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APPLICATIONS OF FACTORIZATION
EMBEDDINGS FOR LÉVY PROCESSES
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Abstract

We give three applications of the Pecherskii–Rogozin–Spitzer identity for Lévy processes.
First, we find the joint distribution of the supremum and the epoch at which it is ‘attained’
if a Lévy process has phase-type upward jumps. We also find the characteristics of the
ladder process. Second, we establish general properties of perturbed risk models, and
obtain explicit fluctuation identities in the case that the Lévy process is spectrally positive.
Third, we study the tail asymptotics for the supremum of a Lévy process under different
assumptions on the tail of the Lévy measure.
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1. Introduction

Fluctuation theory analyzes quantities related to the extrema of a stochastic process. Ex-
amples include the distribution of the supremum or infimum, the last (or first) time that the
process attains its extremum, first passage times, overshoots, and undershoots. The study of
these distributions is often motivated by applications in queueing theory, mathematical finance,
or insurance mathematics.

Of particular interest are the fluctuations of a Lévy process Z. Such a process has station-
ary and independent increments, and is defined on the probability space of càdlàg functions
(i.e. those that are continuous from the right with left limits) with the Borel σ -field generated
by the usual Skorokhod topology. The characteristic function of Zt necessarily has the form
E eiβZt = e−t�Z(β), β ∈ R, where

�Z(β) = 1

2
σ 2
Zβ

2 + icZβ +
∫

R

(1 − eiβz + iβz1(|z| ≤ 1))�Z(dz),

for some σZ ≥ 0 and cZ ∈ R and a so-called Lévy measure, �Z , on R \ {0} satisfying∫
(1 ∧ |z|2)�Z(dz) < ∞. In particular, Z0 = 0, and Z is called a compound Poisson process

if cZ = σZ = 0 and �Z(R) < ∞.
It is the objective of this paper to show how one specific technique, the so-called factorization

embedding, can be successfully used in a variety of applied probability models related to the
fluctuations of a Lévy process Z. We consider three applications of this embedding approach
in the present work. All three applications have been studied in the literature using other
techniques; in order to illustrate the power of the method, we show that factorization embeddings
provide a simple way to extend the known results.
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Figure 1: A realization of the killed Lévy processZ = X+Y and the corresponding embedded (piecewise-
linear) process. Jumps of Y are dotted and jumps of X are dashed.

1.1. Factorization embeddings

The central object of this paper is a Lévy process Z. A factorization embedding is a
process that is determined by considering Z at (countably many) specific epochs. Before
the embedding can be defined, Z has to be written as the sum of an arbitrary one-dimensional
Lévy process, X, and a compound Poisson process, Y , with intensity, λ, independent of X.
Note that any discontinuous Lévy process Z can be written in this form; this paper does not
focus on continuous Lévy processes (i.e. Brownian motions with drift), since their fluctuation
theory is well established. The representation Z = X + Y need not be unique; for instance,
there is a continuum of such representations if the Lévy measure has a nonvanishing absolutely
continuous part.

Before explaining the idea behind the embedding that we study, we first introduce some
notation. Write T1, T2, . . . for the jump epochs of Y , and set T0 = 0. Define the quantities Gi
and Si , for i ≥ 1, as follows. By ZTi−1 + Si we represent the value of the supremum within
[Ti−1, Ti), and Ti−1 +Gi is the last epoch in this interval such that the value of Z at Ti−1 +Gi
or (Ti−1 +Gi)− is ZTi−1 + Si . Although formally incorrect, we say in the remainder of the
paper that the supremum of Z over [Ti−1, Ti) is attained at Ti−1 +Gi , with value ZTi−1 + Si .

In the upper plot of Figure 1, a realization of Z is given. The jumps of Y are dotted and
those of X are dashed. The process Z is killed at an exponentially distributed random time
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k, independent of Z, say with parameter q ≥ 0 (q = 0 corresponds to no killing). The
lower plot in Figure 1 is obtained from the upper one by replacing the trajectory of Z between
Ti−1 and Ti by a piecewise-straight line consisting of two pieces: one from (Ti−1, ZTi−1) to
(Ti−1 +Gi,ZTi−1 + Si), and one from the latter point to (Ti, ZTi−). These two pieces together
have the shape of a ‘hat’. The crucial observation is that the embedded piecewise-linear process
still contains all information on key fluctuation quantities like the global supremum of Z and
the epoch at which it is attained for the last time.

The piecewise-linear process has several other useful properties. First, by the Markov
property, the ‘hats’ are mutually independent given their starting point. Moreover, obviously,
the jumps of Y are independent of the ‘hats’. More strikingly, the increasing and decreasing
pieces of each ‘hat’ are also independent: indeed, (Ti − Ti−1, ZTi− − ZTi−1) = (Gi, Si) +
(Ti − Ti−1 − Gi,ZTi− − ZTi−1 − Si), where the two latter vectors are independent; cf. the
Pecherskii–Rogozin–Spitzer factorization for Lévy processes (Proposition 1, below). This
explains the name factorization embedding.

The lower plot in Figure 1 can be generated without knowledge of the trajectory of Z.
Indeed, since {Ti : i ≥ 1} is a Poisson point process with intensity λ and killing rate q, it is
equivalent (in law) to the firstN points of a Poisson point process with intensity λ+q, whereN
is geometrically distributed on Z+ with parameter λ/(λ+q) (independent of the point process).

It is not a new idea to consider an embedded process to study fluctuations of Lévy processes.
A classical example with q = 0 is when X has negative drift (X(t) = ct for some c < 0)
and Y only has positive jumps. We then have Gi = Si = 0 for every i, and (Gi, Si) + (Ti −
Ti−1 −Gi,ZTi− − ZTi−1 − Si) is distributed as (eλ, ceλ), where eλ denotes an exponentially
distributed random variable with parameter λ. Therefore, a random walk can be studied in
order to analyze the fluctuations of Z. To the author’s knowledge, nontrivial factorization
embeddings have only been used to obtain results in the space domain. We mention the work of
Kennedy [23] and Asmussen [2], who studied certain Markov additive processes, and the work
of Mordecki [28], who studied the supremum of a Lévy process with phase-type upward jumps
and general downward jumps. Recently, a slightly different form of this embedding has been
used by Doney [16] to derive stochastic bounds on the Lévy processes Z. He defined X and
Y such that the supports of �X and �Y are disjoint, and noticed that {ZTi−1 + Si} is a random
walk with a random starting point, meaning that it suffices to establish stochastic bounds on
the starting point. Doney then used these to analyze the asymptotic behavior of Lévy processes
that converge to ∞ in probability. As an aside, we remark that the factorization embedding is
different from the embedding that has been used in [5] and [30], where jumps are absorbed by
some random environment.

1.2. Outline and contribution of the paper: three applications

We now describe how this paper is organized, thereby introducing the three problems that
are to be studied using factorization embeddings. All the results in this paper are new, the only
exceptions being Proposition 1, Theorem 5, and the first claim of Theorem 7.

Section 2 is a preliminary section, in which background is given and the above idea is used
to express fluctuation quantities of Z in terms of those of X.

Section 3 uses the above embedding idea to study the case where Z has phase-type upward
jumps and general downward jumps. Then the Laplace exponent, κZ , of the bivariate ladder
process can be given; this is a quantity that lies at the heart of fluctuation theory for Lévy
processes; see Chapter VI of [7]. In particular, we give the joint law of the supremum and the
epoch at which it is ‘attained’, generalizing Mordecki’s [28] results.
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Section 4 studies perturbed risk models, a generalization of classical risk models that has
drawn much attention in the literature. We prove a general Pollaczek–Khinchin formula in this
framework, but explicit results can only be obtained under further assumptions. Therefore, we
impose spectral positivity of the Lévy process underlying the risk model and extend the recent
results of Huzak et al. [20] in the following way. While [20] focuses on quantities related to
so-called modified ladder heights, we obtain joint distributions related to both modified ladder
epochs and modified ladder heights. In particular, we obtain the (transform of the) distribution
of the first modified ladder epoch.

Section 5 studies the tail of the supremum of Z under three different assumptions on the
Lévy measure. We reproduce known results in the Cramér case and the subexponential case,
but in the latter case also give a local variant which is new. Our results for the intermediate
case are also new, and complement recent work of Klüppelberg et al. [24].

The above selection of three applications may seem fairly random. This is indeed the case
in the sense that the use of factorization embeddings is not limited to these three applications.
For instance, Dȩbicki et al. [14] applied similar ideas to investigate Lévy-driven fluid queue
networks.

After finishing this paper, we learned about the work of Pistorius [30]. There is some overlap
between his work and our Section 3 in the special caseK = 1 (see below). In [30], the Laplace
exponent, κZ , of the ladder process was characterized in terms of the solutions to the equation
�Z(β) = q. Our approach is different, since we express κZ(q, β) in terms of a vector α

q
+, for

which we give an efficient algorithm.

2. On factorization identities

In this section, we consider the process Z = X + Y , where Y is a compound Poisson
process and X is a general Lévy process, independent of Y . After giving some background
in Subsection 2.1, we study the supremum and infimum of Z and the epoch at which they are
attained for the first (or last) time in Subsection 2.2. We express their joint distribution in terms
of the corresponding distribution of X. Moreover, the characteristics of the bivariate ladder
process of Z are expressed in terms of those of X.

2.1. Background

We start with some notation. Given a Lévy process X, we define

Xt = sup{Xs : 0 ≤ s ≤ t}, Xt = inf{Xs : 0 ≤ s ≤ t},
F
X

t = inf{s < t : Xs = Xt or Xs− = Xt }, G
X

t = sup{s < t : Xs = Xt or Xs− = Xt },
FXt = inf{s < t : Xs = Xt or Xs− = Xt }, GXt = sup{s < t : Xs = Xt or Xs− = Xt }.

The following identity, referred to as the Pecherskii–Rogozin–Spitzer (PRS) identity in the
remainder of the paper, is key to the results of the paper. Here and throughout, eq denotes an
exponentially distributed random variable with parameter q, independent of X and Y . For an
account of the history of this identity, we refer the reader to [7, p. 185].

Proposition 1. (Pecherskii–Rogozin–Spitzer.) For α ≥ 0, β ∈ R, and q > 0, we have

E exp(−αeq + iβXeq ) = E exp(−αGXeq + iβXeq )E exp(−αFXeq + iβXeq )

= E exp(−αFXeq + iβXeq )E exp(−αGXeq + iβXeq ).
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The second equality follows from the first by considering the dual process X̂ = −X. The
PRS identity is sometimes referred to as the first factorization identity. It can be viewed as
a decomposition of (eq,Xeq ) into the sum of two independent vectors, since (FXeq , Xeq ) is
distributed as is (eq −G

X

eq
,Xeq −Xeq ).

In order to relate the PRS factors of Z and X, we need an auxiliary random walk. We write
λ ∈ (0,∞) for the intensity of Y , and ξ for its generic jump. For a fixed q > 0, let {Sqn } be a
random walk with step size distribution ξ +Xeλ+q , where the two summands are independent.
For this random walk, we define the first strict ascending and descending ladder epochs as,
respectively,

τ
q
s+ = inf{n ≥ 1 : Sqn > 0}, τ

q
s− = inf{n ≥ 1 : Sqn < 0},

and we define τqw+ and τqw− similarly, with weak inequalities. We write Hq
w± and Hq

s± for the
ladder heights Sq

τ
q
w±

and Sq
τ
q
s±

, respectively.

When integrating with respect to defective distributions, we only carry out the integration
over the set where the random variables are both finite and well defined. For instance, we write
E exp(−βHq

s+)ρτ
q
s+ for E[exp(−βHq

s+)ρτ
q
s+; τqs+ < ∞] in the remainder of the paper, unless

indicated otherwise.

2.2. The PRS factorization and ladder characteristics

The main result of this section, which we now formulate, relates the PRS factors ofZ andX.
When a specific structure is imposed onX and Y , both factors can be computed; see Section 3.
Intuitively, a PRS factor ofZ is the product of a PRS factor ofX and a random-walk PRS factor.
The main complication is that the random walk is converted to a continuous-time process by
‘stretching’ time, but that this stretching is not done independently of the step size.

Theorem 1. Suppose that Z can be written as Z = X + Y for independent processes X and
Y , where Y is a compound Poisson process. For every α, β ≥ 0 and q > 0, we have

E exp(−αGZeq − βZeq )

= E exp(−αGXeλ+q − βXeλ+q )
1 − E(λ/(λ+ q))τ

q
w+

1 − E exp(−βHq+α
w+ )(λ/(λ+ q + α))τ

q+α
w+

,

E exp(−αFZeq − βZeq )

= E exp(−αFXeλ+q − βXeλ+q )
1 − E(λ/(λ+ q))τ

q
s+

1 − E exp(−βHq+α
s+ )(λ/(λ+ q + α))τ

q+α
s+

,

while E exp(−αFZeq + iβZeq ) and E exp(−αGZeq + iβZeq ) follow by duality.

Proof. We only prove the first equality; the argument is easily adapted to obtain the second.
The first factor is a direct consequence of the independence of the first straight line in the

lower plot of Figure 1 and the other pieces; see the remarks accompanying Figure 1. Writing
wi = Ti−1 + Gi − G1 and Wi = ZTi−1+Gi − S1, for i ≥ 1, these arguments also reveal that
{Wi : i ≥ 1} is a random walk with the same distribution as {Sqn : n ≥ 0}, except for the killing
in every step with probability λ/(λ + q). Therefore, if we define the first (weak) ascending
ladder epoch of this random walk as N = inf{i ≥ 1 : Wi ≥ 0}, we have

P(N < ∞) = E

(
λ

λ+ q

)τqw+
.
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Observe that (G
Z

eq
−G1, Zeq − S1) has the same distribution as

K∑
j=1

(w
j
N ,W

j
N),

where K is geometrically distributed on Z+ with parameter P(N < ∞) and (wjN ,W
j
N) are

independent copies of (wN,WN) also independent of K . Note that we consider the weak
ladder epoch in the definition of N , since we are interested in G

Z

eq
(as opposed to F

Z

eq
). This

shows that

E exp(−α(GZeq −G1)+ iβ(Zeq − S1)) = 1 − E(λ/(λ+ q))τ
q
w+

1 − E(λ/(λ+ q))Ne−αwN+iβWN
,

and it remains to study the denominator in more detail.
For this, we rely on Section I.1.12 of [31]. The key observation is that {(wi,Wi)} is a random

walk in the half-plane R+ × R, with step size distribution characterized by

E e−αw1+iβW1 = E exp(−αeλ+q + iβXeλ+q )E eiβξ .

Theorem 27 of [31], which is a Wiener–Hopf factorization for random walks on the half-plane,
shows that, for |z| < 1, α ≥ 0, and β ∈ R, we may write

1 − zE exp(−αeλ+q + iβXeλ+q )E eiβξ = [1 − E zNe−αwN+iβWN ][1 − E zN̄e−αwN̄+iβWN̄ ],
where the bars refer to (strict) descending ladder variables. The actual definitions of these
quantities are of minor importance to us; the crucial point is that this factorization is unique.
Indeed, an alternative characterization,

1 − zE exp(−αeλ+q + iβXeλ+q )E eiβξ = 1 − (λ+ q)z

λ+ q + α
E exp(iβXeλ+q+α )E eiβξ ,

is obtained by conditioning on the value of eλ+q , and the Wiener–Hopf factorization for random
walks shows that this can be written as

[
1 − E

(
(λ+ q)z

λ+ q + α

)τq+αs+
eiβHq+α

s+
][

1 − E

(
(λ+ q)z

λ+ q + α

)τq+αw−
eiβHq+α

w−
]
. (1)

This decomposition is again unique, so the claim follows by substituting z = λ/(λ+ q). This
finishes the proof.

If α = 0 then we must have E exp(−αGZeq − βZeq ) = E exp(−αFZeq − βZeq ), but the
formulae in Theorem 1 differ in the sense of weak and strict ladder variables. This is not a
contradiction, as Spitzer’s identity shows that the fractions are equal for both τqw+ and τqs+.

Let us now verify that the formulae of Theorem 1 are in accordance with the PRS factorization
of Proposition 1. Indeed, with the Wiener–Hopf factorization for random walks (1) and
Theorem 1 (the transform E exp(−αFZeq + iβZeq ) is obtained by duality), we have

E exp(−αGZeq + iβZeq )E exp(−αFZeq + iβZeq )

= E exp(−αeλ+q + iβXeλ+q )
1 − λ/(λ+ q)

1 − [λ/(λ+ q + α)] E exp(iβXeλ+q+α )E eiβξ .
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By conditioning on the value of eλ+q in the first factor, it is readily seen that this equals

q

(λ+ q + α)/E exp(iβXeλ+q+α )− λE eiβξ = q

λ+ q + α +�X(β)− λE eiβξ

= E exp(−αeq + iβZeq ),

as desired.
Given Theorem 1, we can easily deduce the characteristics of the ladder height process of

Z in terms of those of X; as the notions are standard, we refer the reader to [7, p. 157] for
definitions. The importance of this two-dimensional subordinator has recently been illustrated
by Doney and Kyprianou [17].

The dual processes of Z and X are defined by Ẑ = −Z and X̂ = −X, respectively.

Corollary 1. Under the assumptions of Theorem 1, we have, for α, β ≥ 0,

κZ(α, β) = κX(λ+ α, β)

(
1 − E e−βHα

s+
(

λ

λ+ α

)ταs+)

and

κ̂Z(α, β) = kκ̂X(λ+ α, β)

(
1 − E eβH

α
w−

(
λ

λ+ α

)ταw−)

= k
α +�Z(−iβ)

κX(λ+ α,−β)[1 − E eβH
α
s+(λ/(λ+ α))τ

α
s+] ,

where k is some meaningless constant.

Proof. It suffices to note that κZ(α,−iβ)κ̂Z(α, iβ) = k(α + �Z(β)) by the Wiener–Hopf
factorization for random walks, and to then analytically continue κ̂Z .

3. Fluctuation theory with phase-type upward jumps

In this section, we use the results of the previous section to study Lévy processes with
so-called phase-type upward jumps and general downward jumps. According to the results of
Section 2, (G

Z

eq
, Zeq ) can be written as the sum of (G

X

eλ+q , Xeλ+q ) and an (independent) random
walk term. In this section, we chooseX and Y in such a way that the transforms of both vectors
can be computed explicitly. For this, we let X be an arbitrary spectrally negative Lévy process
and let Y be a compound Poisson process (not necessarily a subordinator), independent of X,
for which the upward jumps have a phase-type distribution. Recall that Z = X + Y .

Several applications motivate the investigation of fluctuations of Lévy processes with two-
sided jumps, e.g. with phase-type jumps in one direction. Focusing on their applications to
options pricing, Asmussen et al. [5] and Mordecki [28] have recently studied these processes;
see also [26]. The results are also relevant in the context of queues and risk processes; see [10]
for a detailed discussion.

The exact form of the Lévy measure of Y , which facilitates the analysis, is specified in (2),
below. Importantly, the upward jumps of Y have a phase-type distribution. Recall that a phase-
type distribution is the absorption time of a Markov process on a finite state spaceE. Its intensity
matrix is determined by the |E| × |E| matrix T , and its initial distribution is denoted by α.
For more details on phase-type distributions, we refer the reader to [4, Section III.4]. We write
t = −T 1, where 1 is the vector whose components all equal 1. Apart from their computational
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convenience, the most important property of phase-type distributions is that they are dense, in
the sense of weak convergence, within the class of probability measures (although many phases
may be needed to approximate a stable distribution, for instance).

As a consequence of this fact, an arbitrary Lévy process can be written as the limit of a
sequence of Lévy processes with phase-type jumps (in the Skorokhod topology onD(R+); see,
e.g. [22, Chapter VI] for definitions). Both Asmussen et al. [5] and Mordecki [28] obtained
expressions for the Laplace transform of Zeq if Y is a compound Poisson process with only
positive (phase-type) jumps.

While the class of processes that we analyze here is slightly more general, the main difference
is that we calculate the Laplace transform of the joint distribution, (G

Z

eq
, Zeq ). In particular,

if a Lévy process Z has phase-type upward jumps, we can characterize the distribution of the
epoch at which the supremum is attained; this is perhaps more surprising than the fact that we
can find the distribution of Zeq . This illustrates why Theorem 1 is interesting.

To the author’s knowledge, the results of this section apply to any Lévy process for which
this joint distribution is known. The only case for which results are available but not covered
here is when Z is a stable Lévy process, for which the Laplace transform of the (marginal) law
of Zeq has been derived by C. C. Heyde, extending earlier work of D. A. Darling; see [15] for
references and further details.

3.1. The PRS factorization

We begin with a detailed description of the process Y . Given a K ∈ N, suppose that we
have nonnegative random variables {Aj : j = 1, . . . , K} and {Bj : j = 1, . . . , K}, where the
distribution PBj of Bj is phase type with representation (Ej ,αj ,Tj ). The distribution P−Aj of
−Aj is general; the only restriction we impose is that P−Aj ∗ PBj ({0}) = 0 for all j , i.e.Aj and
Bj do not both have an atom at 0. Here ‘∗’ denotes convolution. We assume that the process
Y is a compound Poisson process with Lévy measure given by

�Y = λ

K∑
j=1

πj PBj ∗ P−Aj , (2)

where λ ∈ (0,∞) and 0 ≤ πj ≤ 1 with
∑
j πj = 1. In queueing theory (see, e.g. [4]),

processes of this form arise naturally, and the Bj can be interpreted as the service times and the
Aj as the interarrival times. Notice that Y is a subordinator if and only if�Y can be written in
the form of (2) with K = 1 and A1 ≡ 0.

Without loss of generality, we may assume that Ej and Tj do not depend on j . Indeed, if
Ej hasmj elements, we can construct an E with

∑K
j=1mj elements and T can then be chosen

to be a block-diagonal matrix with the matrices T1, . . . ,TK on its diagonal. The vectors αj are
then filled out with 0s, so that they consist ofK parts of lengthsm1, . . . , mK , with only the j th
part nonzero.

Fix some q > 0; our first aim is to study the random walk {Sqn } introduced in Subsection 2.1,
with generic step size distribution

PSq1
= PXeλ+q

∗ PXeλ+q ∗ Pξ

(by PRS factorization), where Pξ = �Y/λ. We exclude the case where Z is monotonic, so
that PSq1

always assigns strictly positive probability to R+. In this case, there is no distinction
between weak and strict ascending ladder heights, and we therefore write τq+ for τqw+ = τ

q
s+

throughout this section.
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Since Xeλ+q is either degenerate or exponentially distributed, the law of Sq1 can be written
as ∑

j

πj PB ′
j (q)

∗ PA′
j (q)

,

where B ′
j (q) again has a phase-type distribution, say with representation (E′

q,α
′
j (q),T

′
q). It is

not hard to express this triple in terms of the original triple (E,αj ,T ): in fact (E′
q,α

′
j (q),T

′
q) =

(E,αj ,T ) ifX is a negative subordinator; otherwise,E′
q can be chosen such that |E′

q | = |E|+1
and the dynamics of the underlying Markov chain are unchanged, except that an additional state
is visited before absorption. We set t ′

q = −T ′
q1 and denote the identity matrix by I .

Motivated by Theorem 1, the following lemma calculates the transform of the ladder variables
(H

q
+, τ

q
+); recall that the random variables are only integrated over the subset {τq+ < ∞} of the

probability space.

Lemma 1. Let ρ ∈ (0, 1) and β ≥ 0. Then there exists some vector α
ρ,q
+ such that

E ρτ
q
+e−βHq

+ = α
ρ,q
+ (βI − T ′

q)
−1t ′

q .

Proof. The proof is similar to the proofs of Lemma VIII.5.1 and Proposition VIII.5.11 of [4];
the details are left to the reader.

The above lemma shows that it is of interest to be able to calculate α
ρ,q
+ . Therefore, we

generalize TheoremVIII.5.12 of [4] to the present setting. We omit a proof, as similar arguments
apply here as do in [4]; the only differences are that we allow for K > 1 and that the random
walk can be killed at every step with probability ρ.

Proposition 2. The vector α
ρ,q
+ satisfies α

ρ,q
+ = ξ(α

ρ,q
+ ), where

ξ(α
ρ,q
+ ) = ρ

K∑
j=1

πjα
′
j (q)

∫ ∞

0
e(T

′
q+t ′qα

ρ,q
+ )yA′

j (q)(dy).

It can be computed as limn→∞ α
ρ,q
+ (n), where α

ρ,q
+ (0) = 0 and α

ρ,q
+ (n) = ξ(α

ρ,q
+ (n − 1))

for n ≥ 1.

The main result of this section follows by combining Theorem 1 with Lemma 1 and standard
fluctuation identities; see, for instance, [7, Theorem VII.4]. If �X(0) is the largest root of the
equation ψX(β) = 0, where ψX(β) = −�X(−iβ), then we write �X : R+ → [�X(0),∞)

for the inverse of the increasing function ψ : [�X(0),∞) → R+.
Since Theorem 1 applies directly if X is monotonic, this scenario is excluded to focus on

the most interesting case. For notational convenience, we write α
q
+ for α

q/(λ+q),q
+ .

Theorem 2. Suppose that neither X nor Z is monotonic. Then, for α, β ≥ 0, we have

E exp(−αGZeq − βZeq ) = �X(λ+ q)[1 − α
q
+1]

[�X(λ+ q + α)+ β][1 − α
q+α
+ (βI − T ′

q+α)−1t ′
q+α]

and

E exp(−αFZeq + βZeq ) = q[�X(λ+ q + α)− β][1 + α
q+α
+ (βI + T ′

q+α)−1t ′
q+α]

[q + α +�Z(−iβ)]�X(λ+ q)[1 − α
q
+1] .
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Theorem 2 is an immediate consequence of Theorem 1. We now formulate the corresponding
analog of Corollary 1. Note that the expression for κZ(0, β) is already visible in the work of
Mordecki [28]; here, we obtain a full description of κZ .

Corollary 2. Under the assumptions of Theorem 2, we have, for α, β ≥ 0,

κZ(α, β) = [�X(λ+ α)+ β][1 − αα+(βI − T ′
α)

−1t ′
α]

and

κ̂Z(α, β) = k
α +�Z(−iβ)

[�X(λ+ α)− β][1 + αα+(βI + T ′
α)

−1t ′
α]
,

where k is a meaningless constant.

4. Perturbed risk models

Let X be an arbitrary Lévy process and Y be a compound Poisson process with intensity λ
and generic (say integrable) positive jump ξ . In this section, we investigate the sumZ = X+Y ,
where the Lévy processZ drifts to −∞. Classical risk theory studies the supremum of Z in the
case that X has negative drift, i.e. Xt = −ct for some c > λE ξ . Its distribution is then given
by the Pollaczek–Khinchin formula. In this analysis, a key role is played by ladder epochs and
heights, i.e. quantities related to the event that Z reaches a new record.

This section investigates the more general case whereX is an arbitrary Lévy process. In the
literature, Z is then known as a perturbed risk process; see [19], [20], [32], [33], and references
therein. To analyze this model, the classical ladder epochs and heights are replaced by so-called
modified ladder epochs and heights; these are related to the event that Z reaches a new record
as a result of a jump of Y .

More precisely, we define the modified ladder epoch χ as the first time a new supremum is
reached by a jump of Y , i.e.

χ = inf{t > 0 : �Yt > Zt− − Zt−}.
For example, we have χ = T2 in Figure 1. As a convention, we define (G

Z

χ−, Zχ−) as
(G

Z

∞, Z∞) on the event {χ = ∞}.
The main difference between the present investigation of perturbed risk models and earlier

work is that we are not only interested in Laplace transform for space-related variables such as
Zχ , but also in the joint transform of time–space variables such as (χ, Zχ). This has not been
studied before.

In Subsection 4.1, we derive some elementary time–space results for modified ladder vari-
ables, culminating in a Pollaczek–Khinchin formula for perturbed risk models. However,
explicit formulae for the Laplace transforms cannot be derived. For this, we must impose
the assumption that Z is spectrally positive; this was also done in the above-cited articles
on perturbed risk models. Subsection 4.2 investigates the spectrally positive case in detail.
This results in a set of fluctuation identities that can be regarded as the perturbed risk analogs
of the standard fluctuation identities (as given, for instance, by Bertoin [7, Theorem VII.4]).
Interestingly, as a special case, we characterize the distribution of the modified ladder epoch χ ;
this is one of the most natural quantities in the perturbed risk context, yet our results are new.

4.1. Generalities

In this subsection, we study the structure of a general perturbed risk model, i.e. we consider
a general Lévy perturbationX. All results in this subsection are new in this general framework.
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L e

He

Ue

Figure 2: The excursion quantities in the proof of Proposition 3. The dashed line is the piece that is
discarded under P̃.

The following proposition is crucial for the analysis.

Proposition 3. Let X be a general Lévy process (but not a subordinator) and let Y be a
compound Poisson subordinator. Then, for Z = X + Y ,

1. (G
Z

χ−, Zχ−) is independent of {χ < ∞};

2. (G
Z

χ−, Zχ−) is distributed as is (G
Z

∞, Z∞) given {χ = ∞}; and

3. (Zχ −Zχ−, Zχ− −Zχ−, χ −GZχ−) is conditionally independent of (G
Z

χ−, Zχ−) given
{χ < ∞}.

Proof. We need some definitions related to the piecewise-linear (jump) process of Figure 1,
in particular to its excursions. Let P̃ denote the law of the piecewise-linear process that
is constructed by discarding the first increasing piece (which may not be present if X is a
negative subordinator), and let Ẽ denote the corresponding expectation. Under P̃, there are two
possibilities for the process to cross the axis (strictly): the process either crosses it continuously
or jumps over it. The first event is denoted by X, as it is caused by fluctuations in X. We write
Y for the second event. The probability of no crossing (i.e. no new record) is then given by
1 − P̃(X)− P̃(Y). Moreover, by the strong Markov property, we have

P(χ < ∞) = P̃(Y)

1 − P̃(X)
. (3)

On Y, we define the ‘excursion lengths’Le, the ‘excursion heights’He, and the ‘excursion
undershoots’Ue as indicated in Figure 2. We defineLe andHe on X by considering the process
formed by the maxima of the ‘hats’ as defined in Subsection 1.1. Let He be the first ascending
ladder height of this process; note that this quantity is strictly positive (under P̃) if X is not a
negative subordinator. We letLe be the epoch at which the piecewise-linear process reachesHe.
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For α, β ≥ 0, by the strong Markov property,

E[exp(−αGZχ− − βZχ−);χ < ∞]
= E exp(−αGXeλ − βXeλ)P̃(Y)

+ Ẽ[e−αLe−βHe; X] E[exp(−αGZχ− − βZχ−);χ < ∞],
from which we obtain

E[exp(−αGZχ− − βZχ−);χ < ∞] = E exp(−αGXeλ − βXeλ)
P̃(Y)

1 − Ẽ[e−αLe−βHe; X] .

Along the same lines, we can deduce that

E[exp(−αGZ∞ − βZ∞);χ = ∞] = E exp(−αGXeλ − βXeλ)
1 − P̃(X)− P̃(Y)

1 − Ẽ[e−αLe−βHe; X] ,

meaning that

E[exp(−αGZχ− − βZχ−);χ < ∞]
P(χ < ∞)

= E[exp(−αGZχ− − βZχ−);χ < ∞]

+ E[exp(−αGZ∞ − βZ∞);χ = ∞],

which is E exp(−αGZχ− − βZχ−); this is the first claim. These calculations also show that

E[exp(−αGZ∞ − βZ∞);χ = ∞]
P(χ = ∞)

= E[exp(−αGZχ− − βZχ−);χ < ∞]

+ E[exp(−αGZ∞ − βZ∞);χ = ∞],
which is the second claim.

For the third claim, a variant of this argument can be used to see that, for α, β, γ, δ, ε ≥ 0,

E[exp(−αGZχ− − βZχ−) exp(−γ [Zχ − Zχ−])
× exp(−δ[Zχ− − Zχ−]) exp(−ε[χ −G

Z

χ−]) | χ < ∞]

= E exp(−αGXeλ − βXeλ)
1 − P̃(X)

1 − Ẽ[e−αLe−βHe; X]
Ẽ[e−γHe e−δUe e−εLe; Y]

P̃(Y)
.

This completes the proof of the proposition.

The formula in the following theorem can be viewed as a generalized Pollaczek–Khinchin
formula for perturbed risk models. It is a consequence of the preceding proposition and the
observation that, by the strong Markov property,

E exp(−αGZ∞ − βZ∞)

= E[exp(−αGZ∞ − βZ∞);χ = ∞]
1 − E[exp(−αGZχ− − βZχ−);χ < ∞] E[exp(−α[χ −G

Z

χ−]−β[Zχ − Zχ−]) |χ < ∞]
.

https://doi.org/10.1239/aap/1158685001 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158685001


780 A. B. DIEKER

Theorem 3. Under the assumptions of Proposition 3, we have, for α, β ≥ 0, provided that Z
drifts to −∞,

E exp(−αGZ∞ − βZ∞)

= P(χ = ∞)E exp(−αGZχ− − βZχ−)

1−P(χ < ∞)E exp(−αGZχ−− βZχ−)E[exp(−α[χ−G
Z

χ−] − β[Zχ− Zχ−]) |χ < ∞]
.

4.2. Spectrally positive Z

In this subsection, we analyze the case where Z has only positive jumps. We work under
the assumptions of Proposition 3, but additionally assume that EZ1 < 0 (in particular, Z is
integrable) and that the Lévy measure of Z vanishes on the negative half-line. It turns out
that the transforms of the previous section can then be computed. As an aside, we remark that
perturbed risk models with positive jumps are related to M/G/1 queueing systems with a second
service; see [13].

Throughout, we exclude the case where X is a negative subordinator, i.e. where X has
negative drift; the analysis is then classical. By doing so, the standard fluctuation identities
(Theorem VII.4 of [7]) apply to bothX andZ. We use these identities without further reference.

Perturbed risk models under spectral positivity have been recently examined by Huzak
et al. [20]. The main difference between this subsection and [20] is the fact that we are
interested in examining the time–space domain (e.g. the transform of (χ, Zχ)), as opposed to
only the space domain. Consequently, our results generalize those of Huzak et al. [20], with
the following caveat. Huzak et al. allowed Y to be a general subordinator, not necessarily of
the compound Poisson type. Therefore, the perturbed risk models studied here are slightly
less general. However, since any subordinator can be approximated by compound Poisson
subordinators and the modified ladder epochs form a discrete set (see [20]), our results must
also hold in the general case. Since the approximation argument required for a rigorous proof
is not in the spirit of this paper, we do not address this issue here. Instead, we shall content
ourselves with writing the main result (Theorem 4) in a form that does not rely on Y being
compound Poisson, although this assumption is essential for the proof.

Our analysis is based on the Wiener–Hopf theory for Markov additive processes. Indeed,
the piecewise-linear embedded process is closely related to a discrete-time Markov additive
process (see, e.g. [4, Chapter XI] for the definition) with defective step size distributions. To
see this, note that each ‘hat’ (see Subsection 1.1) contains three important points: its starting
point (labeled ‘1’), its maximum (labeled ‘2’), and (immediately before) its endpoint (labeled
‘3’). Let us now fix some α ≥ 0. Equation (VI.1) of [7] implies that, for q > 0 and β ∈ R,

E exp(−αGXeq + iβXeq ) = E exp(−αGXeq )E exp(iβXeq+α ),

and similarly for the joint distribution of (FXeq , Xeq ). In other words, since α is fixed, the joint
distribution (in time and space) of the increment from point 1 to point 2, as well as from point 2
to point 3, can be interpreted as a defective marginal distribution in space. Hence, a ‘killing
mechanism’ has been introduced, which allows us to study joint distributions in time and space
by applying (known) results on processes with given marginal (space) distributions.
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More precisely, we define a Markov additive process in discrete time, {(Jn, Sn)}, as the
Markov process with state space {1, 2, 3} × R, characterized by the transform matrix

F (α, β) =

⎛
⎜⎜⎝

0 E exp(−αGXeλ)E exp(iβXeλ+α ) 0

0 0 E exp(−αFXeλ)E exp(iβXeλ+α )

E eiβξ 0 0

⎞
⎟⎟⎠ .

That is, S0 = 0 and Jn is deterministic given J0: in every time slot, it jumps from i to i + 1
unless i = 3; then it jumps back to 1. If Jn−1 = 1 (i.e. point n−1 corresponds to the beginning
of a ‘hat’), then the process is killed with probability 1 − E exp(−αGXeλ); otherwise, we set
Sn = Sn−1 + ηn−1, where ηn−1 is independent of Sn−1 and distributed as is Xeλ+α . The cases
Jn−1 = 2 and Jn−1 = 3 are similar, except for the absence of killing in the latter case. We also
write

τ+ = inf{n > 0 : Sn > 0}, τ− = inf{n > 0 : Sn ≤ 0}.
Expressions such as P2(Jτ+ = 2) should be understood as P(Jτ+ = 2, τ+ < ∞ | J0 = 2), and
similarly for E2.

In the Wiener–Hopf theory for Markov additive processes, an important role is played by
the time-reversed process. To define this process, we introduce the Markov chain Ĵ , for which
the transitions are deterministic: it jumps from 3 to 2, from 2 to 1, and from 1 to 3. Hence,
it jumps in the opposite direction to J . We set Ŝ0 = 0 and define the transition structure of
the time-reversed Markov additive process (Ĵ , Ŝ) as follows. If Ĵn−1 = 2 then the process is
killed with probability 1 − E exp(−αGXeλ); otherwise, we set Ŝn = Ŝn−1 + η̂n−1, where η̂n−1
is independent of Ŝn−1 and distributed as is Xeλ+α . Similarly, if Ĵn−1 = 3 then the process is
killed with probability 1 − E exp(−αFXeλ); otherwise, the increment is distributed as is Xeλ+α .
If Ĵn−1 = 1 then the increment is distributed as is ξ > 0. The quantities τ̂+ and τ̂− are defined
as the ladder epochs for Ŝ. We write P̂2 for the conditional distribution given that Ĵ0 = 2.

Recalling that the dependence on α is ‘absorbed’ in the killing mechanism, we define

G
(k,�)
+ (α, β) = Ek[exp(iβSτ+); Jτ+ = �]

and
Ĝ
(k,�)
− (α, β) = Êk[exp(iβŜτ̂−); Ĵτ̂− = j ].

Note thatG(2,2)+ = Ẽ[e−αLe+iβHe; X] in the notation of the proof of Proposition 3, and similarly
G
(2,1)
+ = Ẽ[e−αLe+iβHe; Y].
TheWiener–Hopf factorization for Markov additive processes (see, e.g. [4, Theorem XI.2.12]

or [31, Theorem 5.2]) states that I − F (α, β) equals

⎛
⎜⎝

1 0 0

−Ĝ(1,2)− 1 − Ĝ
(2,2)
− −Ĝ(3,2)−

0 0 1

⎞
⎟⎠

⎛
⎜⎜⎝

1 − E exp(−αGXeλ + iβXeλ) 0

−G(2,1)+ 1 −G
(2,2)
+ 0

− E eiβξ 0 1

⎞
⎟⎟⎠ ,

where the arguments, α and β, of G+ and Ĝ− are suppressed for notational convenience.
We start by computing the first matrix. Note that Ĝ(3,2)− (α, β) = E exp(−αFXeλ + iβXeλ), so

two terms remain. Recall that�−X is the inverse of the functionβ 
→ ψ−X(β) = −�−X(−iβ),
and similarly for �−Z .
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Proposition 4. For β ∈ R, we have

Ĝ
(1,2)
− (α, β) = E e−�−Z(α)ξ �−X(λ)

�−X(λ+ α)+ iβ

and

Ĝ
(2,2)
− (α, β) = �−X(λ+ α)−�−Z(α)

�−X(λ+ α)+ iβ
.

Proof. We start with Ĝ(2,2)− . By ‘gluing together’ the transitions 2 → 1 and 1 → 3, we see
that the killing probability of going from 2 to itself now equals λ/(λ+ α), and the distribution
of a jump from 2 to itself can be written as ξ +Xeλ+α − e�−X(λ+α), where all three components
are independent. Therefore, by standard results on random walks (see, e.g. Lemma I.4 of [31]),
we have

Ĝ
(2,2)
− (α, β) = Ê2

(
λ

λ+ α

)τ̂−
eiβŜτ̂− = �−X(λ+ α)

�−X(λ+ α)+ iβ
Ê2

(
λ

λ+ α

)τ̂−
,

and it remains to calculate the mean, which we write as ηα . To do so, we repeat the argument
that led to Theorem 1, but now for the minimum and in terms of ηα . We see that E eiβZeα equals

�−Z(α)
�−Z(α)+ iβ

= �−X(λ+ α)

�−X(λ+ α)+ iβ

1 − ηα

1 − ηα�−X(λ+ α)/(�−X(λ+ α)+ iβ)

= (1 − ηα)�−X(λ+ α)

(1 − ηα)�−X(λ+ α)+ iβ
,

implying that 1 − ηα = �−Z(α)/�−X(λ+ α).
Now we study Ĝ(1,2)− . A descending ladder epoch occurs either at the first time that Ĵ visits 2,

or during subsequent visits. The contribution to Ĝ(1,2)− of the first term is

Ê1[eiβŜ2; Ŝ2 < 0] = E exp(−αFXeλ)E[exp(iβ(ξ +Xeλ+α )); ξ +Xeλ+α < 0]
=

∫ ∞

0
�−X(λ)e−(�−X(λ+α)+iβ)t E[eiβξ ; ξ < t] dt

= E eiβξ
∫ ξ

0
�−X(λ)e−(�−X(λ+α)+iβ)t dt

= �−X(λ)
�−X(λ+ α)+ iβ

E e−�−X(λ+α)ξ .

To compute the contribution to Ĝ(1,2)− of paths for which Ŝ2 is positive, we apply results of
Arjas and Speed [1] on random walks with a random initial point. We also use their notation.

Using the previously computed expression for Ĝ(2,2)− (again, the transform depends on α
through the killing mechanism), we define

w̄z−(β) = 1

1 − Ĝ
(2,2)
− (α, β)

= 1

1 − (�−X(λ+ α)−�−Z(α))/(�−X(λ+ α)+ iβ)

= 1 + �−X(λ+ α)−�−Z(α)
�−Z(α)+ iβ

.
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As in [1], define the projection operator P acting on a Fourier transform f (β) = ∫
R

eiβxF (dx)
as Pf (β) = ∫

(−∞,0] eiβxF (dx). Theorem 1(b) of [1] shows that the second contribution to
Ĝ
(1,2)
− equals

1

w̄z−(β)
P [E e−αFX(eλ) E[eiβ(ξ+X(λ+α)); ξ +X(λ+ α) > 0]w̄z−(β)]. (4)

Similar reasoning as above shows that

Ê1[eiβŜ2; Ŝ2 > 0] = E exp(−αFXeλ)E[exp(iβ(ξ +Xeλ+α )); ξ +Xeλ+α > 0]
= �−X(λ)

∫ ∞

0
e−(�−X(λ+α)+iβ)t E[eiβξ ; ξ > t] dt

= �−X(λ)
E eiβξ − E e−�−X(λ+α)ξ

�−X(λ+ α)+ iβ
.

As this is the transform of a positive random variable, the first observation in the proof of
Corollary 1 of [1] shows that

P

[
�−X(λ+ α)−�−Z(α)

�−Z(α)+ iβ
Ê1[eiβŜ2; Ŝ2 > 0]

]

= �−X(λ+ α)−�−Z(α)
�−Z(α)+ iβ

Ê1[e−�−Z(α)Ŝ2; Ŝ2 > 0].

Therefore, (4) equals

�−X(λ)
E e−�−Z(α)ξ − E e−�−X(λ+α)ξ

�−X(λ+ α)−�−Z(α)
(�−X(λ+ α)−�−Z(α))/(�−Z(α)+ iβ)

1 + (�−X(λ+ α)−�−Z(α))/(�−Z(α)+ iβ)

= �−X(λ)
�−X(λ+ α)+ iβ

[E e−�−Z(α)ξ − E e−�−X(λ+α)ξ ].

Summing the two contributions completes the proof of the claim and, hence, that of the
proposition.

With the preceding proposition at our disposal, the Wiener–Hopf factorization yields

G
(2,1)
+ (α, β) = �−X(λ)

E eiβξ − E e−�−Z(α)ξ

�−Z(α)+ iβ

and

1 −G
(2,2)
+ (α, β) = �−X(λ+ α)+ iβ −�−X(λ)E e−�Z(α)ξ E exp(−αGXeλ + iβXeλ)

�−Z(α)+ iβ
,

where E exp(−αGXeλ + iβXeλ) is explicitly known in terms of �−X. From these expressions,
by choosing α = β = 0 we obtain P̃(X) = 1 + (�−X(λ)/λ)EX1 and P̃(Y) = �−X(λ)E ξ .
In particular, 1 − P̃(X)− P̃(Y) = −(�−X(λ)/λ)EZ1.

Our next goal is to characterize distributions related to modified ladder epochs and heights,
which is the main result of this subsection.

Theorem 4. LetX be a general spectrally positive Lévy process (which is not monotonic), and
let Y be a compound Poisson subordinator. Suppose that bothX and Y are integrable, and that
Z = X + Y satisfies EZ1 < 0.
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1. For α, β ≥ 0, we have

E exp(−αGZχ− − βZχ−) = E[exp(−αGZχ− − βZχ−) | χ < ∞]
= E[exp(−αGZ∞ − βZ∞) | χ = ∞]
= − EX1

�−Z(α)− β

α − ψ−X(β)− ψ−Y (�−Z(α))
,

which should be interpreted as − EX1/ψ
′−Z(β) for β = �−Z(α). In particular, Zχ− has the

same distribution as X∞.

2. For α, β ≥ 0, we have

E[exp(−α[χ −G
Z

χ−] − β[Zχ − Zχ−]) | χ < ∞] = 1

E Y1

ψ−Y (β)− ψ−Y (�−Z(α))
�−Z(α)− β

,

which should be interpreted as −ψ ′−Y (β)/E Y1 for β = �−Z(α). In particular, for y, z > 0,

P(Zχ − Zχ− > x, Zχ− − Zχ− > y | χ < ∞) = 1

E ξ

∫ ∞

x+y
P(ξ > u) du.

3. For α, β ≥ 0, we have

E[e−αχ−βZχ ;χ < ∞] = ψ−Y (β)− ψ−Y (�−Z(α))
α − ψ−X(β)− ψ−Y (�−Z(α))

,

which should be interpreted as −ψ ′−Y (β)/ψ ′−Z(β) for β = �−Z(α). In particular,

P(χ < ∞) = 1 − EZ1/EX1.

Proof. To compute the transform of the joint distribution of (G
Z

χ−, Zχ−), we use elements
of the proof of Proposition 3: we have, in particular,

E exp(−αGZχ− − βZχ−)

= E exp(−αGXeλ − βXeλ)
1 − P̃(X)

1 −G
(2,2)
+ (α, iβ)

= − EX1
(�−X(λ)/λ)[�−Z(α)− β]

(�−X(λ+ α)− β)/E exp(−αGXeλ − βXeλ)−�−X(λ)E e−�−Z(α)ξ
,

from which the first claim follows.
The second claim is a consequence of the fact that the transform equals G(2,1)+ (α, β)/P̃(Y).

The second statement follows by choosing α = 0 and noting that

P(Zχ− − Zχ− > x | Zχ − Zχ− = y, χ < ∞) = P(ξ > x + y | ξ > y).

The third claim is obtained from the identity

E[e−αχ−βZχ | χ < ∞] = E[exp(−αGZχ− − βZχ−) | χ < ∞]
× E[exp(−α[χ −G

Z

χ−] − β[Zχ − Zχ−]) | χ < ∞]
and (3). This completes the proof.
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Let us now calculate the transform of (GZ∞, Z∞) using Theorem 3: for α, β ≥ 0, we have

E exp(−αGZ∞ − βZ∞)

= − EZ1
�−Z(α)− β

α − ψ−X(β)− ψ−Y (�−Z(α))

(
1 − ψ−Y (β)− ψ−Y (�−Z(α))

α − ψ−X(β)− ψ−Y (�−Z(α))

)−1

= − EZ1[�−Z(α)− β]
α − ψ−X(β)− ψ−Y (β)

,

in accordance with the standard fluctuation identity.
Note that Theorem 4.7 of [20] is recovered upon combining the particular-case results of

this theorem with Proposition 3, at least if Y is compound Poisson. There is also another way
to see that P(Zχ− ≤ x | χ < ∞) = P(X∞ ≤ x). Indeed, one can ‘cut away’ certain pieces of
the path of Z; Schmidli [33] made this precise by time reversal of Z. However, his argument
cannot be used to find the distribution of G

Z

χ−.
We end this subsection by remarking that similar formulae can be derived if ξ is not

necessarily positive. However, the system of Wiener–Hopf relations then becomes larger and
no explicit results can be obtained unless some structure is imposed, for instance that Z has
downward phase-type jumps.

5. Asymptotics of the maximum

In this section, we study the tail asymptotics of P(Z∞ > x) and its local version, P(Z∞ ∈
(x, x + T ]), for fixed T > 0 as x → ∞, where Z is a Lévy process drifting to −∞. The
motivation for studying this problem stems from risk theory; the probability P(Z∞ > x) is
often called the ruin probability.

It is our aim to show that the embedding approach is a natural and powerful method for
studying tail asymptotics for the maximum, regardless of the specific assumptions on the Lévy
measure (e.g. that it be light tailed or heavy tailed). Relying on random walk results, for
which we refer the reader to [25] for an overview, we study both the global and the local tail
asymptotics in three different regimes. These regimes are respectively referred to as the Cramér
case, the intermediate case, and the subexponential case. Interestingly, all known results on
these asymptotics for Lévy processes have been derived on a case-by-case basis (indeed, the
Cramér and global subexponential cases have been successfully examined elsewhere). Most
importantly, since the embedding technique is a uniform approach that does not rely on the
specific form of the tail of the Lévy measure, it allows us to fill the gaps in the literature. For
instance, our results concerning the intermediate case and the local subexponential case are
new. More results (and references) on asymptotics for Lévy processes can be found in [17]
and [24].

In order to apply the embedding approach, we writeZ as a sum of two independent processes,
X and Y . ProcessX has small jumps (�X([1,∞)) = 0), and process Y is a compound Poisson
subordinator with jumps exceeding 1. This decomposition has recently been used by Doney [16]
and Pakes [29] in the context of asymptotics. We set λ = �Z([1,∞)) ∈ [0,∞), and write ξ
for a generic jump of Y ; its distribution function is given by z 
→ �Z([1, z])/λ. If λ = 0 then
we set ξ = 0. The random walk {Sqn } introduced in Subsection 2.1 plays an important role for
q = 0. For notational convenience, we write Sn for S0

n , i.e. S is a random walk with step size
distribution ξ +Xeλ .

The process X has a useful property: for any η > 0, both E exp(ηXeλ) and E exp(ηXeλ)
are finite. Chernoff’s inequality shows that both P(Xeλ > x) and P(Xeλ > x) therefore decay
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faster than any exponential. To see that the moment generating functions are finite, first observe
that, for Re β = 0, by the PRS identity,

E exp(βXeλ) = E exp(βXeλ)E exp(βXeλ).

This identity can be extended to Re β > 0 by analytic continuation since, on this domain,

E exp(βXeλ) = λ

λ+�X(−iβ)
< ∞,

where the finiteness follows from the fact that �X is supported on (−∞, 1). It is trivial that
E exp(βXeλ) is analytic for Re β > 0; hence, the claim is obtained.

5.1. The Cramér case

First we deal with the Cramér case, i.e. when there exists some ω ∈ (0,∞) for which
E eωZ1 = 1.

Given ω, we can define an associated probability measure Pω such that Z is a Lévy process
under Pω with Lévy exponent�Z(u−iω). This measure plays an important role in the following
result, which is due to Bertoin and Doney [8]. Even though the original proof is relatively short,
it is instructive to see how the embedding approach recovers the result. The case where Z has
a discrete ladder structure is excluded, as random walk identities then directly apply.

Theorem 5. LetZ be a Lévy process for which 0 is regular for (0,∞). Moreover, suppose that
there is some ω ∈ (0,∞) such that E eωZ1 = 1 and EZ1eωZ1 < ∞. Then, as x → ∞ we have

P(Z∞ > x) ∼ Cω

ω EZ1eωZ1
e−ωx,

where

logCω = −
∫ ∞

0
t−1(1 − e−t )[P(Zt > 0)+ Pω(Zt ≤ 0)] dt. (5)

Moreover, for any T > 0, as x → ∞ we have

P(Z∞ ∈ (x, x + T ]) ∼ Cω

ω EZ1eωZ1
(1 − e−ωT )e−ωx.

Proof. As the reader can readily verify, the second claim follows immediately from the first.
Let us study the random walk Sn under the present assumptions. First note that E eωZ1 = 1

is equivalent to E exp(ωXeλ)E eωξ = 1. Thus, by Lemma 1 of [21] (the step size distribution
is nonlattice),

P
(

sup
n≥1

Sn > x
)

∼ exp

(
−

∞∑
n=1

1

n
{P(Sn > 0)+ E[eωSn; Sn ≤ 0]}

)
1

ω E S1eωS1
e−ωx.

Since Xeλ has a finite moment generating function, by Lemma 2.1 of [29] we have

P(Z∞ > x) = P
(
Xeλ + sup

n≥1
Sn > x

)

∼ exp

(
−

∞∑
n=1

1

n
{P(Sn > 0)+ E[eωSn; Sn ≤ 0]}

)
E eωXeλ

ω E S1eωS1
e−ωx.
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The rest of the proof consists of translating ‘random walk terminology’into ‘Lévy terminology’.
For this, we suppose that the ladder process ofX is normalized such that, for α > 0 and β ∈ R,

α +�X(β) = κX(α,−iβ)κ̂X(α, iβ),

and similarly for Z.
The quantity 1 − E eiβS1 = �Z(β)/(λ + �X(β)) has both a ‘random walk’ Wiener–Hopf

decomposition and a ‘Lévy’ Wiener–Hopf decomposition, and their uniqueness leads to the
identity

exp

(
−

∞∑
n=1

1

n
E[eiβSn; Sn > 0]

)
= κZ(0,−iβ)

κX(λ,−iβ)
.

Similarly, since 1 − E e(ω+iβ)S1 = �Z(β − iω)/[λ+�X(β − iω)], we have

exp

(
−

∞∑
n=1

1

n
E[e(ω+iβ)Sn; Sn ≤ 0]

)
= κ̂Z(0, iβ + ω)

κ̂X(λ, iβ + ω)
.

Using the facts that E eωX(eλ) = κX(λ, 0)/κX(λ,−ω) (cf. Equation (VI.1) of [7]) and

E S1eωS1 = EZ1eωZ1

λE eωξ
= EZ1eωZ1

λ+�X(−iω)
= EZ1eωZ1

κX(λ,−ω)κ̂X(λ, ω)
(use E eωZ(1) = 1), the claim is obtained with Cω = κZ(0, 0)κ̂Z(0, ω). Corollary VI.10 of [7]
shows that logCω is given by (5).

5.2. The intermediate case

This subsection studies the tail asymptotics of Z∞ under the condition

δ = sup{θ > 0 : E eθZ1 < ∞} > 0, (6)

but we now suppose that we are in the intermediate case, i.e. that δ < ∞ and E eδZ1 < 1. These
assumptions imply that λ ∈ (0,∞).

If D = 1 −D is a probability distribution on R, we write D ∈ S(α), α > 0, if

1. limx→∞D(x + y)/D(x) = e−αy for all y ∈ R;

2.
∫ ∞
−∞ eαyD(dy) < ∞; and

3. limx→∞D(2)(x)/D(x) = 2
∫ ∞
−∞ eαyD(dy),

where D(2) = D ∗ D is the convolution of D with itself. Note that the first requirement
excludes the case where D is concentrated on a lattice. More generally, if µ is a measure with
µ([1,∞)) < ∞, we write µ ∈ S(α) if µ([1, ·])/µ([1,∞)) ∈ S(α).

We remark that if (6) holds and �Z ∈ S(α), then α necessarily equals δ, as the reader can
easily verify.

The following theorem builds on random walk results of [9] for step size distributions in
S(α). It is closely related to Theorem 4.1 of [24], where the tail asymptotics were expressed
in terms of characteristics of the ladder process. Using Proposition 5.3 of [24], this can be
rewritten in terms of the characteristics of Z itself (i.e. its Lévy measure). Here we find the
asymptotics directly in terms of these characteristics (and the tail asymptotics forZ1); this leads
to a new asymptotic expression. Note that our underlying assumptions are the same as those
of [24].
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Theorem 6. Let Z be a Lévy process drifting to −∞ for which δ ∈ (0,∞) and E eδZ1 < 1. If
�Z ∈ S(δ) then E eδZ∞ < ∞ and P(Z∞ ≤ ·) ∈ S(δ); in fact, as x → ∞ we have

P(Z∞ > x) ∼ − E eδZ∞

log E eδZ1
�Z((x,∞)) ∼ − E eδZ∞

E eδZ1 log E eδZ1
P(Z1 > x).

Moreover, under these assumptions, as x → ∞ we have, for any T > 0,

P(Z∞ ∈ (x, x+T ]) ∼ − E eδZ∞

log E eδZ1
�Z((x, x+T ]) ∼ − E eδZ∞

E eδZ1 log E eδZ1
P(Z1 ∈ (x, x+T ]).

Proof. It suffices to prove the first asymptotic equivalences; for the proof of the relationship
between the tail of the Lévy measure and the tail of the marginal distribution, we refer the
reader to Theorem 3.1 of [29].

With the embedding in mind, we first note that, by Lemma 2.1 of [29], we have

P(ξ +Xeλ > x) ∼ E exp(δXeλ)P(ξ > x).

Since E eδZ1 < 1 is equivalent to E eδS1 < 1, we may apply Theorem 1 of [9], which states
(using Spitzer’s identity) that

P
(

sup
n≥1

Sn > x
)

∼ E exp(δXeλ)

1 − E eδξ E exp(δXeλ)
E exp

(
δ sup
n≥1

Sn

)
P(ξ > x).

Some elementary calculations show that

E exp(δXeλ)

1 − E eδξ E exp(δXeλ)
= 1

(λ+�X(−iδ)/λ)− E eδξ
= λ

�Z(−iδ)
= − λ

log E eδZ1
.

Using the fact that the moment generating function of Xeλ is finite, we can again apply
Lemma 2.1 of [29], to see that

P
(
Xeλ + sup

n≥1
Sn > x

)
∼ − λ

log E eδZ1
E exp(δXeλ)E exp

(
δ sup
n≥1

Sn

)
P(ξ > x)

= − λE eδZ∞

log E eδZ1
P(ξ > x),

as claimed.
The second assertion is a consequence of the first claim and the observations that

P(Z∞ > x + T ) ∼ e−γ T P(Z∞ > x) and �Z((x + T ,∞)) ∼ e−γ T �Z((x,∞)).

This completes the proof.

It is readily checked that the statements of this theorem are equivalent to

P(Z∞ > x) ∼ − δ E eδZ∞

log E eδZ1

∫ ∞

x

�Z((y,∞)) dy.

In this expression, we can formally let δ → 0, so that the prefactor of the integral tends to
1/EZ1. This naturally leads to the subexponential case.
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5.3. The subexponential case

A distribution function D on R+ is called subexponential, abbreviated as D ∈ S, if,
in the notation of the previous subsection, D(2)(x) ∼ 2D(x). An important subclass of
subexponential distributions have finite mean and satisfy

∫ x

0
D(y)D(x − y) dy ∼ 2

∫ ∞

0
D(y) dyD(x);

we then write D ∈ S∗. More generally, for a measure µ, we write µ ∈ S or µ ∈ S∗ if
µ([1,∞)) < ∞ and µ([1, ·])/µ([1,∞)) ∈ S or, respectively, µ([1, ·])/µ([1,∞]) ∈ S∗.

Suppose that the integrated tail of the Lévy measure,

�I((x,∞)) =
∫ ∞

x

�Z((y,∞)) dy,

is subexponential, i.e. �I ∈ S. It is known that this property is implied by � ∈ S∗. Recall
that we are interested in both the local and global tail asymptotics of Z∞. As opposed to in the
Cramér and intermediate cases, here the local asymptotics does not follow immediately from
the global asymptotics. This local asymptotics, of which a proof is therefore nontrivial, appear
here for the first time. Several different proofs have been given for the global version. For the
first proof, we refer the reader to [3, Corollary 2.5]; see also [27], [12], [24], and [11].

Theorem 7. Let Z be an integrable Lévy process with EZ1 < 0 and �I ∈ S. Then

P(Z∞ ≤ ·) ∈ S;
in fact, as x → ∞ we have

P(Z∞ > x) ∼ −
∫ ∞
x
�Z((y,∞)) dy

EZ1
∼ −

∫ ∞
x

P(Z1 > y) dy

EZ1
.

Moreover, if �Z ∈ S∗ and �Z is (ultimately) nonlattice, then as x → ∞ we have, for any
T > 0,

P(Z∞ ∈ (x, x + T ]) ∼ −
∫ x+T
x

�Z((y,∞)) dy

EZ1
∼ −

∫ x+T
x

P(Z1 > y) dy

EZ1
.

Proof. We have �Z((x,∞)) ∼ P(Z1 > x) (see, e.g. [29]); hence, it suffices to prove only
the first equivalences.

Since �I ∈ S, it is in particular long tailed, so, for z ∈ R,

∫ ∞

x

P(ξ > y + z) dy ∼
∫ ∞

x

P(ξ > y) dy.

Fix some η > 0. The latter observation implies that the function x 
→ xη
∫ ∞

1∨log x P(ξ > y) dy
is locally bounded and regularly varying at infinity with index η, so that, by the uniform
convergence theorem for regularly varying functions, for large x we have

∫ ∞

x

P(ξ > y − z) dy ≤ (1 + eηz)
∫ ∞

x

P(ξ > y) dy,
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uniformly for z ∈ [0, x − 1]. Since Xeλ ≤ Xeλ and E exp(ηXeλ) < ∞, this implies that
∫ ∞

x

P(ξ +Xeλ > y) dy

≤
∫ ∞

x

P(ξ +Xeλ > y) dy

= O

(∫ ∞

x

P(ξ > y) dy

)
+

∫ ∞

x

∫
(x−1,y−1]

P(ξ > y − z)PXeλ
(dz) dy

+
∫ ∞

x

P(Xeλ > y − 1) dy,

and the last two terms are readily seen to beO(P(Xeλ > x)) andO(e−ηx), respectively. Using
Chernoff’s inequality and the fact that ξ is heavy tailed, it follows that

∫ ∞

x

P(ξ +Xeλ > y) dy = O

(∫ ∞

x

P(ξ > y) dy

)
.

This shows that we can apply dominated convergence after Veraverbeke’s theorem (see,
e.g. [4, Theorem X.9.1(a)]), to see that

P
(

sup
n≥1

Sn > x
)

∼ − 1

E[Xeλ + ξ ]
∫ ∞

x

P(Xeλ + ξ > y) dy

∼ − 1

E[Xeλ + ξ ]
∫ ∞

x

P(ξ > y) dy.

The right-hand side is readily seen to be equivalent to
∫ ∞
x
�Z((y,∞)) dy/| EZ1|, by definition

of ξ . Since this is the tail of a subexponential random variable, the first claim follows from the
fact that Xeλ has a lighter tail.

The second assertion is proven similarly, but with Veraverbeke’s theorem replaced by its
local counterpart; see Equation (18) of [6]. The rest of the argument is simpler than that for the
‘global’ version, since P(Xeλ + ξ > x) ∼ P(ξ > x) as� ∈ S∗ ⊂ S. A lattice version can also
be given. This proves the theorem.

A different proof for the first claim can be given based on recent results of Foss and
Zachary [18]. Indeed, as noted in Section 4, a discrete-time Markov additive process is
embedded in the lower diagram of Figure 1. In order to verify the assumptions of [18], we
suppose that Z is not spectrally positive, so that there exist M− ≤ 0 and M+ ≥ 0 such that
λ± = �Z(R \ (M−,M+)) < ∞ and

∫
R\(M−,M+) z�Z(dz) < 0. We can write Z as a sum of

X and Y , where Y is now a compound Poisson process with Lévy measure �Z restricted to
R \ (M−,M+). Further details are left to the reader.
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[20] Huzak, M., Perman, M., Šikić, H. and Vondraček, Z. (2004). Ruin probabilities and decompositions for

general perturbed risk processes. Ann. Appl. Prob. 14, 1378–1397.
[21] Iglehart, D. (1972). Extreme values in the GI/G/1 queue. Ann. Math. Statist. 43, 627–635.
[22] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin.
[23] Kennedy, J. (1992). A probabilistic view of some algebraic results in Wiener–Hopf theory for symmetrizable

Markov chains. In Stochastics and Quantum Mechanics, World Scientific, River Edge, NJ, pp. 165–177.
[24] Klüppelberg, C., Kyprianou, A. E. and Maller, R. A. (2004). Ruin probabilities and overshoots for general

Lévy insurance risk processes. Ann. Appl. Prob. 14, 1766–1801.
[25] Korshunov, D. (1997). On distribution tail of the maximum of a random walk. Stoch. Process. Appl. 72, 97–103.
[26] Kou, S. and Wang, H. (2003). First passage times of a jump diffusion process. Adv. Appl. Prob. 35, 504–531.
[27] Maulik, K. and Zwart, B. (2006). Tail asymptotics for exponential functionals of Lévy processes. Stoch.

Process. Appl. 116, 156–177.
[28] Mordecki, E. (2002). The distribution of the maximum of a Lévy process with positive jumps of phase-type.

Theory Stoch. Process. 8, 309–316.
[29] Pakes, A. G. (2004). Convolution equivalence and infinite divisibility. J. Appl. Prob. 41, 407–424.
[30] Pistorius, M. (2006). On maxima and ladder processes for a dense class of Lévy process. J. Appl. Prob. 43,

208–220.
[31] Prabhu, N. U. (1998). Stochastic Storage Processes. Springer, New York.
[32] Rolski, T., Schmidli, H., Schmidt, V. and Teugels, J. L. (1999). Stochastic Processes for Insurance and

Finance. John Wiley, Chichester.
[33] Schmidli, H. (2001). Distribution of the first ladder height of a stationary risk process perturbed by α-stable

Lévy motion. Insurance Math. Econom. 28, 13–20.

https://doi.org/10.1239/aap/1158685001 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158685001

	1 Introduction
	1.1 Factorization embeddings
	1.2 Outline and contribution of the paper: three applications

	2 On factorization identities
	2.1 Background
	2.2 The PRS factorization and ladder characteristics

	3 Fluctuation theory with phase-type upward jumps
	3.1 The PRS factorization

	4 Perturbed risk models
	4.1 Generalities
	4.2 Spectrally positive Z

	5 Asymptotics of the maximum
	5.1 The Cramér case
	5.2 The intermediate case
	5.3 The subexponential case

	Acknowledgements
	References

