WEAKNESS OF THE TOPOLOGY OF A JB*-ALGEBRA

ALI BENSEBAH

ABSTRACT. The main purpose of this paper is to prove, that the topology of any (non-complete) algebra norm on a JB^* -algebra is stronger than the topology of the usual norm. The proof of this theorem consists of an adaptation of the recent Rodriguez proof [8] that every homomorphism from a complex normed (associative) Q-algebra onto a B^* -algebra is continuous.

1. **Previous concepts and results.** Let us recall that a complex unital normed Jordan algebra A is a complex Jordan algebra with product $a \circ b$, having a unit 1, and a norm || ||, such that A with the norm || || is a normed space, ||1|| = 1, and for all a and b in A $||a \circ b|| \le ||a|| ||b||$.

As we shall only be considering complex unital normed Jordan algebras, we shall use "normed Jordan algebra" in place of "complex unital normed Jordan algebra". A Banach Jordan algebra is a normed Jordan algebra (A, ||.||) such that the normed linear space A with norm ||.|| is complete (*i.e.* every Cauchy sequence converges).

A JB^* -algebra is a Banach Jordan algebra A, with an involution * such that, for all a in A

$$||U_a(a^*)|| = ||a||^3,$$

where $U_a(b) = 2a \circ (a \circ b) - a^2 \circ b$.

Let $(A, \|.\|)$ be a B^* -algebra. A JC^* -algebra J of A is a complex Banach subspace of A satisfying:

i) J is a self-adjoint set (*i.e.* $a \in J \Longrightarrow a^* \in J$),

ii) $1 \in J$,

iii) $a, b \in J \Longrightarrow a \circ b = \frac{1}{2}(ab + ba) \in J$, where *ab* is the associative product.

It is easy to prove that every JC^* -algebra is a JB^* -algebra. However, in [9] it is shown that JC^* -algebras are not the only examples of JB^* -algebras. Thus, the converse of the preceding result is not true.

One should also note that if A is an associative algebra over the complex field which is a Banach space in the norm $\|.\|$ and where, in terms of the Jordan multiplication $a \circ b = \frac{1}{2}(ab+ba)$, $\|a \circ b\| \le \|a\| \|b\|$ for all a, b in A; then it is not necessary that the associative product be continuous. An example is given in [5] of such an A.

Let $(A, \|.\|)$ be a normed Jordan algebra (completeness is not assumed). The spectral radius of an element *a* in *A*, denoted by $r_{\|.\|}(a)$ (or simply r(a), when it is clear to which norm it refers), is defined by

$$r_{\parallel,\parallel}(a) = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}}.$$

Received by the editors April 5, 1991.

AMS subject classification: 46H70.

[©] Canadian Mathematical Society 1992.

An element *a* of *A* is invertible with inverse *b* if $a \circ b = 1$ and $a^2 \circ b = a$. The spectrum of *a*, denoted by Sp(*A*, *a*), is defined by

 $Sp(A, a) = \{\lambda \in C : \lambda - a \text{ is not invertible in } A\}.$

An element a of A has the quasi-inverse b if (1-a) has the inverse (1-b). An element that has a quasi inverse is said to be quasi-invertible.

The normed Jordan algebra $(A, \|.\|)$ is called a Jordan *Q*-algebra if the set of quasiinvertible elements of *A* is open.

In what follows we will use without comment, the fact that $(A, \|.\|)$ is a Jordan *Q*-algebra if and only if

$$r(a) = \sup\{|\lambda| : \lambda \in \operatorname{Sp}(A, a)\}.$$

(See [10], lemma 2.1).

The proofs of many results on Banach Jordan algebras depend only on the fact that Banach Jordan algebras are Jordan Q-algebras, and this is the case of the following result: Let A and B be Jordan Q-algebras and F be homomorphism from A into B. Then

$$r(F(a)) \le r(a),$$

for all a in A.

The notion of Jacobson radical for associative algebras has been generalized by K. Mc Crimmon to Jordan algebras (see [4]). In a Jordan algebra we say that an ideal *I* is quasi-invertible if all its elements are quasi-invertibles. Mc Crimmon proved that in any Jordan algebra there exists a unique quasi-invertible ideal containing every quasi-invertible ideal.

By definition, this ideal is the Mc Crimmon radical of A and is denoted by rad A. A is said to be semi-simple if $rad A = \{0\}$.

In the case of Banach algebras $\operatorname{rad} A = \{q \in A : aq \text{ is quasi-invertible for all } a \text{ in } A\}.$

In the case of Banach Jordan algebras a similar result is not true. It is the reason why the proof of proposition 25.10 in [1] cannot be adapted to the Jordan case. Nevertheless, we shall give an alternate proof of that result.

NOTATION. If A and B are normed Jordan algebras and F is a linear mapping from A into B we denote by S(F) (the separating subspace for F) the set of those b in B for which there is a sequence $\{a_n\}$ in A such that $0 = \lim\{a_n\}$ and $b = \lim\{F(a_n)\}$.

PROPOSITION 1. Let A be a Jordan Q-algebra and B be a semi-simple Banach Jordan algebra. Suppose that F is homomorphism from A onto B. Then

- i) r(b) = 0, for every b in S(F),
- *ii)* The kernel of F is closed.

PROOF. i) The proof of r(b) = 0 in [6] remains valid in the Jordan case.

ii) It is straightforward to check that $F(\overline{\ker F})$ is an ideal of B.

Given $b \in F(\ker F)$, we have b = F(a) for some a in $\ker F$, and so there exists $\{a_n\}$ in ker F such that $a = \lim\{a_n\}$. Since $F(a_n) = 0$, we obtain $0 = \lim\{a - a_n\}$ and $\lim\{F(a - a_n)\} = F(a)$. Therefore F(a) is in S(F) and therefore, by (i), r(F(a)) = 0. Thus b is quasi-invertible, $F(\ker F)$ is a quasi-invertible ideal of B, and so $F(\ker F) \subset \operatorname{rad} B =$ $\{0\}$ and $\ker F \subset \ker F$. Therefore, ker F is closed.

https://doi.org/10.4153/CMB-1992-059-9 Published online by Cambridge University Press

450

PROPOSITION 2. The quotient of a Jordan Q-algebra by a closed ideal is also a Jordan Q-algebra.

PROOF. Let *J* be a closed ideal of a Jordan *Q*-algebra *A*. Let π be the canonical projection of *A* onto the normed Jordan algebra A/J, π is open and $\pi(G(A)) \subset G(A/J)$, where G(X) denote the set of invertible elements in X. Let $a \in G(A)$, then $\pi(a)$ is an interior point of G(A/J). Choose *b* in G(A/J). Then the linear operator U_b is a homeomorphism on A/J and it leaves invariant the set G(A/J) (see [3], Theorem 1.3, p.52), so $U_b(\pi(a))$ is a interior point of G(A/J). Since the mapping $x \mapsto U_x(\pi(a))$, $x \in A/J$, is continuous, it follows that there is some number r > 0 such that

$$U_x(\pi(a)) \in G(A/J),$$

so $x \in G(A/J)$ whenever ||x - b|| < r. Hence G(A/J) is open. Since the mapping $x \mapsto 1 - x$ is continuous mapping of A/J into A/J, then the set of quasi-invertible elements is also open.

2. Minimum topologies. We say that (A, ||.||) has the property of minimality of norm topology if, whenever |||.||| is an algebra norm on A with $|||.||| \le k||.||$ for some non negative number k, we have that |||.||| and ||.|| are equivalent norms.

The proof of our main result is strongly based on the following lemma proved by Rodriguez.

LEMMA 1. Let A be a Jordan Q-algebra and B be a semi-simple Banach Jordan algebra with minimality of norm topology. Then every homomorphism from A onto B is continuous.

PROOF. We repeat the proof of the main result of [8] for Jordan algebras and use propositions 1 and 2.

PROPOSITION 3. Let $(A, \|.\|)$ be a B^* -algebra, $(J, \|.\|)$ a JC^* -algebra of A, and $\|.\|$ is any algebra norm on J. Then

$$||a||^2 \le \sqrt{6} ||a^*|| ||a||,$$

for all a in J.

PROOF. We first prove that $r_{\|.\|}(h) = r_{\|.\|}(h)$ for every self-adjoint (i.e $h^* = h$) element h in J. Let $h \in J$ such that $h^* = h$ and let Q(h, 1) denote the closed (relative to $\|.\|$) subalgebra of J generated by h and 1. As every Jordan algebra is power associative (see [3]), theorem 8 p.36) and multiplication $(a \circ b)$ is continuous, Q(h, 1) is commutative Banach algebra. Moreover, as the involution on A is an isometry and h is self-adjoint Q(h, 1) is a self-adjoint subset. Hence, Q(h, 1) is a B^* -algebra. So, by the Corollary 4.8.4 of [7] we obtain

$$r_{\|.\|}(h) \leq r_{\|.\|}(h).$$

Since the reverse inequality holds for any algebra norm (|||.|||), we thus have proved that

$$r_{\|.\|}(h) = r_{\|.\|}(h)$$

for every $h \in J$ satisfying $h^* = h$.

Let, now, $a \in J$. Then,

$$\frac{1}{2} \|a\|^4 = \frac{1}{2} \|a^*a\|^2 = \frac{1}{2} \|(a^*a)^2\|.$$

It is known (see Theorem 7 and Lemma 6 of [11]) that if x and y are self-adjoint elements of a JB^* -algebra, then

$$||x^2|| \le ||x^2 + y^2||.$$

Now we apply the above mentioned result to obtain

$$||(a^*a)^2|| \le ||(a^*a)^2 + (aa^*)^2||.$$

Since $(a^*a)^2 + (aa^*)^2$ is self-adjoint, then

$$||(a^*a)^2 + (aa^*)^2|| = r_{||.||}((a^*a)^2 + (aa^*)^2).$$

Combining these estimates with the first part of this proof we deduce that

$$\frac{1}{2} \|a\|^{4} \leq r_{\|.\|} (\frac{1}{2} \{ (a^{*}a)^{2} + (aa^{*})^{2} \})$$

$$= r_{\|.\|} (\frac{1}{2} \{ a^{*}(aa^{*}a) + (aa^{*}a)a^{*} \})$$

$$= r_{\|.\|} (a^{*} \circ (aa^{*}a))$$

$$= r_{\|.\|} (a^{*} \circ U_{a}(a^{*}))$$

$$\leq \|a^{*} \circ U_{a}(a^{*})\|$$

$$\leq 3 \|a^{*}\|^{2} \|a\|^{2}.$$

It follows that $||a||^2 \le \sqrt{6} ||a^*|| ||a||$.

PROPOSITION 4. Let (A, ||.||) be a JB^* -algebra and let |||.||| be any algebra norm on A. Then

$$||a||^2 \le \sqrt{6} ||a^*|| ||a||, \forall a \in A.$$

PROOF. Let $a \in A$ and B be the closure (relative to $\|.\|$) of the Jordan algebra generated by 1, $\frac{a+a^*}{2}$ and $\frac{a-a^*}{2i}$. Then, by corollary 3 of [12], we know that there exists a B^* -algebra (X, |.|), a JC^* -algebra (J, |.|) of X, and a isometric linear bijection F of B onto J satisfying

i)
$$F(x \circ y) = F(x) \circ F(y)$$

ii) $F(x^*) = (F(x))^*$, for every x and y in B.

452

.

We define a mapping P of J into R by $P(j) = |||F^{-1}(j)|||$. It is straightforward to check that P is an algebra norm on J. Therefore by proposition 3,

$$|j|^2 \leq \sqrt{6} P(j^*) P(j), \forall j \in J.$$

Hence,

$$||a||^{2} = |F(a)|^{2} \le \sqrt{6} P((F(a))^{*}) P(F(a)) = \sqrt{6} ||a^{*}|| ||a||.$$

THEOREM 1. Every JB*-algebra has the property of minimality of norm topology.

PROOF. For any algebra norm, $\| \cdot \|$, on a JB^* -algebra $(A, \| \cdot \|)$ we have

$$||a||^2 \le \sqrt{6} ||a^*|| ||a||$$

for all *a* in *A* by proposition 4.

Therefore, if $\|\cdot\| \le k \|\cdot\|$ for some non-negative number k, we have

$$||a||^2 \le k\sqrt{6} ||a^*|| ||a|| = k\sqrt{6} ||a|| ||a||,$$

(the last equality follows from [11], lemma 4), so that, $\|.\| \le k\sqrt{6} \|.\|$, and so $\|.\|$ and $\|.\|$ are equivalent norms.

LEMMA 2. If $||| \cdot |||$ is any algebra norm on a JB^* -algebra A, then $(A, ||| \cdot |||)$ is a Jordan *Q*-algebra.

PROOF. By proposition 4 we have, $||a||^2 \le \sqrt{6} |||a^*||| |||a|||$ for all a in A. We deduce that for all $n \ge 1$ and all a in A

$$||a^n||^2 \le \sqrt{6} |||(a^*)^n||| ||a^n|||.$$

Taking *nth* roots and letting $n \rightarrow \infty$, it follows that

$$[r_{\|.\|}(a)]^2 \leq r_{\|.\|}(a^*)r_{\|.\|}(a).$$

Since $r_{\|.\|}(x) \le r_{\|.\|}(x)$ and $r_{\|.\|}(x^*) = r_{\|.\|}(x)$ for all x in A, we have

$$r_{\|.\|}(a) = r_{\|.\|}(a)$$

for all a in A. But (A, ||.||) is a Banach Jordan algebra, so $r_{||.||}(a) = \sup\{|\lambda| : \lambda \in Sp(A, a)\}$. Therefore $r_{||.||}(a) = \sup\{|\lambda| : \lambda \in Sp(A, a)\}$ and (A, |||.||) is a Jordan *Q*-algebra, as required.

We now come to the main result.

THEOREM 2. The topology of any algebra norm on a JB^* -algebra is stronger than the topology of the usual norm.

PROOF. Let (A, ||.||) be a JB^* -algebra and let |||.||| be any algebra norm on A. Then, by lemma 2, (A, |||.||) is a Jordan Q-algebra and, by theorem 1, (A, ||.||) is a semi-simple Banach Jordan algebra with minimality of norm topology. Therefore, by lemma 1 the mapping $x_1 \longrightarrow x$ from (A, ||.||) onto (A, ||.||) is continuous.

REMARK. We recall that a normed Jordan algebra (A, ||.||) has the property of minimality of the norm if, whenever |||.||| is an algebra norm on A with $|||.||| \le ||.||$, we have |||.||| = ||.||. Lemma 1 of [8] and theorem 1 suggest the following question. Does every JB^* -algebra have the property of minimality of the norm?

ALI BENSEBAH

REFERENCES

- 1. F.F.Bonsall and J.Duncan, Complete Normed Algebras, Springer-Verlag, 1973.
- 2. S. B. Cleveland, Homomorphisms of non-commutative *-algebras, Pacific J. Math. 13(1963), 1097-1109.
- 3. N. Jacobson, *Structure and Representation of Jordan Algebras*, A.M.S. Colloquium publications 39, Providence, Rhode Island, 1968.
- 4. K. Mc Crimmon, The radical of a Jordan algebra, Proc. Nat. Acad. Sci. USA (1969), 671-678.
- 5. P. S. Putter and B. Yood, Banach Jordan *-algebras, Proc. London Math. Soc. 41(1980), 21-44.
- 6. T.J. Ransford, A short proof of Johnson's uniqueness-of-norm theorem, Bull. London Math. Soc. 21(1989), 487–488.
- 7. C. E. Rickart, General Theory of Banach Algebras, D. Van Nostrand, 1960.
- **8.** A. P. Rodriguez, Automatic continuity with application to C*-algebras, Math. Proc. Camb. Phil. Soc. **107**(1990), 345–347.
- 9. J. D. M. Wright, Jordan C*-algebras, Michigan Math. J. 24(1977), 291-302.
- 10. B. Yood, Homomorphisms on normed algebras, Pacific J. Math. 8(1958), 373-381.
- 11. M.A. Youngson, A Vidav theorem for Banach Jordan algebras, Math. Proc. Camb. Phil. Soc. 84(1978), 263–272.
- M.A. Youngson, Hermitian operators on Banach Jordan algebras, Proc. Edin. Math. Soc. 22(1979), 169– 180.

Department of Mathematics and Statistics University of Montreal, CP. 6128 Succ. A Montreal, Quebec, CANADA, H3C 3J7.