groups would have highly dissimilar properties and/or features. The aim is to cluster
areas in a manner that maximises within-group similarity with maximising between-groups
dissimilarity, thus minimising the total intra-cluster variation or total within-cluster sum of
squares (WSS) (Goswami et al., 2014). The total WSS measures the compactness of the clustering
whereby ideal clusters should be compact, well-separated and stable (Brock et al., 2008). The point
where the difference with the previous number of clusters flattens out represents the optimal
number of clusters as determined by the elbow method (Kaufman and Rousseeuw, 1990).
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One of the commonly used spatial clustering algorithms is the K-means (Hot and
Popović-Bugarin, 2016; Jain et al., 2000; Rahmani et al., 2014; Shukla et al., 2020). K-means is
generally simple to implement and can be used with large datasets. The K-means is, however,
not suited for use at a large scale due to the time it requires to give results when used for large
areas and many covariates. In addition, it demands users to predefine the number of clusters to be
produced. As a result, the X-means clustering method (Pelleg and Moore, 2000) from the WEKA
package (Beckham et al., 2016) has been developed as an extension of K-means to provide a more
independent, unsupervised classification with improved computational efficiency, avoiding under
parameterisation. Using X-means removes the necessity of a pre-set number of clusters from the
user supporting the future developments of the approach developed in this study. The X-means
approach is made efficient by replacing the need for K-means to compute the distance between
every point to every centroid by recursive splitting of every cluster. It uses information criteria
such as Bayesian information criterion (BIC) to select a model over another and whether the split
at a centroid could be kept or not. The global BIC is used to define the final number of clusters.
In this study, we used the X-means clustering method to group areas into similar or homogeneous
zones within which similar recommendations can be made without requiring the need to prede-
fine the number of clusters.

During the clustering exercise, all the variables (weather continues or categorical) were ingested
into the classification algorithms, without any modification/creation of classes after normalisation.
A moving window approach was used during classification to make the importance of the
variables area/site specific.

Figure 2. Flowchart showing the automation of SRU mapping.
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Assessing the performances of clustering

To assess the results of the clustering algorithms, we have used qualitative and quantitative
approaches. First, expert consultation has been used to gain an overall sense of the clustering
results vis-à-vis expert knowledge and experiences of different geographical areas. At a one-
day workshop, experts in soils, agronomy and geospatial analyses discussed the approaches used
and corresponding clustering results. The maps were visualised on screen and printed in large
colour prints to enable experts explore the results across the country. The second approach
compared the distribution of standard deviation of optimal crop response to fertiliser application
between the existing AEZ and the SRUs with the same number of classes. For this exercise,
3 commonly used AEZ maps categorised in 7 moisture belts and 15 AEZ (Hurni, 1998) and
33 zones (MoA, 2005) were selected. Corresponding SRUs with similar number of classes
(7, 15 and 33) were then generated for ‘one-to-one comparison’’ Maintaining the same level
of granularity (number of classes) between the SRUs and AEZs, we compared within standard
deviation between the two at a national scale. In this case, the assumption is that because the
‘classes’ are a result of homogeneous factors, they are expected to respond similarly to interven-
tions. The expectation is that there will be less variation (indicated by standard deviation) in the
crop response to nutrient added within similar classes than between different classes. If the stan-
dard deviation of the optimal fertiliser rate for SRU is smaller than AEZ for the same level of
classes, the SRU approach of generating agriculturally homogeneous units is considered more
appropriate. The optimal fertiliser recommendation used for this purpose is collated from many
trial data sets (Tamene et al., 2017) and analysed as outlined in Abera et al. (submitted).

Automation and tool development

One of the main aims of the study is to develop a scalable framework/system to delineate SRUs for
different agronomic purposes. To build a generic system, the approach should primarily use globally
available geospatial data sourced from the cloud with the flexibility for users to upload their own addi-
tional layers. The tool should also be designed to provide different options of clustering methods such
as partitioning, distribution-based, hierarchical and fuzzy methods. The classification algorithms
should also be designed to be scalable to run analysis for target areas of different spatial extent.
The framework and tool developed in this study will thus enable the access of data from the cloud,
and running clustering for a defined geographical area of interest using various approaches delineating
similar zones. It also provides flexibility for user submit their own data to use solely for clustering and/
or integrate with data derived from the cloud. The whole process is automated in an R programming
environment and piloted for Ethiopia using commonly available geospatial data.

Results and Discussion
Variable selection for clustering

Figure 3 depicts the eigenvalues, variances and cumulative variances for the PCA analysis.
The results show that the total cumulative variance percent of the three dimensions explained
more than 80% of the variance. The first dimension explained 60% of the variance, whereas
the second and third dimensions explained about 15% and 7%, respectively. Beyond the third
dimension, variability lessens and the amount of new information that is carried diminishes.
As a result, the first three dimensions were selected for further cluster analysis.

Figure 4 shows the quality of representation of the variables on the factor map analysed using
the Cos2 indicator. Generally, well-represented variables by the principal components are posi-
tioned close to the circumference of the correlation circle, whereas the less represented ones are
located close to the centre of the circle. In this case, all the variables except slope are well repre-
sented by the principal components. Figure 4 also shows that the distances of the variables from
the origin in all covariates are high, indicating that most of these variables are useful for cluster
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analysis. Accordingly, most of the variables such as precipitation, total N, SOC, LGP, NDVI, EVI,
PET, elevation, solar radiation and soil moisture contributed to the clustering analyses (depicted
in the correlation map of Figure 4).

The optimum number of clusters and SRUs

The K-means clustering result in Figure 5a shows the output of the WSS for the computation of
1–150 clusters. This visual representation is typically referred to as the ‘elbow method’ and allows
the user to identify an appropriate number of clusters for an unsupervised classification exercise
(Chiang and Mirkin, 2010). Though there is no straightforward ‘rule’ to determine which number
of clusters can best perform, the general recommendation is to consider the position where the
elbow tends to plateau compared with the other number of clusters (Jain et al., 2000; Khan and
Mohamudally, 2020). In Figure 5a, it is possible to identify the position(s) where the WSS of the
clusters tends to flatten out. On the basis of the distinct elbows, three example clusters (with 9, 30
and 53 classes) can be distinguished in this study (Figure 5a). The corresponding spatial SRUs for
the above three classes are shown in Figure 5b.

The level of homogeneity of clusters needed can vary with the specific applications, and each of
the maps shown in Figure 5b can be recommended for different applications. When considering
macro-granular partitioning, it is possible to use fewer classes compared with applying for detailed
process understanding and recommendation. In this example, SRU 9 (Figure 5b) can be used for
applications/advisories that do not require detailed site specificity, such as identifying farming
systems where detailed studies can be conducted. In this case, for instance, the lowlands like most
parts of Somalia and the Afar region represent one unit each. The south-western highland forested
area came out to be another separate unit (Figure 5b). When the number of clusters increases with
the desire to obtain more detailed and homogeneous areas, SRUs with 30 and 53 units can be more
applicable. In these clusters, we can identify units where similar climatic and major soil types
occur and where agricultural practices and interventions can be prioritised. SRUs with 53 clusters
can be used for detailed recommendations at high spatial resolution such as sub-catchments and
lower area coverages.

Figure 3. Eigenvalues, variance and cumulative variance of the PCA analysis.
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Because we are operating at a national scale with complex topographic and climatic conditions,
it was not possible to define an ‘optimal’ number of clusters using the K-means approach.
This means the K-means approach requires predefined information about the number of
clusters required. We thus employed the X-means clustering approach. Figure 6 shows the
optimal number of clusters determined using the X-means clustering methods for Ethiopia.
In this case, the algorithm resulted in 37 SRUs, after which it was not possible to split the existing
units further. The SRU 37 is derived based on unsupervised classifier approach with no require-
ment to predefine the number of clusters because the X-means algorithm optimises the number of
clusters to minimise WSS without the need to produce redundant clustering. This means that
37 clusters represent best approximation to partition Ethiopia into SRUs based on the covariates
employed in the study. These units can be considered domains where targeted recommendations
can be made considering specific and/or a combination of environmental variables present in
those areas.

In principle, each SRU can be attributed using various environmental variables and users can
obtain SRU properties for further scrutiny. However, owing to the heterogeneity of Ethiopia’s
landscape, specifically the highlands, the role of different attributes in creating the SRUs is
complex (Figure 6). In order to facilitate interpretation, spatially aggregated mean value for all
the covariates at SRU level (associated with Figure 6) is provided in Appendix I (Table A1).
Users can compile the legend following the major environmental characteristics of each unit using
the table provided with the statistics of each covariate in the clusters (Appendix I, Table A1).

Figure 4. The representation quality of variables in the correlation plot.
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Figure 5. (a) Number of clusters using the elbow method in K-means clustering and (b) examples of clusters (SRUs) with
three different number of classes.

Figure 6. The pattern and spatial distribution of optimal SRUs based on X-means clustering algorithm.

10 Lulseged Tamene et al.

https://doi.org/10.1017/S0014479722000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479722000126


Performance of the clustering and validity of SRU maps

The outputs shown in Figures 5 and 6 were presented to national experts who have come from
different parts of the country and are familiar with the farming systems. The idea was to discuss
the ‘concept of SRUs’ and assess the results. The participants appreciated the need to develop an
automated system that can enable deriving clusters that can be used for targeting interventions.
They also stressed the generality of the existing AEZs to repressing the heterogeneity of the
farming systems and challenge to ascribe targeted advisories. After checking the various clusters,
it was agreed that SRU with 9 clusters is too general while SRU with 53 clusters is too detailed and
complex to comprehend visually. Considering this, the participants indicated the relevance and
applicability of clusters 30 and 37 to facilitate agricultural decision making. These maps have
captured heterogeneity well, while at the same time the number of clusters is optimal to manage
for operational purposes. This, among others, is because the refined zonation can be used to
provide detailed and location-specific advisories that will not be possible at generalised levels.
The intermediate level of classification can also overcome the difficulty to develop and prescribe
advisories at plot level (too detailed). However, the experts suggested the need to validate the
results properly using quantitate and field data.

The other assessment was based on comparing the distribution of standard deviation of optimal
crop response to fertiliser application between the existing AEZ and the SRUs with the same number
of clusters (Figure 7). The result shows that for the same level of 7 and 15 clusters, the approach used in
this study produced a lower standard deviation value than the AEZs for all of Ethiopia. This suggests
that the use of SRUs for targeting fertiliser recommendation is preferable as it contains more homo-
geneous units in terms of response to fertiliser application; however, this changes when the number of
clusters increases. The standard deviation of response to fertiliser application becomes similar when
we compare AEZ and SRU clusters of 33 units. This basically suggests the advantage of a larger
number of clusters that can capture heterogeneity better for agricultural technology targeting and
recommendation. This was also corroborated by the experts’ opinions. Future analysis will use field
data related to integrated soil fertility management to assess the optimal number of clusters that can
capture variability across space and scale.

Generally, it is noted that the ‘classification approach’ is essential for planning and targeting
in situations where broader agro-ecological and farming system approaches are not plausible and,
at the same time, plot-level interventions/advisories cannot be developed at the current state of
data availability, especially in developing countries.

Clustering tool and reproducibility

Over the past few decades, widespread availability of spatial data and the advancement of robust
modelling algorithms have increased. Such developments are creating unique opportunities that
help answer targeted questions and prioritisations related to optimisation of natural resource
management as well as steps to be taken for economic development and facilitation of poverty
alleviation on the basis of recommendation domains (Akıncı et al., 2013; Elsheikh et al., 2013;
Hyman et al., 2013). Jasiewicz et al. (2014) introduced landscape similarity mapping using a
numerical measure that assesses affinity between different landscapes based on the similarity
between the patterns of their constituent landform elements. Automating the operationalisation
of such techniques using similar and standard data sets can enable standardisation of the
approaches and comparison of associated results. A study by Muthoni et al. (2017) used geospatial
analysis and clustering techniques to delineate relatively similar clusters for scaling improved crop
varieties and good agronomic practices. This approach added value to the previous ones by
providing options to compare different clustering approaches.

In this study, we moved one step further in order to allow users access to relevant data from the
cloud and/or add their own data and choose a specific geographical area of interest to run clus-
tering. We developed a generic framework that supports creating a scalable system to be used to
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delineate SRUs for different purposes. The data analytics component provides options for several
clustering methods (e.g. partitioning, distribution-based, hierarchical and fuzzy). The classifica-
tion algorithm is also designed such that it can be scalable to run analysis for different extents but
maintaining a standard procedure. The functionality of the system thus enables accessing data
from the cloud, running clustering for a defined geographical area of interest and automatically
performing clustering for different agronomic purposes.

The whole process is automated in an R programming environment and piloted for Ethiopia
using globally available geospatial data. The system being put in place is generic and is being
expanded to create a clustering analytic platform. The platform gives reproducible results which
allow users to interactively choose data sources, use expert knowledge, experiment and compare
the result of several algorithms and be flexible in order to work at any spatial scale and resolution
to provide SRUs for interventions for sub-Saharan African countries. The tool generated is avail-
able for the public in an open repository (https://github.com/EiA2030/validation), including the
workflows generated in this study.

Conclusion and Future Research Direction
Matching agricultural operations and inputs to the crop requirement, as is the case with precision
agriculture, requires understanding the within-field variation of underlying biophysical factors.
Because real-time monitoring and tailoring farm management to field-level variation are not
possible, an alternative option is classifying the target area into homogenous units. This exercise
becomes increasingly important to enhance agricultural productivity under optimised resource
use for areas with fragmented farming systems and heterogeneous landscapes, as is the case in
Ethiopia. To benefit from such advances, the current effort is made to create a scalable and oper-
ational tool that can harvest relevant data from the cloud and enable users to partition areas into
uniform zones. The tool and its generic workflow have been piloted for Ethiopia.

The workflow and automated system demonstrated in this study can be used to create homo-
geneous landscape units using different clustering algorithms. The system is flexible to allow users
to either refine or run targeted zoning as more relevant data are made available. The study serves
to demonstrate the possibility of aggregating SRUs in a standardised way, ensuring transferability

Figure 7. Standard deviation of recommended nitrogen fertiliser according to the agro-ecological zones and classification
approach used in this study.
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to other regions and settings. Although the algorithms used in this study are standard packages
available in commonly used statistical software, the power of the system presented here is
the practical convenience of offering an integrated solution whereby users could readily
source the relevant data for different geographies, run the data analytics and obtain reproducible
results including submission of the study area with defined territory.

The approach in this study targeted the use of global coverage data (or available at the scale of
interest) that can be harvested from the cloud and harmonised for integrated analysis. As a result,
some important data/variables that are not commonly available or that have questionable accu-
racy have not been used. For instance, geomorphology is an important factor that relates soil types
with topographic catena and is among the major components of soil-forming factors. However,
geomorphology data were not used in this study because we doubted the quality of the existing
data a national scale. Such addititional data and improved analityics can improve the results.

The approach employed in this study demonstrates its potential to zoning spatial geographies
into uniform clusters. Next steps will focus on validation the SRUs using ‘ground information’ and
fine-tune their applicability. In addition, an attempt will be made to develop SRUs that will be
specific to target defined issues such as climate-smart agriculture and other agronomic practices.
In addition, functionalities will be incorporated to provide more options to the user (e.g. masking
out non-agricultural areas) and assessing performances in an automated manner.
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Appendix A

Table A1. The mean value for each environmental attribute associated with each cluster mapped in Figure 6

Cluster Temp Precip SolRad PET Elev Slope Moist SOC TN pH CEC Sand Clay EVI NDVI LGP

1 25 52.6 23.6 15.8 921.9 1.40 0.76 20.54 13.71 7.73 32.92 39.54 27.64 0.16 0.28 9.35
2 28.7 20.1 23.9 17.86 327.3 1.76 0.02 15.48 14.60 7.87 24.05 46.81 21.09 0.06 0.11 2.12
3 20.2 63.4 24.0 15.16 1594.6 1.27 0.29 22.99 18.68 8.08 31.34 36.74 36.36 0.20 0.32 11.54
4 24.7 38.1 24.7 16.7 1021.63 0.92 0.44 21.90 13.62 7.95 27.68 42.97 30.12 0.14 0.23 5.67
5 26.5 35.3 24.3 16.5 632.44 1.98 1.09 26.08 17.32 7.48 25.00 36.99 31.25 0.22 0.38 5.38
6 28.7 29.0 24.23 18.80 320.42 0.57 0.52 25.00 15.38 7.69 19.57 35.95 32.91 0.15 0.24 4.09
7 27.95 31.37 24.95 17.74 429.01 0.76 0.65 23.51 16.63 7.87 24.49 35.07 29.90 0.15 0.23 4.70
8 25.8 20.4 25.46 18.48 591.46 0.26 0.06 19.51 16.42 7.95 26.65 36.64 29.59 0.17 0.28 3.73
9 26.3 33.52 25.35 17.25 624.08 0.65 0.57 22.64 18.17 7.98 27.46 33.08 31.37 0.18 0.30 4.24
10 20.34 57.85 22.09 13.67 1274.36 1.30 2.60 24.37 13.18 6.82 25.79 57.64 23.30 0.25 0.44 9.46
11 23.08 45.57 22.68 14.46 967.32 1.12 1.46 22.85 13.22 7.29 24.82 47.36 29.81 0.25 0.44 9.96
12 20.48 61.07 22.03 12.82 1397.61 3.09 4.49 30.54 20.01 6.50 26.24 48.33 31.16 0.29 0.49 11.93
13 19.94 96.83 21.80 12.09 1678.60 5.14 9.06 39.35 36.59 6.20 29.53 36.90 35.62 0.40 0.64 17.03
14 24.08 45.39 23.59 14.96 925.88 4.62 1.35 28.43 18.71 7.07 25.49 39.90 32.67 0.26 0.45 9.05
15 23.33 61.59 23.57 14.43 1183.34 2.13 1.90 26.21 18.42 7.52 35.34 37.74 31.64 0.23 0.41 11.53
16 21.60 78.06 23.31 13.51 1434.70 2.85 2.67 30.89 22.73 7.29 37.52 32.37 36.34 0.26 0.45 14.53
17 24.66 47.52 22.15 13.37 893.37 1.73 2.16 28.33 22.09 7.27 46.46 35.97 37.26 0.33 0.55 11.75
18 20.57 65.88 25.45 14.06 1846.23 6.37 2.65 28.88 26.46 7.43 32.46 41.69 27.71 0.17 0.29 9.16
19 23.33 143.33 22.18 13.72 1131.77 3.60 10.21 31.39 29.58 5.95 27.73 31.80 36.26 0.34 0.57 17.76
20 26.36 113.11 22.93 16.02 768.77 1.82 8.49 24.01 24.02 6.35 30.83 33.90 36.03 0.30 0.51 16.47
21 25.39 75.13 25.93 16.23 1165.23 3.50 2.99 25.94 22.38 7.38 39.80 35.34 32.89 0.24 0.39 12.80
22 26.96 87.49 25.13 17.18 840.97 2.12 3.72 23.18 19.37 6.75 49.44 26.85 40.72 0.27 0.46 14.87
23 26.40 108.10 20.66 13.61 549.67 0.93 9.15 26.31 26.54 6.23 21.92 40.68 30.33 0.38 0.64 19.81
24 20.40 96.49 22.71 12.63 1634.88 4.62 4.37 35.37 30.31 6.80 36.92 30.26 38.67 0.33 0.56 17.54
25 25.45 80.06 21.54 13.08 745.34 2.17 10.55 34.38 35.43 6.47 35.54 34.61 38.70 0.42 0.67 18.00
26 21.36 137.85 21.37 12.09 1435.03 3.30 11.01 34.24 35.21 5.91 26.46 35.32 32.41 0.36 0.60 19.95
27 18.51 177.76 20.22 10.88 1921.04 5.26 21.17 46.96 48.84 5.56 24.95 30.36 38.38 0.47 0.72 25.53
28 23.22 127.77 20.53 12.07 1006.33 4.51 16.66 38.86 42.08 5.93 24.20 34.40 37.76 0.47 0.74 23.49
29 16.59 169.78 21.15 11.24 2262.16 4.51 8.25 44.54 42.77 5.69 30.57 22.12 44.78 0.33 0.55 19.03
30 19.28 171.65 20.94 11.44 1827.97 3.77 13.76 41.62 42.58 5.74 27.33 28.82 36.85 0.41 0.64 21.60
31 19.44 144.21 21.17 11.56 1802.93 11.68 12.14 42.46 46.34 5.89 27.28 32.77 36.25 0.41 0.64 21.93
32 14.54 110.75 21.89 10.90 2658.30 3.99 3.46 39.20 34.63 6.42 40.77 23.99 39.92 0.26 0.45 15.84
33 18.47 103.77 22.54 12.08 2038.83 2.46 3.67 32.38 26.14 6.79 42.25 22.50 42.87 0.23 0.40 14.52

(Continued)
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Table A1. (Continued )

Cluster Temp Precip SolRad PET Elev Slope Moist SOC TN pH CEC Sand Clay EVI NDVI LGP

34 18.12 135.08 21.60 11.74 2009.31 3.22 6.82 38.82 32.87 5.93 32.32 23.88 41.76 0.30 0.51 18.06
35 13.16 123.79 21.30 10.26 2861.61 5.66 6.85 46.60 47.24 6.09 29.67 32.52 32.75 0.36 0.56 21.12
36 16.86 102.51 22.35 11.73 2286.14 13.27 3.33 37.56 36.19 6.61 38.99 27.85 37.90 0.26 0.47 14.94
37 19.92 87.48 22.59 12.93 1792.64 7.65 2.37 32.91 28.89 7.03 36.26 33.80 33.49 0.23 0.41 13.38

Temp: annual mean temperature; Precip: annual mean precipitation in mm; SolRad: net solar radiation in W/m2; PET: potential evapotranspiration in mm; elev: elevation in metre; slope: slope in %; moist: soil
moisture in mm; SOC: soil organic carbon in g/kg; TN: total nitrogen in g/kg; pH: soil pH; cation exchange capacity in cmol/kg; sand: sand in %; clay: clay in %; EVI: enhanced vegetation index; NDVI: net difference
vegetation index; LGP: length of the growing period.
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