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1. Introduction. We show that the commutative F*-algebras with relatively weakly
compact unit spheres are those that are representable by means of hermitian spectral
measures. This provides a more unified approach to the results of [15], and allows us to
generalise some of them.

Let X be a complex Banach space with dual space X' and semi-inner-product [, ]
compatible with the norm. Let <x, x'> be the value of the functional JC' in X' at the point x
in X. When Y is a subset of X, we write Yw for the weak closure of Y. Let <£(X) be the
algebra of bounded linear operators on X. When 9" is a subset of &{X), we write &~w for
the closure of 9~ in the weak (operator) topology and STS for the closure of 2T in the strong
(operator) topology. We write 9~k for {Te3T : || r | | ^ k).

For x in X, we define the point state cox: &(X) -»C : Ti-> [Tx, x]. T is said to be
hermitian if W{T) = {cox(T) : \\ x \\ = 1}, the numerical range of T, is a set of real numbers.
(These topics are discussed in [10].)

Let si be a closed subalgebra of jSf (X) and let Jf be the set of hermitian operators in si.
si is called a F "-algebra if Iesi and si - tf + iJV. Then si is a F"-algebra if and only if
Ie si and si is a C ""-algebra under the operator norm and the (Vidav) involution * : R+Uv+

We refer the reader to [15] for the definitions of (possibly unbounded) normal, self-
conjugate and strongly self-conjugate operators. A bounded operator is normal if and only
if it is contained in a commutative V "-algebra.

Let A be a compact Hausdorff space and let C(A) be the space of continuous complex
functions on A, with the supremum norm. Let S (A) (50(A)) be the family of Borel (Baire)
sets of A; let B(A) (B0(A)) be the space of bounded Borel (Baire) measurable functions on A,
with the supremum norm.

We refer to [5] for the definition and properties of spectral measures.
Throughout this paper, s/ will be a commutative V "-algebra on X with maximal ideal

space A and inverse Gelfand map ij/: C(A) -> si. J f will be the set of hermitian operators
in si.

2. Commutative F*-algebras with weakly compact unit spheres.

LEMMA 1. IfTe3/P, then (/+ T2)~letfx and2T{I+ T2)~'e^. Conversely, ifSs3^u

there is a Tin 3^ such that S = 2T(I+ T2)'1.

Proof This lemma holds in any C "-algebra with identity. (See Lemma 6 of [14, p. 24].)

LEMMA 2. There is a unique regular spectral measure F( •) of class (S(A), A') with values
in &{X') such that

r
, F(dX)x'} (xeX, x'eX',feC(A)).
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Proof. For x in A"and x' in X', the map \j/XiX.: C(A) -+ C : /t-> <>K/)x, x'y is a functional
on C(A) bounded by | | x | [| JC' ||. By the Riesz representation theorem, there is a unique
regular Borel measure /i( •; x, x') on A such that || //(•; x, x') || ^ || JC || | X' || and

= f , x'er,/eC(A)).

For T in 5(A) and x' in A", the map XH>/J(T; X, X') is a bounded functional on Z. Therefore
there is an Fx.(x) in X' such that ^(T; X, X') = <x, iv(t)>. Clearly | FX.(T) | ^ || x' | . By
linearity and the uniqueness of /x( •; x, x'), there is an operator F(x) in S£(X'} such that
^v(T) = F(t)x'. Also I /"(T) 1 ^ 1 . Since each /*(•; x, x') is a regular measure and \ji is an
algebra isomorphism, it is routine to check that F( •) is a regular spectral measure of class
(S(A), JSf)- Then || F(T) | = 1 (TGS(A)) , since each F(T) is a projection.

LEMMA 3. || Sx || = | 5 *x || (x e X, S e si).

Proof. Let S = iK/) ; then S * = \\i{J). We define g on A by g(A) = /(A)//(A) if/(A) * 0,
g(X) = 0 if/(A) = 0. Then 0 e 5(A) and || g \\ = 1. We define U in SC(X') by £/ = JA &(A)F(^).
For x in X and x' in X', we have

I <x, Ux') I = I I 5 ( A ) ^ ( ^ ; x , x') I £ n 0 H IIM•: *. ^ ) II ^ II x || I x' ||.
JA

Therefore || U\ ^ 1. Also, (S*)' = S'U. Hence

| |S*x| |= sup |<S*x,x'>|= sup I <x, S'Ux'y I = sup I <Sx, l/x'> I ^ || Sx II.
l l ^ ' I I S l II JC- l| ^ 1 || x' | | g l

By symmetry, | S *x | = | Sx ||.

Lemmas 2 and 3 are similar to Theorem 2.5(ii) and Lemma 2.7 of [12]. The first part of
the next theorem is the same as Theorem 2.8 of [12].

THEOREM 1. siw is a commutative V*'-algebra ana

Proof. If Sesfw, there is a net {Ss = Rs+iJs: sea} in si with strong limit S. Lemma 3
shows that {Ss*} converges strongly. Hence {Rs :sea} and {/s: sea} converge strongly to
R and / in Jfw and S = R+iJ. Hence s/w = Jfw+iJ^w. Therefore s/w is a commutative
F "-algebra and f̂w is the set of hermitian operators in siw.

Let SeO^"")! and let Tin jfw be such that S = 2 r ( / + r 2 ) " 1 . Let {Ts:sea} be a net
in Jf converging strongly to T; put Ss = 2 J / / + T2)"1. Then, as in [14, p. 25, Theorem 2]
or [6, p. 47],

Ss-S = 2(J+r s
2 ) - 1 (T s -T)( /+T 2 )- 1 +iS i (T-T s )S.

Therefore S is the strong limit of {Ss} in j f t ; so (^>w)1 <= (^'1)w.
By the Russo and Dye theorem [11, p. 538], (siw)t c (s/1)

w. Hence (siw)i = (six)
w.

DEFINITION. We say that s4 is representable by a spectral measure if there is a regular
hermitian spectral measure £(• ) of class (S(A), X') with values in &(X) such that ip(f) =
jAf(X)E(dX) (fe C(A)). Such a spectral measure is unique.
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THEOREM 2. s4 is representable by a spectral measure if and only if si ^ is relatively weakly
compact. If this is so, then siw is a commutative W*-algebra and any faithful representation of
siw as a von Neumann algebra is weakly and strongly bicontinuous on bounded spheres.

Proof. Let si be represented by the spectral measure £(•)• For each x in Zthe map
ij/x: C(A)-*X:ft-nj/(f)x is weakly compact [1, Theorem 3.2]; hence si ^x is relatively
weakly compact in X. The argument suggested in [7, p. 511, Exercise 2] shows that s/t is
relatively weakly compact in &(X).

Let sJ\ be relatively weakly compact. Theorem 3 of [16] shows that any von Neumann
representation 4>: siw -> 08 <=• £C(H) is weakly bicontinuous on bounded spheres; also,
( J / I ) W = ( J O I - By [7, X.2.1] the map ^ : C(A)->4>st has the form ft+)Af(X)Eh(dX),
where Eh(-) is a unique regular hermitian spectral measure of class (S(A), H) with values in
i?(7/). Also E\x)e38 (xeS(A)). We define £(•) by E(-) = 4>-1E\-). Then £(•) is a
regular hermitian spectral measure of class (S(A), X'), since $ is weakly bicontinuous on
bounded spheres; and ij/(f) = \Kf{X)E(dk) (/eC(A)) because <j> is an isometry.

Suppose that six is relatively weakly compact. We have still to prove that any von
Neumann representation <j> of siw is strongly bicontinuous on bounded spheres.

Let {Ts: seer] be a bounded net in sfw and let lim Ts = 0 in the strong topology. Then
a

lim cox(T*Ts) = 0 (xeX). We next show that the converse holds.
a

Let A be the maximal ideal space of sfw, let E( •) .be its representing spectral measure and
$ the inverse Gelfand map defined by $ : C(K)->stw :fi-y^f(X)E(dX). Let/S = i?"17;
(sea). Since {Ts} is a bounded net and the weak topology on a bounded sphere is the weak
topology induced by the point states [16, Lemma 1], it follows that

lim<T*Tsx, x'> = lim | \fs(X)\\E(dX)x, x'> = 0 (xeX, x'eX').

Therefore lim/s = 0 in var«£(• )x, x'»-measure, and lim Jx/5(A)<H(rfA)x, x') = 0. For fixed
a a

x in X, the set {<£(•)•*, *'> : ||JC'|| ^ 1} is a relatively weakly compact set of measures
[7, IV.10.2]; hence, by [9, Theoreme 2], lim Jx/s(A)<£(rfA)x, x'> = 0 uniformly for || x' \\ ^ 1.

Therefore lim $zf£X)E(dX)x = 0; that is, lim Ts = 0 in the strong topology.

Thus, if {Ts: sea} is a bounded net in sfw, lim Ts = 0 in the strong topology if and only

if lim T*TS = 0 in the weak topology. It follows that <j> is strongly bicontinuous on bounded
a

spheres.

REMARK 1. The hypotheses of the theorem hold if E( •) is a hermitian spectral measure
of class (50(A), X') and ip(f) = $Af(X)E(dX) (/eC(A)) [1, Theorem 3.2].

COROLLARY 1. Ifs/i is relatively weakly compact and {Rs: sea] is a bounded monotone
increasing net in 3f, then \/Rs = \imRs in the strong topology.
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Proof. We already know that \lR exists and is the weak limit of {Rs} [16, Lemma 2].
a

Let (j> be a von Neumann representation of siw. Then \/<j)R, = lim <£.RS in the strong topology

[6, Appendice II]; whence the result (cf. [4, Theorem 4.2] and [13, Lemma 3]).
COROLLARY 2. Let X be weakly {sequentially) complete. Then si is representable by a

spectral measure.

Proof. For each x in X, the map \]/x: C(A) -> X :ft-np{f)x is weakly compact [7, VI.
7.6]. It follows as in the theorem that six is relatively weakly compact. (This corollary is
Theorem 2.5(i) of [12].)

REMARK 2. Since any bounded Boolean algebra of projections can be made hermitian
by a suitable equivalent renorming of X [4, § 3, Remark 2], the theorem includes Corollary 2
to Theorem 3 of [8].

3. Applications of Theorem 2. The results of [15] are based on the use of Theorem 2.5(i)
of [12] and Corollary 2 of Theorem 3 of [8]. These are both corollaries of Theorem 2 above.

Theorem 2 and the proof of Theorem 1 of [15] give our next result.

THEOREM 3. Let T be a normal operator on X and let si be the commutative V*'-algebra
generated by T. Let sit be relatively weakly compact. Then G{T) {the spectrum of T) is the
maximal ideal space of si. IfE{-) is the representing spectral measure for si, then X in a{T)
is an eigenvalue of T if and only ifE{{X}) # 0.

Theorem 2 and the proof of Theorem 2 of [15] give our next result.

THEOREM 4. Let S be a strongly self-conjugate operator on X and let its generated group of
isometries [U{t, S): / eR} be contained in a commutative V*-algebra with relatively weakly
compact unit sphere. Then there is a regular hermitian spectral measure E{-) of class
(5(R), X') such that

U{t, S) = lim f e"xE{dX) (f eR),

" J
= lim f

" J - "
= lim

" J -
Sx = lim XE{dX)x (x

" J-n
Theorem 5 of [15] may be further generalised.

THEOREM 5. Let S&' be a bounded Boolean algebra of projections on a Banach space X,
and let the closed algebra generated by <%)' have relatively weakly compact unit sphere. Then
Si' has a a-complete extension contained in {3S')S.

Proof. By Remark 2, there is no loss of generality in assuming that each projection in
3S' is hermitian. Let A be the Stone space of 38', K'{A) the set of characteristic functions of
open-and-closed subsets of A, and let \j/': K'{ )->&)': x% >-*B{z) be the representation iso-
morphism. We extend t/>' to an algebra isomorphism [j/ : K{A) -> & : Yfj Xxj *"* E CJ B(xj)>
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where K(A) is the algebra generated by K'( ), 38 that generated by 38'. Then tj/ is an isometry
[3, Theorem 2.1].

Since A is totally disconnected, K(A) is norm dense in C(A). We extend $ to an isometric
isomorphism (also denoted by) \j/ : C(A) -»• M (norm closure of 38). Then J = K+iK, where
K is the set of hermitian operators in 08. Thus 3) is a commutative K *-algebra.

Let £ ( •) be the representing spectral measure for 38. Let $ = {E(x): reS0(A)}. Then
$ is a Boolean algebra of hermitian projections containing $8'.

Let {£(Tn): n = 1, 2,...} be a sequence in # and let

Put

Then

£(T) = lim£(LK) = lira \/£(T£) = lim V £ ( T J ,
" i " i " i

where the limits exist in the strong topology (by the Banach-Orlicz-Pettis theorem). It is
clear that E{x)X = elm {E(xn)X}.

The proof of the existence of A £ ( O and that (/\E(i;n))X = f) (E(rn)X) is similar. Thus
3§ is cr-complete.

Since A is totally disconnected, •So(A) is contained in the a-algebra generated by the open-
and-closed sets. Hence J1 c {3S')S.

I would like to thank Professor E. Berkson for making his paper [4] available to me in
advance of publication.

I would like to take this opportunity of thanking Dr H. R. Dowson who introduced me
to the literature of V ""-algebras and who guided and encouraged me in this work.
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