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A RIGHT CONTINUOUS RIGHT WEAKLY SI-RING IS SEMISIMPLE

DlNH VAN HUYNH AND NGUYEN VAN SANH

It is shown that a projective CS right module M over a ring R is a direct sum
of uniform modules of composition lengths at most 2 if (i) every finitely gener-
ated direct summand of M is continuous and (ii) every non-zero Af-singular right
it-module contains a non-zero M-injective submodule. In particular, a right con-
tinuous ring R is semisimple if R is right weakly SI, that is, if every non-zero
singular right iJ-module contains a non-zero injective submodule.

1. INTRODUCTION

Right (left) Si-rings, that is, rings aU of whose singular right (left) modules are
injective, were introduced and investigated in detail by Goodearl [9]. Since then SI-
rings have drawn much attention from several authors, see for example, [7, 10, 13, 14,
15, 16, 17, 20]. In a similar way, Si-modules have been defined and considered in [20]
and [10] where corresponding properties were obtained.

A weaker form of Si-rings and SI-modules was considered recently in [15]: A right
.R-module M is called weakly SI (briefly, WSI) if every non-zero M-singular right R-
module contains a non-zero M-injective submodule. A ring R is called a right WSI-ring
if RR is WSI.

As shown in [15], WSI-modules have some properties similar to those of Si-modules.
However, in general the structure of them still remains unknown. It is clear that any
right semiartinian right V-ring is right WSI. By [2], [3, Theorem 2.2] or [6, Corollary
21] there exists a right semiartinian right V-ring R such that the right Loewy series of
R has (Loewy) length at least 3. By [9, Theorem 3.11] such a ring R is not right SI.
Hence right WSI-rings are not necessarily right SI, in general. On the other hand, a
right PCI-domain constructed in [5] is right SI, and so it is right WSI but not right semi-
artinian. This means that right WSI-rings need not be right semiartinian. Therefore
WSI-modules and WSI-rings seem to be interesting subjects in the area.

The purpose of this note is to prove the following results. For the definition of the
category cr[M] we refer to the next section.
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THEOREM 1 . Let M be a WSI right R-modvde which is projective in <T[M] .
Then M is M-nonsingular. Assume furthermore that M is CS, then

(a) M is a direct sum of finitely generated modules Mi, where each Mi has either
zero socle or Mi is a semiartinian module and Mi = Mi/Soc(Mi) is a V-module, that
is, every simple module in <r[Mi] is Mi-injective.

(b) If every finitely generated direct summand of M is quasi-continuous, then
M is quasi-continuous and M = @ U{ where each JJi is a finitely generated uniform

t€fl

submodule of M. Moreover, if Soc(Ui) ^ 0 for some i G Cl, then Ui has composition
length ^ 2, and each Uj with Soc(Uj) = 0 is a fully invariant submodule of M.
Therefore, in this case, M is a direct sum of a fully invariant Sl-submodule with essential
socle and fully invariant uniform submodules with zero socles.

(c) If every finitely generated direct summand of M is continuous, then M is a
continuous Si-module which is a direct sum of uniform submodules with composition
lengths Sj 2. Moreover, in this case, if NR is a finitely generated direct summand of
M, then EndR.(N) is a semisimple ring.

The following consequence of Theorem 1 improves [6, Lemma 10] which stated that
a right self-injective ring R is semisimple if every non-zero right .R-module contains a
non-zero injective submodule.

COROLLARY 2 . Any right continuous right WSI-ring is semisimple.

For quasi-continuous rings we have:

COROLLARY 3 . Every right quasi-continuous right WSI-ring is the ring direct
sum of a semisimple ring and finitely many right Ore domains which are not divi-
sion rings. In particular, any right quasi-continuous, right semiartinian right V-ring is
semisimple.

The last statement of Corollary 3 gives the possibility of producing several von
Neumann regular right V-rings with zero right socle.

The following result is an easy consequence of (a) in Theorem 1.

COROLLARY 4 . A right CS right WSI-ring R has a ring direct decomposition
R = A@B where A is a right semiartinian ring such that A/SOC(AA) is a right V-ring
and Soc{BB) = 0.

2. PRELIMINARIES

Throughout this note all rings are associative with identity and all modules are
unitary modules.

For a module M over a ring R we write MR to indicate that M is a right R-
module. The socle and the Jacobson radical of M are denoted respectively by Soc(M)
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and J(M). A module M is called semisimple if M — Soc(M), and a ring R is said
to be a semisimple ring if RR is semisimple, or equivalently, if R is a semiprime right
(or left) Artinian ring. A submodule N of a module MR is called a fully invariant
submodule of M if for each / 6 EndR(M), f(N) C N.

For a given module MR we consider the following properties:

(Ci) Every submodule of M is contained essentially in a direct summand of

M.
(C2) If A and B are direct summands of M with Af\ B = 0, then A © B is

also a direct summand of M.
(C3) If C is a submodule of M isomorphic to a direct summand of M, then

C is itself a direct summand of M.

A module MR is said to be a CS-module if it satisfies (Ci); M is called quasi-
continuous if M satisfies (Ci) and (C2) and finally, if M satisfies (Ci) and (C3) then
M is said to be a continuous module. We have the following implications:

injective => quasi-injective => continuous =>• quasi-continuous => CS.
In general these classes are distinct.
A ring R is called right CS (right quasi-continuous, right continuous) if RR is

CS (quasi-continuous, continuous). For a detailed study of these classes of rings and
modules we refer to Dung-Huynh-Smith-Wisbauer [7] and Mohamed-Muller [11].

For a module MR (over a ring R) we denote by a[M] the full subcategory of Mod-
R (the category of all right i?-modules) whose objects are submodules of M-generated
modules (see Wisbauer [19]). A module P £ <r[M] is called projective in cr[M] if P
is JV-projective for every N £ cr[M]. A module UR is called M-singular if there is a
module A £ <r[M] containing an essential submodule E such that U ~ A/E. Hence
any M-singular module is contained in <r[M]. For M = R the notion of R-singularity
is identical to the usual definition of singular R-modules in Mod-iZ (see Goodearl [9]).

The class of Af-singular right il-modules is closed under taking submodules, homo-
morphic images and direct sums (for example, [19, 17.3, 17.4]). Hence any N 6 a[M]
contains a largest M-singular submodule which is denoted by ZM{N). If ZM{N) = 0,
then N is called M-nonsingular.

A module M is called an Si-module if every M-singular module is M-injective,
and M is called weakly SI (briefly WSI) if every non-zero M-singular module contains
a non-zero M-injective submodule. Clearly, any Si-module is WSI. However, in general
the converse is not true, as mentioned in the Introduction. A ring R is right WSI if
RR is a WSI-module.

The texts by Anderson - Fuller [1], Chatters - Hajarnavis [4], Faith [8], Goodearl
[9], Mohamed - Muller [11], Stenstrom [18] and Wisbauer [19] are general references
for module and ring theoretic notions not defined in this note.
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3. THE PROOFS

The following special case of a recent result of Osofsky [12, Theorem B] is the key
lemma of our proof of Theorem 1.

LEMMA 4 . Let MR be a finitely generated, quasi-continuous and quasi-projective

module such that no non-zero element of End,R{M) has essential kernel. Then for each

set {e i}~! of orthogonal idempotents e,- in ETHIR{M) with © ejM essential in M,
i=l

the factor module Ml [ © ejMJ cannot contain a non-zero quasi-continuous direct

summand.

PROOF OF THEOREM 1: Let MR be a WSI-module such that M is projective in
cr[M], where R is a ring.

If ZM{M) ^ 0, then ZM{M) contains a non-zero M-injective submodule N.
Hence N is a direct summand of M, and therefore N is projective in <r[M], a contra-
diction. Thus ZM(M) = 0, that is, M is M-nonsingular.

From now on we assume in addition that M is a CS-module.

CLAIM 1. Any finitely generated submodule U of M is essential in a finitely generated
direct summand of M.

In fact this claim can be derived from [7, Proposition 2.7], however we give a proof
here (with a similar argument) for the sake of completeness. Since M is CS, there is a
direct summand U* of M such that U is essential in U*. (We assume U ^ 0, since
for U — 0 the statement is clear). To verify Claim 1 we shall show that UR is finitely
generated.

Clearly, U* is projective in a[M] and M-nonsingular. Let {x\, A € A} be a
generating set of U*, that is,

U* = £ xxR.

Then there exists an epimorphism g from © x\R onto UR. Since U* is projective

in a[M] and © z\R 6 <r[M], the map g splits (see [19, 18.3]), that is, there exists a
A€A

submodule H of © x\R with H ~ U* and
A6A

(1) © xxR = H@ Ker(g).
A£A

It is dear that H also contains a finitely generated essential submodule K (since
H ~ U*). Let K = yxR + ... + ynR (y< £ H) and for each ^ £ A let e^ be the
canonical projection of © x\R onto x^R. Since for each x £ H, e^x) ^ 0 only for

AGA

finitely many /x G A, the set

T = {7 £ A, e7(j/j) ^ 0 for some j/j, 1 < i < n }
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is finite. Hence for every A £ A \ F , e\{K) — 0. This shows that K is contained in
Ker(e\) for each A £ A \ T. Therefore for such A, e*(H) is an M-singular submodule
of x\R. But x\R C M and M is M-nonsingular. It follows that e\(H) = 0 for all
A G A \ T. Hence

I C f f i x~R.
-yer T

This together with (1) shows that H is a direct summand of © xyR, and so HR is
-rer

finitely generated. Thus UR is finitely generated, as desired.
(a) Since M is projective in <r[M], by Kaplansky's Theorem (see [19, 8.10, 18.4])

M is a direct sum of countably generated modules. Hence to prove (a), we may assume
that M is countably generated, say

M = EnR.
t=i

Note that M is M-nonsingular as shown before Claim 1. Now let M\ be a maximal
essential extension of x\R in M. By hypothesis we have

M = MX@M[.

By Claim 1, Mi is finitely generated. Assume inductively that for some positive integer
n ^ 1, we already found finitely many independent submodules M\,..., Mn each of
which is finitely generated and

such that XiR + • • • + xnR C Mi © • • • © M n . Let ir be the projection of M onto M'n
and let x'n+1 — n(xn+i). Since M'n is also a CS and WSI-module which is projective
in a[M], we may use the first step above to find a finitely generated direct summand
Mn+i of M'n such that x'n+1R is essential in M n + i . Thus

M = Mj © • • • © M n + i © M ; + J

with xiR+ ••• + xn+iR C Mi ffi • • • © M n + i . This induction argument shows that
M contains an independent set {Mi}^lx of finitely generated submodules such that

E XiR Q @Mi. Therefore M = © Mj as desired.
»=i t=i t=i

Put M = © Mj where each Mi is finitely generated and let Si be the socle of
»€/

Mi. Assume that for some i 6 I, 5,- ^ 0. Since M is CS we have M,- = Ai © Bi where
Soc{Bi) — 0 and Si is essential in Ai. Hence Ai = Ai/Si is an M-singular module.
Therefore each non-zero subfactor of Ai contains a non-zero M-injective submodule.
Moreover, since Si is a fully invariant submodule of Ai, Ai is quasi-projective. Hence
we may use the main result of [6] to see that Ai is a semiartinian V-module, and it
follows that Ai is semiartinian. This fact verifies (a).

(b) Assume that every finitely generated direct summand of M is quasi-continuous.
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CLAIM 2. Any finitely generated submodule of M has finite uniform dimension.
Let V be a finitely generated submodule of M. Then V is an essential submodule

of a finitely generated direct summand V* of M by Claim 1. Assume on the con-
trary that V does not have finite uniform dimension. Then V contains an infinite

oo

independent set {Vi}0^ of non-zero submodules Vi. Put W — ©Vi. Since V* is
»=i

also a CS-module, W is contained as an essential submodule in a direct summand W*
of V*. Clearly W* is finitely generated and a direct summand of M. Hence W* is
quasi-continuous. Moreover W* is projective in <r[M].

Let V? be a maximal essential extension of V,- in W* for each i — 1,2,... .
Trt

Then, since W* is quasi-continuous, any finite direct sum © V;* is a direct summand
t=i

of W*. Let e,- be the canonical projection of W* onto V?. Then {e,-}~! is a family
of orthogonal idempotents in 5 = EndR(W) with e<W* = V? and so © e.PF* is

>=i
oo

essential in W*. Note that © e{W* ^ W*, since W* is finitely generated, and that
»=i

for each 0 ^ / 6 S, Ker(/) is not essential in W* since W* is M-nonsingular. Now

we may apply Lemma 4 to see that the non-zero M-singular module W* I ( © e,W* j
does not contain a non-zero M-injective submodule. However this is a contradiction to
the assumption that M is WSI. Thus V must have finite uniform dimension, proving
Claim 2.

Now by (a) M is a direct sum of finitely generated modules. Then from the
assumption of (b) and Claim 2 it is easy to derive a decomposition of M as a direct
sum of finitely generated uniform modules Ui :

(2) M= @Ui.

Next we show that M is quasi-continuous. By [11, Theorem 2.13], it is enough
to show that each M(fi \ i) in (2) is l/i-injective, where M(Cl \ i) = © U;. Let V

ien\i
be a submodule of Z/» and g be a non-zero homomorphism of V to M(Q \i). Since
M(Q\i) is Af-nonsingular, Ker(g) must be zero, that is, V ~ <7(V), in particular
g(V) is a uniform submodule of M(fi \ i ) . Since M is M-nonsingular, the closure of
any uniform submodule H in M equals the closure of any non-zero cyclic submodule of
H. Hence we may use Claim 1 to see that g(V) is an essential submodule of a finitely
generated direct summand W of M(Cl\i). We have M(fl \ i) = W © M' for some
submodule M' of M(£2 \ i). Hence Ui © W is a finitely generated direct summand
of M. By assumption, Ui © W is quasi-continuous and so W is Ui-injective by [11,
Corollary 2.14]. Since g(V) C W, it follows that g can be extended to a homomorphism
from Ui to W. This implies the ^-injectivity of M(Sl\i).
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Assume now that in (2) there is a Uj (j £ ft) such that Soc(Uj) ^ 0 . If Uj is
simple then we are done. Assume that Uj is not simple. Let Sj — EndR(Uj) • If there
is a non-zero element / £ Sj such that f(Uj) is small in Uj then f(Uj) is contained
in each maximal submodule of Uj, that is, f(Uj) C J(Uj). Since Soc(Uj) is contained
in each non-zero submodule of Uj, we also have Soc(Uj) C J(Uj). On the other hand,
since Uj is a finitely generated quasi-projective WSI-module, J(Uj) C Soc(Uj) by [15,
Proposition 4]. Hence J(Uj) = Soc(Uj). It follows that f(Uj) = Soc(Uj). From this we
must have Ker( / ) ^ 0, since Uj is not simple. This implies that f(Uj) is M-singular,
a contradiction. Thus for each 0 ̂  / 6 Sj, /(£/>) is not small in Uj. By [19, 22.2] we
have J(Sj) = 0, and

(3) Sj ~ EndR(Uj/J(Uj)).

Furthermore, since each non-zero element of Sj must have zero kernel, Sj is a
domain, in particular Sj has only one non-zero idempotent. Hence by (3) we see
that Uj/J(Uj) is indecomposable. On the other hand, any non-zero submodule of
the M-singular module Uj/J(Uj) contains a non-zero E/j-injective submodule. Thus
Uj/J(Uj) has to be simple. Since J(Uj) (= Soc(Uj)) is a minimal submodule of Uj,
Uj has composition length 2, proving the first statement in the second part of (b).

To prove the next assertion of (b) we write (2) in the form

M = ( © ua) © ( © Up)

where any Ua and Up are uniform (finitely generated) and Soc(Ua) ^ 0, Soc(Up) — 0
(a £ Oi, /3 6 ^2) • Clearly, © Ua and © Up are fully invariant submodules of M.

Therefore to end this part we need only to show that each Up is a fully invariant
submodule of U — © Up • Since U is M-nonsingular, it is easy to see that for any

0€n2

0 ̂  / £ EndR(U), f(Up) C Up or f(Up) DUp=0. Now assume that f(Up) nUp=0
for some /? 6 J22- Since (/ | 1/̂ ) is a monomorphism, f(Up) ~ t/jg, and since M
is M-nonsingular we may use Claim 1 (as explained above) to see that the uniform
submodule f(Up) is an essential submodule of a finitely generated direct summand
V of © U~!. Hence Up © V is a direct summand of M, and so Up ffi V is quasi-

•yent\p
continuous. Therefore Up is V-injective; consequently, Up is /(?7^)-injective. It follows
that Up is quasi-injective.

On the other hand, since Up is a finitely generated quasi-projective WSI-module
with zero socle, each simple module E in a[Up] is Up-injective [15, Proposition 4].
Hence each such E is Up -generated and so Up is a generator of ff[Z7^] by [19, 18.5].
Therefore <r\Up\ is Morita-equivalent to Mod-T where T = EndR(Up) (see [19, 46.2]).
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Note that T is a domain. Since Up is quasi-injective, T is a right self-injective domain.
It follows that T is a division ring. Then by the above Morita-equivalence, Up must
be simple, a contradiction. Thus we only have f(Up) C Up, proving the fact that each
Up is a fully invariant submodule of M.

By a standard argument we see that © Ua is an Si-module and therefore the

proof of (b) is complete.

(c) We assume now that each finitely generated direct summand of M is continuous.
It follows that M has a decomposition of the form (2) such that each Ui is continuous.
By (b), M is quasi-continuous. Hence by [11, Theorem 3.16], M is continuous.

To finish the first statement of (c) it is enough to show that Soc{Ui) ^ 0 for each
i G f2. Suppose there is a Ui (i G f2) with Soc(Ui) = 0, and let Si — End.R[Ui).
By the argument in the proof of (b), <r[Ui] is Morita - equivalent to Mod- S,. On the
other hand, since Ui is uniform, continuous and M-nonsingular, for each 0 ^ / G Si,
Ker(/) = 0 and f{Ui) = Ui, that is, / is an isomorphism, proving that S,- is a division
ring. By the previous Morita-equivalence, Ui must be a simple module, a contradiction
to Soc(Ui) — 0. Thus each Ui (i G fl) has non-zero socle as desired. By (b), M is an
Si-module.

Now assume that N is a finitely generated direct summand of M. By Claim 2, N

has finite uniform dimension. Moreover, since N is then continuous and M-nonsingular,
it is easy to see that for each / G End,R(N), Ker (/) and Im(/) are direct summands of
N. Therefore EndniN) is a (von Neumann) regular ring. Since N has finite uniform
dimension, ETUIR^N) cannot have an infinite set of orthogonal idempotents. Thus
EndR^N) is a semisimple ring. D

The statement of Corollary 2 follows directly from (c) of Theorem 1.

PROOF OF COROLLARY 3: Let R be a right quasi-continuous right WSI-ring. By
Theorem 1 we have a ring direct decomposition:

(4) R = A © B

where A is a direct sum of finitely many uniform right ideals with composition lengths
at most 2 and B is a direct sum of finitely many fully invariant uniform right ideals
Bi of R with zero socles. It follows that B is a direct sum of right Ore domains. Now
express A in the form: A = Ai ®... ® An where each Ai is uniform and of composition
length ^ 2. Assume that, for example, A\ is not simple and let S\ be the minimal
submodule of A\. Since Si is projective (see [15, Corollary 5]) and cyclic, there is a
minimal right ideal T of A with T ~ S\ and A — T © P for some right ideal P of A.

Since A is right quasi-continuous, T is P-injective (see [11, Corollary 2.14]). Moreover,
since T f) A\ — 0, Ai is embedded in P, and so T is .4i-injective. But T ~ Si, and
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so Si is i4i-injective, hence Si is a direct summand of Ai, a contradiction. Thus A
is a semisimple ring. D

Concerning (a) of Theorem 1 we would like to ask the question:

(Qi) Is a finitely generated CS, quasi-projective WSI-module a direct sum of

uniform modules?

If the answer for (Qi) is yes, it follows that a right CS right WSI-ring is the ring
direct sum of a right Artinian ring and a semiprime right Goldie ring. Indeed, let R be a
right CS right WSI-ring such that RR has finite uniform dimension. Then by Corollary
4, R has a ring direct sum R = A © B where A is semiartinian and SOC{BB ) = 0.
Since RR has finite uniform dimension, SOC(AA) is finitely generated, and so by the
argument for proving (b) of Theorem 1 we easily see that A is a direct sum of finitely
many uniform right ideals of composition lengths at most 2; in particular A is right
Artinian. Since B is also right WSI, B is right nonsingular (see [15]). From this and
since BB has finite uniform dimension, the maximal right quotient ring Qmal of B
is semisimple by [18, Theorem XII.2.5]. Then by [18, Proposition XV.3.3] and since
J(B) C SOC(BB) = 0 (see [15]), Qmax is also the classical right quotient ring of B.
Hence B is a semiprime right Goldie ring.

We should note also that if the answer of (Qi) were yes, we would have the in-
teresting consequence that any right CS, right semiartinian right V-ring is semisimple.
From this surprising conclusion we have the feeling that the answer to (Qi) might be
no.

Furthermore, to our knowledge, it is unknown whether or not a ring as in Corollary

3 is right Noetherian. More generally we would like to ask the question:

(Q2) Is a semiprime right Goldie right WSI-ring necessarily right Noetherian?

It is clear that any right WSI-ring with right Krull dimension is right Noetherian
right SI. If we add to (a) of Theorem 1 the condition that M/J(M) is an Si-module,
then by the arguments presented above we obtain that M is SI and it is a direct sum
of Noetherian uniform modules each of which is of composition length ^ 2 or of zero
socle. For M = R we get the fact that a right CS right WSI-ring is right Noetherian
(and right SI) if and only if R/J(R) is right SI.
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