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Abstract

Objectives: To evaluate the prevalence of hospital-onset bacteremia and fungemia (HOB), identify hospital-level predictors, and to evaluate the
feasibility of an HOB metric.

Methods: We analyzed 9,202,650 admissions from 267 hospitals during 2015–2020. An HOB event was defined as the first positive blood-
culture pathogen on day 3 of admission or later. We used the generalized linear model method via negative binomial regression to identify
variables and risk markers for HOB. Standardized infection ratios (SIRs) were calculated based on 2 risk-adjusted models: a simple model
using descriptive variables and a complex model using descriptive variables plus additional measures of blood-culture testing practices.
Performance of each model was compared against the unadjusted rate of HOB.

Results: Overall median rate of HOB per 100 admissions was 0.124 (interquartile range, 0.00–0.22). Facility-level predictors included bed size,
sex, ICU admissions, community-onset (CO) blood culture testing intensity, and hospital-onset (HO) testing intensity, and prevalence (all P<
.001). In the complex model, CO bacteremia prevalence, HO testing intensity, and HO testing prevalence were the predictors most associated
with HOB. The complex model demonstrated better model performance; 55% of hospitals that ranked in the highest quartile based on their
raw rate shifted to a lower quartile when the SIR from the complex model was applied.

Conclusions: Hospital descriptors, aggregate patient characteristics, community bacteremia and/or fungemia burden, and clinical blood-cul-
ture testing practices influence rates of HOB. Benchmarking anHOBmetric is feasible and should endeavor to include both facility and clinical
variables.

(Received 31 May 2022; accepted 2 August 2022; electronically published 9 September 2022)

Central-line–associated bloodstream infections (CLABSIs) have
been a component of the US Centers for Medicare and
Medicaid (CMS) national reporting programs since 2011.
Despite setbacks in reduction of CLABSI related to the coronavirus
disease 2019 (COVID-19) pandemic,1 CLABSI rates have
decreased overall from historic prepandemic highs.2 Hospital-
onset bacteremia and fungemia (HOB) has been suggested as a
more comprehensive quality metric that may further enhance
patient safety and infection prevention.3–5 An HOB metric could
be algorithmically standardized using electronic health records
(EHRs), which could mitigate manual attribution to a central line
and potentially make HOB an objective quality measure that is
optimized for reporting to incentive programs.3–5

Non-CLABSI bloodstream infections have also been shown to
cause significant morbidity, mortality, and cost. Ridgway et al
reported non-National Healthcare Safety Network (NHSN)–
reportable bloodstream infection mortality of 23.6% and median
cost of $86,927 (vs 6.7% and $62,929 for propensity-matched con-
trols, respectively).6 Similar to CLABSI, an HOB metric would
likely require risk adjustment for effective use in incentive pro-
grams. Advancements in accessibility of data in EHR systems
may provide opportunities to standardize and improve risk adjust-
ment by including factors beyond facility descriptors.7–10

In this study, we evaluated the prevalence of HOB events and
identified hospital-level predictors associated with HOB using stat-
istical models. Standardized infection ratios (SIRs), defined as the
ratio of observed number of events (HOBs) divided by the pre-
dicted (expected) number of events, were calculated based on a
simple model regression analysis (using easily extractable factors
from EHRs as variables) and based on a complex model (which
further included blood-culture practice variables). Hospital
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rankings based on the unadjusted HOB rate and on the model-
based SIRs were compared.

Methods

Study design and population

This study was a retrospective, ecological study based on EHR
microbiological, medication, and administrative data from adult
patients (aged ≥18 years) admitted between October 1, 2015,
and February 28, 2020, to any of 267 acute-care hospitals that con-
tribute to the BD Insights and Research Database (Becton
Dickinson, Franklin Lakes, NJ), which contains electronically cap-
tured laboratory, pharmacy, patient demographics, administrative
data, and admission, discharge, and transfer data feeds.11–13 The
distribution of hospitals in the database is similar to that of the
United States as a whole.13 The study was approved as a limited
retrospective data set for epidemiological analyses, exempted from
consent by the New England Institutional Review Board and
Human Subjects Research Committee (Wellesley,MA). It was con-
ducted in compliance with Health Insurance Portability and
Accountability Act requirements.

Outcomes and definitions

For all analyses, the date of admission was considered day 1. An
HOB event was defined when the following 2 requirements were
met: (1) the first positive blood culture for a noncommensal organ-
ism (as defined by the Centers for Disease Control and
Prevention14) within the hospital-onset (HO) period (day 3 or
greater of hospitalization); and (2) receipt of a new antimicrobial
(not previously administered in the prior 2 calendar days) with a
first qualified antimicrobial day in the window period extending 2
calendar days before and 2 calendar days after the blood-culture
collection (Supplementary Fig. S1 online). This definition is similar
to the one used in the CDC Hospital Toolkit for Adult Sepsis
Surveillance.15 At the time of this study, the definition of an
NHSN HOB event had not been finalized.

Testing intensity was defined as the number of total blood cul-
tures obtained in either the community-onset (CO) period, defined
as the first 2 days of hospitalization, or theHOperiod, defined as day
3 or after hospital admission, divided by the number of total aggre-
gate hospital admissions that had any blood culture performed.
Conceptually, testing intensity reflects the cumulative blood cultures
collected among admissions with any blood culture. Testing preva-
lence was defined as the number of admissions with any blood cul-
ture performed in the period (CO or HO) divided by the total
number of aggregate admissions. Conceptually, this metric reflects
the overall proportion of admissions with blood-culture testing.

Community-onset bacteremia or fungemia (COB) was defined
as a first positive blood culture with a Centers for Disease Control
and Prevention (CDC)-defined pathogen within the first 2 days of
hospital admission. A subanalysis revealed that only 1.1% of COB
admissions (N= 127,710) went on to have a subsequent non-
matching pathogen-positive blood culture during the HO period.
The first positive blood culture positive for a noncommensal
pathogen was used to designate an admission as COB or HOB.

Statistical analysis

We approached the statistical analysis in 3 steps: (1) We identified
the candidate variables that influence HOB rates using bivariate
analysis. (2) We constructed simple and complex models for
risk-adjusting HOB using SIRs derived from regression models

and assess best model fit. (3)We compared hospital rankings using
the raw, unadjusted HOB rates versus using risk adjustment from
the models.

Step 1.HOB rates were calculated as the number of HOB events
per 100 admissions for quarterly aggregated data. Bivariate analysis
using general linear models was performed to explore the correla-
tion between HOB rate and the following variables of interest:

(1) Clinical measures. COB prevalence (rate of COB events per
100 admissions), percentage of intensive care unit (ICU)
admissions (per all admissions), average length of hospital stay
(LOS) among hospitalized patients (in days per admission),
blood-culture prevalence, and intensity.

(2) Patient demographics: Number of female patients per 100
admissions and percentage of patients in each age group
(18–40, 41–64, 65–80, and >80 years).

(3) Facility characteristics: bed size, medical school or non–medi-
cal school affiliation, and urban or rural status.

Step 2. To evaluate HOB rates with regression models, we used
negative binomial regression methods to account for overdisper-
sion of data, and we calculated incident rate ratios for relevant var-
iables. We conducted 2 modeling analyses: a simple model and a
complex model. The simple model used hospital-level variables for
which data were easily obtained from EHRs and/or already report-
able to the NHSN. Candidate variables considered in the simple
model included facility- and hospital-level demographics of
patients. Our complex model included variables in the simple
model plus clinical practices of blood-culture testing divided into
CO or HO blood-culture testing intensity and prevalence. To cre-
ate the most parsimonious model, all continuous variables were
partitioned into quartiles in the complex model.

For both models, we assessed higher model fit using Akaike
information criteria (AIC) and Bayesian information criteria
(BIC) based on the full data in the study cohort (3,498 quarters
of aggregated data with 9,202,650 admissions). In addition, we
used cross-validation methods in variable selection and confirmed
that the full data and validation models had the same best set of
variables in the final models.

Step 3.We compared hospital rankings based on the unadjusted
(observed) HOB rate compared with rankings based on SIRs from
the simple- and complex-adjusted models. We calculated the
agreement test γ (gamma) statistic, Spearman correlation, and con-
fidence intervals. We used the calculated 1-year SIR data (from
2019) as an example for comparison rankings. Finally, we com-
pared rankings of the fourth quartile of unadjusted HOB rates
of hospitals to their subsequent ranking using adjusted model
SIRs. All analyses were conducted using SAS version 9.4 software
(SAS Institute, Cary, NC).

Results

The study included 9,202,650 patient admissions that were associ-
ated with 18,747 HOB events from 267 acute-care hospitals in the
United States. Medical-school–affiliated hospitals accounted for
38.6% of hospitals, and urban facilities comprised 61.1% of all
facilities. Among hospitals in this study, 33.7% had <100 beds,
42.3% had 100–300 beds, and 24.0.1% had >300 beds.

HOB prevalence and bivariate analysis

Over the study period, the median rate of HOB events per 100
admissions was 0.124 (interquartile range [IQR], 0.00–0.22).

1318 Kalvin C. Yu et al

https://doi.org/10.1017/ice.2022.211 Published online by Cambridge University Press

https://doi.org/10.1017/ice.2022.211
https://doi.org/10.1017/ice.2022.211


Table 1. Descriptive Statistics of HOB Rate and Bivariate Analysis Results

Variables Admissions HOB Events

HOB Rate per 100 Admissions

Lower Quartile Median Upper Quartile Mean SD P Value

Overall 9,202,650 18,747 0.000 0.124 0.222 0.152 0.171

Year .1108

2015 345,954 844 0.052 0.140 0.250 0.175 0.168

2016 1,719,915 3,741 0.000 0.128 0.234 0.160 0.174

2017 2,049,727 3,953 0.027 0.126 0.213 0.147 0.152

2018 2,314,695 4,498 0.000 0.121 0.218 0.147 0.163

2019 2,265,115 4,585 0.000 0.121 0.221 0.151 0.190

2020 507,244 1,126 0.000 0.124 0.230 0.156 0.161

COB rate per 100 admissions <.0001

1st quartile 2,106,482 3,026 0.000 0.049 0.144 0.098 0.148

2nd quartile 2,726,188 5,512 0.067 0.140 0.229 0.162 0.140

3rd quartile 2,516,053 6,190 0.070 0.153 0.254 0.185 0.185

4th quartile 1,853,927 4,019 0.000 0.140 0.234 0.163 0.191

ICU admissions, % <.0001

Not reported 391,894 1,176 0.000 0.097 0.246 0.207 0.326

1st quartile 1,604,752 2,268 0.000 0.063 0.154 0.099 0.154

2nd quartile 2,639,107 4,113 0.071 0.137 0.208 0.149 0.112

3rd quartile 2,283,445 4,838 0.047 0.137 0.240 0.159 0.144

4th quartile 2,283,452 6,352 0.000 0.156 0.271 0.181 0.167

Test prevalence <.0001

1st quartile 2,539,201 4,005 0.000 0.084 0.185 0.118 0.130

2nd quartile 2,570,229 4,899 0.053 0.138 0.219 0.152 0.133

3rd quartile 2,533,628 6,268 0.074 0.160 0.255 0.188 0.180

4th quartile 1,559,592 3,575 0.000 0.109 0.212 0.150 0.217

CO testing prevalence .1907

1st quartile 2,647,568 4,314 0.000 0.096 0.196 0.125 0.136

2nd quartile 2,688,690 6,010 0.062 0.145 0.241 0.183 0.215

3rd quartile 2,458,568 5,860 0.070 0.159 0.253 0.182 0.166

4th quartile 1,407,824 2,563 0.000 0.087 0.182 0.118 0.143

HO testing prevalence <.0001

1st quartile 1,492,842 1,769 0.000 0.000 0.090 0.060 0.110

2nd quartile 1,983,166 2,440 0.000 0.085 0.155 0.102 0.105

3rd quartile 2,435,148 4,349 0.086 0.150 0.225 0.161 0.115

4th quartile 3,291,494 10,189 0.157 0.245 0.354 0.284 0.227

Test intensity <.0001

Not calculateda 2,009 0 0.000 0.000 0.000 0.000 0.000

1st quartile 1,344,262 2,329 0.000 0.000 0.131 0.083 0.166

2nd quartile 1,831,097 2,602 0.000 0.093 0.172 0.111 0.113

3rd quartile 2,588,338 4,551 0.080 0.148 0.227 0.160 0.112

4th quartile 3,436,944 9,265 0.127 0.217 0.333 0.256 0.216

CO testing intensity <.0001

Not calculateda 2,009 0 0.000 0.000 0.000 0.000 0.000

1st quartile 2,553,321 7,138 0.000 0.155 0.288 0.20 0.239

2nd quartile 2,595,848 5,248 0.048 0.139 0.238 0.16 0.141

(Continued)
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Table 1. (Continued )

Variables Admissions HOB Events

HOB Rate per 100 Admissions

Lower Quartile Median Upper Quartile Mean SD P Value

3rd quartile 2,070,811 3,050 0.000 0.098 0.183 0.12 0.124

4th quartile 1,980,661 3,311 0.000 0.110 0.203 0.13 0.144

HO testing intensity <.0001

Not calculateda 2,009 0 0.000 0.000 0.000 0.000 0.000

1st quartile 754,629 448 0.000 0.000 0.068 0.05 0.095

2nd quartile 1,762,768 2,074 0.000 0.097 0.159 0.11 0.112

3rd quartile 2,821,882 4,717 0.087 0.151 0.223 0.16 0.105

4th quartile 3,861,362 11,508 0.163 0.256 0.366 0.29 0.226

Average LOS <.0001

1st quartile 986,567 900 0.000 0.000 0.118 0.069 0.106

2nd quartile 2,228,773 3,070 0.046 0.115 0.184 0.125 0.115

3rd quartile 2,812,385 4,787 0.071 0.142 0.225 0.155 0.115

4th quartile 3,174,925 9,990 0.105 0.230 0.354 0.259 0.245

Sex, female, % <.0001

1st quartile 2,558,016 7,124 0.078 0.173 0.305 0.220 0.237

2nd quartile 2,750,286 5,687 0.044 0.134 0.238 0.156 0.140

3rd quartile 2,344,363 3,770 0.000 0.117 0.192 0.133 0.131

4th quartile 1,549,985 2,166 0.000 0.072 0.164 0.098 0.125

Patients aged 18–40 y, % .3053

1st quartile 1,441,315 2,895 0.000 0.083 0.213 0.145 0.238

2nd quartile 2,527,501 4,340 0.056 0.131 0.209 0.143 0.119

3rd quartile 3,043,248 6,505 0.068 0.146 0.246 0.168 0.137

4th quartile 2,190,586 5,007 0.000 0.111 0.226 0.152 0.163

Patients aged 41–64 y, % <.0001

1st quartile 1,485,852 2,032 0.000 0.060 0.159 0.096 0.148

2nd quartile 2,353,286 3,463 0.041 0.124 0.196 0.134 0.120

3rd quartile 2,389,590 4,116 0.044 0.129 0.207 0.142 0.128

4th quartile 2,973,922 9,136 0.067 0.204 0.347 0.236 0.231

Patients aged 65–80 y, % <.0001

1st quartile 2,303,940 5,775 0.000 0.131 0.261 0.170 0.170

2nd quartile 2,619,330 5,123 0.040 0.134 0.225 0.148 0.132

3rd quartile 2,641,306 4,779 0.041 0.128 0.214 0.142 0.126

4th quartile 1,638,074 3,070 0.000 0.100 0.209 0.147 0.233

Patients aged >80 y, % <.0001

1st quartile 2,980,076 8,973 0.060 0.176 0.338 0.227 0.230

2nd quartile 2,512,598 4,295 0.052 0.133 0.220 0.145 0.118

3rd quartile 2,248,231 3,288 0.000 0.116 0.191 0.128 0.147

4th quartile 1,461,745 2,191 0.000 0.073 0.178 0.108 0.141

Bed size (3-category) <.0001

< 100 beds 597,381 484 0.000 0.000 0.108 0.069 0.161

100–300 beds 3,374,473 5,606 0.055 0.128 0.216 0.157 0.170

> 300 beds 5,230,796 12,657 0.127 0.201 0.301 0.227 0.141

Bed size (refined grouping) <.0001

1–50 beds 147,420 78 0.000 0.000 0.000 0.054 0.200

(Continued)
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HOB event rates did not significantly change over time (Table 1).
Bivariate correlation analysis showed that all candidate variables in
the analysis were correlated with HOB except for CO testing preva-
lence and percentage of patients aged 18–40 years (Table 1).

Variables associated with HOB: Simple model

Using the simplemodel, we identified the following as significant pre-
dictors: higher COB rate, longer average LOS, facilities with larger bed
size, higher rate of ICU admissions, urban setting, higher percentage
of patients aged 41–64 years, and higher percentage of male patients.
The proportion of patients aged >80 years was negatively associated
with HOB rates (Table 2 and Supplementary Table S1 online).

Variables associated with HOB: Complex model

Predictors associated with higher HOB rates in the complex model
were increased COB, increased HO blood-culture testing intensity,
increased HO test prevalence, fourth-quartile % ICU admission,
fourth-quartile LOS, larger bed size, and percentage of patients aged
41–64 years (all P < .001) (Table 3 and Supplementary Table S2
online). The most influential factor was HO testing intensity.
Compared with hospitals in the first quartile of HO test intensity,
HOB rates per 100 admissions were expected to be higher by a factor
of 1.58 for hospitals in the second quartile (ie, 58% higher), by a fac-
tor of 1.93 for hospitals in the third quartile (ie, 93%higher), and by a
factor of 2.39 for hospitals in the fourth quartile (ie, 139% higher).
Similar interpretations applied to other model predictors. Variables
negatively associated with HOB rates were increased CO blood-cul-
ture testing intensity and percentage of patients >80 years. The var-
iable of urban (vs rural) did not remain significant and was therefore
not included in the final complex model. Medical-school affiliation
was not significant in either model.

In terms of model fit, the complex model afforded a 4% reduc-
tion in AIC and a 3.4% reduction in BIC compared with the simple
model, indicating improvement in model fit.

Table 1. (Continued )

Variables Admissions HOB Events

HOB Rate per 100 Admissions

Lower Quartile Median Upper Quartile Mean SD P Value

51–100 beds 449,961 406 0.000 0.000 0.144 0.085 0.109

101–200 beds 1,395,467 1,889 0.000 0.106 0.186 0.129 0.129

201–300 beds 1,979,006 3,717 0.085 0.151 0.242 0.193 0.205

301–500 beds 3,051,740 5,877 0.113 0.168 0.252 0.196 0.127

≥500 beds 2,179,056 6,780 0.201 0.285 0.379 0.300 0.147

Medical school affiliation <.0001

No 3,246,090 4,823 0.000 0.077 0.176 0.108 0.144

Yes 5,956,560 13,924 0.097 0.168 0.282 0.212 0.185

Urban or rural <.0001

Rural 2,401,605 4,230 0.000 0.073 0.185 0.119 0.174

Urban 6,801,045 14,517 0.059 0.143 0.242 0.170 0.166

Note. CO, community-onset; COB, community-onset bacteremia; HO, hospital-onset; HOB, hospital-onset bacteremia; ICU, intensive care unit; LOS, length of stay; SD, standard deviation.
aDue to zero denominator.

Table 2. HOB Predictors in the Simple Modela With Estimated Incidence Rate
Ratiosb

Parameter IRR (95% CI)c P Value

COB rate per 100 admissions 1.39 (1.33–1.45) <.0001

LOS, mean d 1.20 (1.18–1.22) <.0001

Bed size

1–100 beds Reference

101–200 beds 1.40 (1.26–1.56) <.0001

201–300 beds 1.85 (1.66–2.05) <.0001

301–500 beds 1.98 (1.78–2.19) <.0001

≥500 beds 2.23 (2.00–2.49) <.0001

ICU admissions, %

<2nd quartile Reference

3rd quartile 1.12 (1.06–1.18) <.0001

4th quartile 1.19 (1.12–1.26) <.0001

Not reported 1.64 (1.49–1.79) <.0001

Sex, female, % 0.99 (0.99–1.00) 0.0017

Patients aged 41-64 y, % 1.02 (1.01–1.02) <.0001

Patients aged >80 y, % 0.97 (0.96–0.97) <.0001

Urban or rural status

Rural Reference

Urban 1.08 (1.03–1.14) 0.0013

Note. CI, confidence interval; COB, community-onset bacteremia; HOB, hospital-onset
bacteremia; ICU, intensive care unit; IRR, incidence rate ratio; LOS, length of stay.
aGoodness-of-fit statistics: Akaike information criteria, 13,409; Bayesian information criteria,
13,501.
bFor model replication purposes, regression coefficients and standard errors are presented in
Supplementary Table S1 (online).
cEstimated increase in HOB relative to the reference. As an example, for hospitals with 101–
200 beds, the IRRwas 1.40. Holding other variables constant in themodel, hospitals with 101–
200 beds are expected to have a HOB rate 1.40 times greater (40% greater) than the hospitals
with 1–100 beds.
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Table 3. HOB Predictors in the Complex Modela with Estimated Incidence Rate Ratiosb

Parameter IRR (95% CI)c P Value

COB rate per 100 admissions

1st quartile Reference

2nd quartile 1.25 (1.17–1.33) <.0001

3rd quartile 1.44 (1.35–1.54) <.0001

4th quartile 1.52 (1.41–1.63) <.0001

HO test intensity

1st quartile Reference

2nd quartile 1.58 (1.41–1.76) <.0001

3rd quartile 1.93 (1.72–2.16) <.0001

4th quartile 2.39 (2.12–2.69) <.0001

CO test intensity

1st quartile Reference

2nd quartile 0.83 (0.79–0.87) <.0001

3rd quartile 0.76 (0.72–0.81) <.0001

4th quartile 0.74 (0.70–0.79) <.0001

HO test prevalence

<2nd quartile Reference

3rd quartile 1.25 (1.18–1.33) <.0001

4th quartile 1.39 (1.30–1.48) <.0001

ICU admissions, %

≤3rd quartile Reference

4th quartile 1.11 (1.05–1.16) <.0001

Not reported 1.61 (1.48–1.74) <.0001

Mean LOS

≤3rd quartile Reference

4th quartile 1.15 (1.09–1.21) <.0001

Bed size

01–100 beds Reference

101–200 beds 1.25 (1.12–1.39) <.0001

201–300 beds 1.49 (1.34–1.65) <.0001

301–500 beds 1.43 (1.29–1.59) <.0001

≥500 beds 1.42 (1.27–1.59) <.0001

Patients aged 41–64 y, %

1st quartile Reference

2nd quartile 1.12 (1.04–1.20) 0.0015

3rd quartile 1.15 (1.07–1.24) <.0001

4th quartile 1.38 (1.28–1.49) <.0001

Patients aged >80 y, %

1st quartile Reference

2nd quartile 0.84 (0.79–0.89) <.0001

3rd quartile 0.79 (0.74–0.84) <.0001

4th quartile 0.83 (0.77–0.90) <.0001

Note. AIC, Akaike information criteria; BIC, Bayesian information criteria; CI, confidence interval; CO, community onset; COB, community-onset bacteremia; HO, hospital onset; HOB, hospital-
onset bacteremia; ICU, intensive care unit; IRR, incidence rate ratio; LOS, length of stay.
aGoodness-of-fit statistics: AIC= 12,882, BIC= 13,042. For the complex model we calculated a 4% reduction in AIC and a 3.4% reduction in BIC compared with the simple model, which indicates
an improvement in model fit.
bFor model replication purposes, regression coefficients and standard errors are presented in Supplementary Table S2 (online).
cEstimated increase in HOB relative to the reference. For example, compared to those hospitals in the first quartile of HO test intensity, hospitals in the second quartile were 1.58 times higher
(58% higher) in HOB rate per 100 admissions.
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Comparison of hospital rankings

We compared rankings of hospitals with the highest (“worst per-
forming” or fourth quartile) observed HOB rates (hospitals 1–51).
Risk adjustment after applying the simple- and complex-model–
derived SIRs resulted in changes in hospital rankings to unique
and different degrees compared to observed HOB rankings
(Fig. 1 and Supplementary Table S3 online).

Agreement test of the rankings showed that the unadjusted
HOB rate had a strong ordinal association with rankings of the
simple model SIR: γ statistic, 0.72 (95% CI, 0.64–0.81) and
Spearman correlation, 0.67 (95% CI,0. 60–0.75). The strength of
association between the unadjusted HOB event rate and com-
plex-model SIR was noticeably lower (γ statistic, 0.56; 95% CI,
0.45–0.67) and Spearman correlation, 0.52 (95% CI, 0.42–0.63).
These findings demonstrate the differential adjustment afforded
by the complex model (Supplementary Table S4 online).

We demonstrated potential real-world application of risk
adjustment by quantifying changes in the top 51 hospitals (fourth
quartile) of observedHOB rate compared with complex-model SIR
rank. Only 23 hospitals (45%) remained in the fourth quartile. The
other 28 hospitals (55%) moved to lower-rank quartiles following
risk adjustment in the complex model (Supplementary Fig. S2
online and Supplementary Table S3 online).

Discussion

SIRs are used by the CDC, CMS, and other stakeholders to express
performance for measures of inpatient care, including healthcare-

associated infections.2,16,17 For the simple-model SIR we included
hospital-level variables already reported to the NHSN or available
in EHRs. The complex model contained the same variables as the
simple model; however, all continuous variables were changed to
categorical quartiles to maximize the efficiency of continuous
covariate support. The changes efficiently covered the range of val-
ues without having undue influence from extreme values and cre-
ated the most parsimonious model. The complex model also
included categorical designations of clinical blood-culture testing
practices, represented by HO and CO blood-culture testing inten-
sity and prevalence. By doing so, we included signals of clinical
acumen for deciding when to obtain blood cultures. For example,
volume of blood-culture burden and time to documentation of
pathogen clearance are standard of practice for endocarditis and
other invasive infections.

Administrative and financial claims data (ie, International
Classification of Disease and/or diagnosis-related group codes)
for risk adjustment are potentially burdensome for hospitals to
send and are not finalized until discharge and billing are com-
pleted. In their absence, blood-culture testing intensity and preva-
lence may serve as a more readily accessible signal of different
patient case mixes at risk for HOB. Of the 51 hospitals representing
the top 25th percentile of observed HOB rates, 28 (55%) shifted to a
lower rank when these factors were accounted for, including 1 hos-
pital that shifted from the highest observed HOB rate to the lowest
quartile. Others have used clinical variables to risk-adjust assess-
ment of infection events10 while respecting the need for standardi-
zation.7 The challenge is creating a standardized metric for HOB

Fig. 1. Hospital rankings for top-quartile hospitals (designated 1–51) based on observed HOB rates compared with the simple- and complex-model–derived SIR ranking.a Gray
bars represent rank of the top quartile of hospitals based on observed unadjusted HOB rate per 100 admissions. Blue diamonds represent the simple model SIR-based rank.
Orange circles represent the complex model SIR-based rank. aFor example, hospital 10 (of 51) is in the top 95th percentile based on observed (unadjusted) HOB; it drops in rank
with simplemodel SIR adjustment to the 56th–60th percentile and further decreases to the 41st–45th percentile in the complexmodel SIR-adjustedmodel. Note that among the 51
hospitals, some also increased in rank after the complex-model SIR adjustment (ie, hospitals 13, 28, 34, 36, 40, 43, 47). Full movements of rankings in all 4 quartiles are summarized
in Supplementary Table S3 (online).
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that is feasible while balancing the need for using clinical factors for
appropriate risk adjustment. To that end, we created the simple
model to help inform the complexmodel that included all variables
from the former plus clinical blood-culture testing practices. The
simple model was ultimately nested within the complex model.

Epidemiologically, unadjusted hospital infection rates will not
account for different patient case mixes among facilities,8–10 sug-
gesting that more nuanced risk adjustment should be explored.
To this end, we endeavored to show preferential adjustment by
the complex-model SIR through a 3-step process: (1)We identified
the predictors of HOB. (2) We assessed the best model fit among
simple-model versus complex-model SIRs. (3) We demonstrated
differentiated SIR ranking between the 2 models and observed
HOB rates. For due diligence, we quantified ranking changes
applied to the top observed HOB quartile of hospitals and showed
higher correlation with simple-model SIR than complex-model
SIR, which suggests that the complex-model SIR is “adjusting
more” while including clinical testing variables. The model-fit sta-
tistics showed that the complex model afforded a noticeable reduc-
tion in AIC and BIC compared with the simple model. This
comparison provided statistical support for the use of the predic-
tors incorporated in the complex model. HO intensity and preva-
lence were strongly associated with HOB. Blood-culture intensity
and prevalence might serve as proxy signals for different clinical
case mixes; they are more readily extractable electronic data ele-
ments compared to a breakdown of infected patients. For example,
neutropenia- or malignancy-related bacteremia, discitis, and pros-
thetics-associated bacteremia are conditions that often require
documentation and clearance of bacteremia,18–20 but the specific
patient case mix may be difficult to capture electronically.
Although we did include proxies for higher-level care such as
medical school affiliation (which fell out of significance in both
models), bed volume, and ICU admissions, the blood-culture
HO intensity and prevalence practices demonstrated higher corre-
lation with HOB and are perhaps a better representation of sus-
pected patient types that warrant more frequent blood cultures
and, therefore, may affect baseline attribution of HOB.10

Notably, the complex model also includes COB incidence, which
was highly correlated in the multivariate analysis with HOB. Aside
from perhaps representing another signal of more at-risk patient
demographics, higher community prevalence of bloodstream
pathogens may also be more directly associated with HOB, as
has been found in other studies of correlations between commu-
nity prevalence and subsequent higher risk of HO infection of that
pathogen, such as Clostridiodes difficile infection (CDI).21

Widespread use of an HOB measure raises the potential of
influencing blood-culture practices. Blood-culture testing in the
“CO” timeframe may increase to avoid an HOB designation. In
our multivariate analysis, a higher CO (first 2 days of admission)
testing intensity was associated with lower HOB (ie, negative or
protective association). This potential is not necessarily problem-
atic because faster identification of bacteremia may facilitate
definitive therapy. The danger is that increased CO testing more
broadly and in patients not strongly suspected of having a COB
infection—that is, increasing CO testing prevalence—could also
occur. However, CO testing prevalence was not a significant factor
associated with HOB (either negative or positive) in our model,
and that finding may ease concerns of testing-practice changes
meant to manipulate a reportable metric. In short, the complex
model may mitigate potential shifts in blood-culture practices
by incorporating and accounting for those changes in the model
itself.

Quality measures have the potential to impact the use of diag-
nostic microbiology tests. In one study, reductions in NHSN-
reportable CDI events occurred after changes in their testing algo-
rithm.22 If an HOB metric influences changes in testing, incorpo-
rating COB prevalence in the same model that includes blood-
culture acquisition practices may help adjust the HOB measure
to reflect testing changes. Furthermore, delineating baselines of
HOB, COB, and blood-culture testing intensity and prevalence will
enable future analyses that endeavor to improve bacteremia care
and blood-specimen collection practices. Additionally, the clinical
and financial consequences of growth of commensals and/or
improper blood-culture technique (ie, blood-culture ‘contami-
nants’) are not insignificant.23 Therefore, the value of the complex
model may be not only in benchmarking HOB but also in promot-
ing improvements in diagnostic blood culture practices, technique,
and resource stewardship.

This study had several limitations. First, several permutations of
HOB definitions have been explored recently; thus, the HOB def-
inition used here may not precisely match the NHSN definition.
The clinical preventability of an HOB event was not within the
scope of this project and is being explored by other complementary
projects. Prior studies have looked at HOB but have allowed con-
taminants and/or for COB and HOB in the same admission.3

Because prospective surveillance for HOB does not currently exist,
any initial HOB definition is likely to undergo refinement as addi-
tional scientific knowledge is gained. In addition, some HOB
events were “missing” because some hospitals do not map all units
to NHSN categories; therefore, some ICU admissions were not
reported (labeled as “not reported” in Tables 2 and 3). Lastly,
although we do not present a “gold standard”metric, we do present
optics on improvement of existing SIR risk adjustment using avail-
able and current real-world data. As data interoperability capabil-
ities improve, infection prevention-related reporting should be
streamlined to minimize manual reporting burden and prioritize
activities such as education and root-cause analyses. The balance
of transforming electronically capturable data into meaningful
metrics will help facilitate fair assessment and improve
patient care.

The risk adjustment achieved with the complex model is dis-
tinct and uniquely distinguishes differential HOB ranking when
compared with unadjusted rates. In addition to incorporating fac-
tors included in the simple model, the complex model includes
differences in blood-culture testing practices that, in aggregate,
may improve model fit, may achieve lower estimation error, and
may more accurately reflect fluctuating patient case mixes at risk
for HOB than some broad facility-level categories. More specifi-
cally, facility descriptors, patient characteristics, COB prevalence,
and different aspects of blood-culture testing intensity and preva-
lence during the HO and CO periods were significant factors asso-
ciated with HOB incidence. A national HOB metric should
endeavor to include these characteristics.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2022.211
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