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Abstract

Aerosol particles play an important role in the climate system by absorbing and scattering radiation and influencing
cloud properties. They are also one of the biggest sources of uncertainty for climate modeling. Many climate models
do not include aerosols in sufficient detail due to computational constraints. To represent key processes, aerosol
microphysical properties and processes have to be accounted for. This is done in the ECHAM-HAM (European
Center for Medium-Range Weather Forecast-Hamburg-Hamburg) global climate aerosol model using the M7
microphysics, but high computational costs make it very expensive to run with finer resolution or for a longer time.
We aim to use machine learning to emulate the microphysics model at sufficient accuracy and reduce the
computational cost by being fast at inference time. The original M7 model is used to generate data of input–output
pairs to train a neural network (NN) on it.We are able to learn the variables’ tendencies achieving an averageR2 score
of 77.1%. We further explore methods to inform and constrain the NN with physical knowledge to reduce mass
violation and enforce mass positivity. On a Graphics processing unit (GPU), we achieve a speed-up of up to over
64 times faster when compared to the original model.

Impact Statement

To achieve better climate predictions, we need to model aerosols with reduced computational effort. We
accomplish this by using a neural network that accurately learns the input–output mapping from a traditional
aerosolmicrophysics model, while being significantly faster. Physical constraints are added tomake the emulator
feasible for a stable long-term global climate model run.

1. Introduction

Aerosol forcing remains the largest source of uncertainty in the anthropogenic effect on the current climate
(Bellouin et al., 2020). The aerosol cooling effect hides some of the positive radiative forcing caused by
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greenhouse gas emissions and future restrictions to lower air pollution might result in stronger observed
warming. Aerosols impact climate change through aerosol–radiation interactions and aerosol–cloud
interactions (IPCC, 2013). They can either scatter or absorb radiation, which depends on the particles’
compounds. Black carbon (BC) aerosols from fossil fuel burning, for example, have a warming effect by
strongly absorbing radiation, whereas sulfate (SO4) from volcanic eruptions has a cooling effect by being
less absorbing and primarily scattering radiation. Clouds influence the Earth’s radiation budget by
reflecting sunlight and aerosols can change cloud properties significantly by acting as cloud condensation
nuclei (CCN). A higher concentration of aerosols leads to more CCN which, for a fixed amount of water,
results in more but smaller cloud droplets. Smaller droplets increase the clouds’ albedo (Twomey, 1974)
and can enhance the clouds’ lifetime (Albrecht, 1989).

Many climatemodels consider aerosols only as external parameters, they are read once by themodel, but
then kept constant throughout the whole model run. In the case where some aerosol properties are modeled,
there might be no distinction between aerosol types, and just an overall mass is considered. To incorporate a
more accurate description of aerosols, aerosol-climate modeling systems like ECHAM-HAM (European
Center forMedium-RangeWeather Forecast-Hamburg-Hamburg) (Stier et al., 2005) have been introduced.
It couples the ECHAMGeneral CirculationModel (GCM)with a complex aerosol model calledHAM. The
microphysical core of HAM is either Sectional Aerosol module for Large Scale Applications (SALSA)
(Kokkola et al., 2008) or theM7model (Vignati et al., 2004).We consider the latter here.M7uses seven log-
normal modes to describe aerosol properties, the particle sizes are represented by four size modes,
nucleation, Aitken, accumulation, and coarse, of which the Aitken, accumulation, and coarse can be either
soluble or insoluble.1 It includes processes like nucleation, coagulation, condensation, and water uptake,
which lead to the redistribution of particle numbers and mass among the different modes. In addition, M7
considers five different components: sea salt (SS), SO4, BC, primary organic carbon (OC), and dust (DU).
M7 is applied to each grid box independently, it does not model any spatial relations.

More detailed models come with the cost of increased computational time: ECHAM-HAM can be run
at 150 km resolution for multiple decades. But to run storm-resolving models, for example, the goal is
ideally a 1 km horizontal grid resolution and still be able to produce forecasts up to a few decades. If we
want to keep detailed aerosol descriptions for this a significant speed-up of the aerosol model is needed.

Replacing climate model components with machine learning approaches and therefore decreasing a
model’s computing time has shown promising results in the past. There are several works on emulating
convection, both random forest approaches (O’Gorman and Dwyer, 2018) and deep learning models
(Gentine et al., 2018; Rasp et al., 2018; Beucler et al., 2020) have been explored. Recently, multiple
consecutive neural networks (NNs) have been used to emulate a bin microphysical model for warm rain
processes (Gettelman et al., 2021). Silva et al. (2020) compare several methods, including deep NNs,
XGBoost, and ridge regression as physically regularized emulators for aerosol activation. In addition to
the aforementioned approaches, random forest approaches have been used to successfully derive the CCN
from atmosphericmeasurements (Nair andYu, 2020). Next tomany application cases, there now exist two
benchmark datasets for climate model emulation (Cachay et al., 2021; Watson-Parris et al., 2021).

Physics-informed machine learning recently gained attention in machine learning research, including
machine learning for weather and climate modeling (Kashinath et al., 2021). Whereas a large amount of
work focuses on soft-constrainingNNs by adding equations to the loss term, there was also the framework
DC3 (Donti et al., 2021) developed, that incorporates hard constraints. Using emulators in climate model
runs can require certain physical constraints to be met, that are usually not automatically learned by a
NN. For convection emulation there has been work on both hard and soft constraints to enforce
conversation laws, adding a loss term or an additional network layer (Beucler et al., 2021).

Building on our previous work (Harder et al., 2021), we demonstrate a machine-learning approach to
emulate the M7 microphysics module. We investigated different approaches, NNs as well as ensemble

1 In this work, we will use following abbreviations: AS/AI, accumulation soluble/insoluble; CS/CI, coarse soluble/insoluble;
KS/KI, aitken soluble/insoluble; NS, nucleation soluble.
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models like random forest and gradient boosting, with the aim of achieving the desired accuracy and
computational efficiency, finding the NN appeared to be the most successful. We use data generated from
a realistic ECHAM-HAM simulation and train a model offline to predict one-time step of the aerosol
microphysics. The underlying data distribution is challenging, as the changes in the variables are often
zero or very close to zero. We do not predict the full values, but the tendencies. An example of our global
prediction is shown in Figure 1. To incorporate physics into our network, we explore both soft constraints
for our emulator by adding regularization terms to the loss function and hard constraints by adding
completion and correction layers. Our code can be found at https://github.com/paulaharder/aerosol-
microphysics-emulation.

2. Methodology

2.1. Data

2.1.1. Data generation
To easily generate the data, we extract the aerosol microphysics model from the global climate model
ECHAM-HAM and develop a stand-alone version. To obtain input data ECHAM-HAM is run for 4 days
within a year. We use a horizontal resolution of 150 km at the equator, overall 31 vertical levels,
96 latitudes, and 192 longitudes. A time step length of 450 s is chosen. This yields a data set of over
100 M points for each day. We only use a subset of five times a day, resulting in about 2.85 M points per
day. To test if our emulator generalizes well in an unknown setting, we use the days in January and April
for training, a day in July for validation, and the October data for testing. Because the two SS variables
only change in 0.2% of the time as they undergo little microphysical changes we do not model them here.
Themasses and particle concentrations for different aerosol types and different modes are both inputs and
outputs, the output being the value one-time step later. Atmospheric state variables like pressure,
temperature, and relative humidity are used as inputs only. The dataset is available from Harder and
Watson-Parris (2022). A full list of input and output values can be found in the Supplementary Material.

2.1.2. Data distribution and transformation
Compared to the full values the tendencies (changes) are very small, therefore we aim to predict the
tendencies, not the full values, where it is possible. Depending on the variable we have very different
size scales, but also a tendency for a specific variable may span several orders of magnitude. In some
modes, variables can only grow, in some only decrease, and in others do both. Often the majority of
tendencies are either zero or very close to zero, but a few values might be very high. The absolute
tendencies are roughly log-normal distributed. A logarithmic transformation has been used by

Change in H2SO4 concentration

Figure 1. The change in concentration modeled by the M7 module for the first time step of the test data is
plotted on the left. The predicted change is plotted on the right. Both plots show the change in
concentration on a logarithmic scale.
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Gettelman et al. (2021) to give more weight to the prominent case, the smaller changes. This then
transforms our inputs close to a normal distribution, which is favorable for the NN to be trained on. On
the other hand, a linear scale might be more representative, as it gives more weight to values with the
largest actual physical impact. Results and a discussion for training with logarithmically transformed
variables can be found in the Supplementary material.

2.2. General network architecture

For emulating the M7 microphysics model, we explored different machine learning approaches,
including random forest regression, gradient boosting, and a simple NN (see Supplementary Material).
Providing more expressivity, the NN approach appears to be the most successful for this application and
will be shown here. We do not only present one neural model here, but different versions building on the
same base architecture and discuss the advantages and disadvantages of these different designs.

We employ a fully connected NN, where the values are propagated from the input layer through
multiple hidden to the output layer, using a combination of linear operations and nonlinear activations.We
use a ReLU activation function (a comparison of scores for different activation functions can be found in
the SupplementaryMaterial) and three hidden layers, each hidden layer containing 128 nodes. Using zero
hidden layers results in linear regression and does not have the required expressivity for our task, one
hidden layer already achieves a good performance, after two layers of the model we could not see any
significant further improvements.

2.2.1. Training
We train all our NNs using the Adam optimizer with a learning rate of 10�3, a weight decay of 10�9, and a
batch size of 256. Our objective to optimize during the training of theNNs is specified in Equation 1, using
anMean-squared error (MSE) loss in every version and activating the additional loss terms depending on
the version.We train ourmodel for 100 epochs. The training on a single NVIDIATitanVGPU takes about
2 hr.

For the classification network, we use a similar setup as described above. As a loss function, we use the
Binary-Cross-Entropy loss, the training takes about 30 min.

2.3. Physics-constrained learning

In this work, we explore two different ways of physics-informing similar to Beucler et al. (2021): Adding
regularizer terms to the loss function and adding hard constraints as an additional network layer. The
physical constraints that naturally come up for our setting are mass conservation, the mass of one aerosol
species has to stay constant, and mass or concentration positivity, a mass or concentration resulting from
our predicted tendencies has to be positive.

2.3.1. Soft constraining
To encourage the NN to decrease mass violation or negative mass/concentration values we add additional
loss terms to the objective:

min
θ

L ~y, yθð Þþ λL massð Þ yθð ÞþμL posð Þ yθð Þ: (1)

Where yθ ¼ f θ xð Þ is the network output for an input x∈ℝ32, parameterized by the network’s weights θ. In
our caseL is an MSE error, μ, λ∈ 0, 1f g depending if a regularizer is activated or not. The termL massð Þ

penalizes mass violation:

L massð Þ yθð Þ≔
X
s∈S

αs∣
X
i∈ Is

y ið Þ
θ ∣, (2)

where S is the set of different species and Is is the indices for a specific species s. The parameters αi need to
be tuned, chosen too small themass violation will not be decreased, if a factor is too large, the network can
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find the local optimum that is constantly zero, the values can be found in the Supplementary Material.
The other term penalizes negative mass values and is given by2

L posð Þ yθð Þ≔
Xn�1

i¼0

βiReLU � y ið Þ
θ þ xi

� �� �
: (3)

Using a ReLU function, all negative values are getting penalized. In our case n ¼ 28, xi is the
corresponding full input variable to predicted tendency y ið Þ

θ . The factors βi need to be tuned, similar to αi.

2.3.2. Hard constraining
In order to have a guarantee for mass conservation or positive masses, we implement a correction and a
completion method. This is done at test time as an additional network layer, a version where this is
implemented within the training of the NN did not improve the performance.

Inequality correction. For the correction method, predicted values that result in an overall negative
mass or number are set to a value such that the full value is zero. For the NNs intermediate output ~yθ, the
final output is given by:

y ið Þ
θ ¼ReLU ~y ið Þ

θ þ xi
� �� �

� xi: (4)

Equality completion. The completion method addresses mass violation, for each species one variable’s
prediction is replaced by the negative sum of the other same species’ tendencies. We obtained the best
results by replacing the worst-performing variable. This completion results in exact mass conservation.
For a species S, we choose index j∈ IS, the completion layer is defined as follows:

y jð Þ
θ ¼�

X
i∈ Is∖ jf g

y ið Þ
θ (5)

3. Results

3.1. Predictive performance

3.1.1. Metrics
We consider multiple metrics to get an insight into the performance of the different emulator designs,
covering overall predictive accuracy,mass violation, and predicting nonphysical values.We look at theR2

score and the MSE. To understand mass violation, we look at the mass biases for the different species and
the overall mass violation, where all scores are normalized by the mean over the respective species. The
metrics are completed with two scores about negative value predictions: An overall fraction of negative
and therefore nonphysical predictions and the average negative extend per predicted value. For all the
different scores and architectures, we take the mean over five different random initializations of the
underlying NN.

3.1.2. Evaluation and comparison
In Table 1, we display the scores for our emulator variants.We achieve good performance with a 77.1%R2

score and anMSEof 0.16. Using the correctionmethod results per construction in no negative predictions,
but increases the mass violation. The accuracy scores are not negatively affected by the correction
operation. With the completion method, we achieve perfect mass conservation and a very slight
worsening of the other metrics. The mass regularization decreases the overall mass violation and
decreases the mass biases for most cases. The positivity loss term decreases the negative fraction and
negative mean by a large amount. A few examples are plotted in Figure 2. In overall, the architecture with

2 Skipping the back transformation in to original scale for a clearly notation, details on that are provided in the Supplementary
Material.
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an additional correction procedure could be a good choice to use in aGCM run, having the guarantee of no
negative masses and good accuracy in the original units. The mass violation is relatively low for all cases.

Although the emulator performs well in an offline evaluation, it still remains to be shown how it
performs when implemented in the GCM and runs for multiple time steps. Good offline performance is
not necessarily a guarantee for good online performance (Rasp, 2020) in the case of convection
parameterization, where a model crash could occur. In our case, it is likely that offline performance is
a good indicator of online performance, as a global climate model crash is not expected because aerosols
do not strongly affect large-scale dynamics.

3.2. Runtime

We conduct a preliminary runtime analysis by comparing the Python runtime for the emulator with the
Fortran runtime of the original aerosol model. We take the time for one global time step, which is about
570,392 data points to predict. For theM7model, the 31vertical levels are calculated simultaneously and for
the emulator, we predict the one-time step at once, using a batch size of 571,392 and taking into account the
time for transforming variables andmoving themon and off theGPU.Weuse a singleNVIDIATitanVGPU
and a single Intel Xeon 4108 Central processing unit (CPU). As shown in Table 2, we can achieve a large
speed-up of over 11,000� in a pure GPU setting. Including the time it takes to move the data from the CPU
onto the GPU and back the acceleration is 64 times faster compared to the original model. In case of no
available GPU, the NN emulator is still 2.8 times faster. Here, further speed-ups will be achieved by using
multiple CPUs, a smaller network architecture, and efficient implementation in Fortran.

Table 1. Test metrics for different architectures and transformations.

Architecture Base þCorrect þComplete þMass loss þPositivity loss

R2 0.763 0.771 0.738 0.730 0.709

MSE 0.162 0.161 0.162 0.187 0.211

Mass bias SO4 1.1 � 10�5 8.5 � 10�5 0.00 8.6 � 10�6 1.0 � 10�3

Mass bias BC 3.8 � 10�5 1.4 � 10�4 0.00 3.4 � 10�5 3.6 � 10�4

Mass bias OC 3.3 � 10�5 6.0 � 10�5 0.00 1.1 � 10�5 6.4 � 10�4

Mass bias DU 1.0 � 10�6 3.9 � 10�5 0.00 2.8 � 10�7 1.5 � 10�5

Mass violation 3.7 � 10�4 1.1 � 10�3 0.00 1.4 � 10�4 2.4 � 10�5

Neg. fraction 0.134 0.00 0.146 0.144 0.0894

Neg. mean 0.00151 0.00 0.00170 0.00169 0.000081

Note.Base means the usage of only the base NN, correct adds the correction procedure and complete the completion procedure. Mass reg. and positivity reg.
include the regularization terms. Best scores are in bold and second-best scores are in italics.
Abbreviations: BC, black carbon; DU, dust; OC, primary organic carbon; SO4, sulfate.

Figure 2. This figure shows the test prediction of our emulators against the true M7 values. For each type
(species, number particles, and water), we plot the performance of one variable (using the median or
worse performing, see all in Supplementary Material).
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4. Conclusion and Future Work

To enable accurate climate forecasts aerosols need to be modeled with lower computational costs. This
work shows howNNs can be used to learn the mapping of an aerosol microphysics model and how simple
the physical constraints can be included in themodel. Our neural models approximate the log-transformed
tendencies excellently and the original units’ tendencies well. On the test set, an overall regression
coefficient of 77.1% as well as anMSE of 16.1% is achieved. Using a GPU, we accomplish a large speed-
up of 11,181 times faster compared to the original M7model in a pure GPU setting, with the time to move
from and to the CPUwe are still significantly faster having a speed-up factor of 64. On a single CPUm, the
speed-up is 2.8 times faster. By adding completion and correction mechanisms, we can remove mass
violation or negative predictions completely and make our emulator feasible for stable a GCM run.

How much of a speed-up can be achieved in the end remains to be shown, when the machine learning
model is used in a GCM run. Different versions of our emulator need to be run within the global climate
model to show which setup performs the best online. A further step would be the combination of the
different methods for physics constraining, to achieve both mass conservation and mass positivity at the
same time.
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