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SOME REMARKS ON REGULAR AND STRONGLY 
REGULAR RINGS 

BY 

R. RAPHAEL 

Introduction. This article presents some new algebraic and module theoretic 
characterizations of strongly regular rings. The latter uses Lambek's notion of 
symmetry. Strongly regular rings are shown to admit an involution and form an 
equational category. An example due to Paré shows that the category of regular 
rings and ring homomorphisms between them is not equational. Remarks on quasi-
inverses and the generalized inverse of a matrix are included. The author acknowl
edges support from the NRC (A7752) and improvements from W. Blair received 
after announcement of the results. 

A ring R is regular if given x e R there exists a, y e R such that x=xyx • y is 
called a quasi-inverse for x. A ring R is called strongly regular if given xe R 
there exists y eR such that x=x2y. 

LEMMA 1. The following conditions are equivalent to strong regularity for a ring R 
(i) R is regular and 0 is the only nilpotent element of R, 

(ii) R is regular and all idempotents in R are central, 
(iii) R is regular andifx,yeR with x=xyx then xy=yx. 

Proof, (i) and (ii) are in [2]. (iii) implies strong regularity and follows from 
(ii) since xy=(xyx)y—(yx)(xy)=y(xy)x=yx because xy andyx are central. 

PROPOSITION 2. The following are equivalent for a ring R 
(i) R is strongly regular, 

(ii) given xe R, there exists y e R and a natural number n such that x=xyx and 
(xy-yx)n=0. 
These imply the following condition and are equivalent to it if 2 is a nonzero-divisor, 

(iii) given x e R, there exists a y e R such that x=xyx and x(xy—yx)=(xy—yx)x. 

Proof. Clearly (i) implies (ii). Suppose (ii) holds. By induction there exists for 
each natural number n an rne R such that x(yx—xy)n=x—x2rn. Hence if 
(xy—yx)n=0 then x(yx—xy)n=x(— l)n(xy— yx)n=0 so x=rnx

2 and R is strongly 
regular. 

Suppose that x=xyx and that x(xy— yx)=(xy— yx)x. Then x2y+yx2=2x. 
Multiply this equation on both sides on the left by x and simplify to obtain 
xzy=x2. SimilarlyyxB=x2. Nowx2y=(xBy)y=(yxz)y=y(xzy)=yx2. Thus2x2y=2x 
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and therefore x=x2y. The ring of 2 x 2 matrices over the two-element field is an 
example of a ring which is not strongly regular, but which does satisfy the condition 
in (iii) above. Thus one cannot drop the demand that 2 be a unit. 

A ring R is regular if and only if every i^-module is flat. One can replace right by 
left in this characterization and restrict attention to cyclic jR-modules. Lambek 
has recently introduced the notion of symmetry—a right .R-module M is symmetric 
if mrs=0 implies msr=0 for all m 6 M and r, s e R(5). The ring R is symmetric if it 
is symmetric when viewed as a right i^-module but this definition is not one-sided. 

PROPOSITION 3. The following are equivalent for the ring R 
(i) R is strongly regular 

(ii) every right R-module is flat and symmetric, 
(iii) every cyclic right R-module is flat and symmetric•, 
(iv) R is regular and symmetric. 

Proof. (i)=>(ii). Let M be a right i^-module. By (i) M is flat. Let mrs=0 for some 
me M, and some r, s e R and let I={x e R | mx=0}. / is a right ideal in R. 
Since R is strongly regular / is a two-sided ideal. R=R/I is strongly regular and 
therefore it has no nilpotent elements. But rs el so (sr)2=0 and sr=Ô showing 
msr=0. Thus M is symmetric. Clearly (ii)=>(iii). (iii)=>(iv). Since every cyclic 
right i^-module is flat, R is a regular ring [4, Prop. 4, p. 134]. R is a cyclic right 
i^-module so R is a symmetric ring. (iv)=>(i). Let x e R with x 2=0. By regularity 
x=xyx for some y e R. y(x)(xy)=0 so by symmetric yx=y(xy)x=0 and x= 
x(yx)=0. Since R has no non-zero nilpotent elements it is strongly regular. 
Clearly one is free to change right to left in the above enunciation. 

LEMMA 4. If R is strongly regular then given x in R there is a unique y in R with 
x—xyx and y=yxy. 

Proof. Let xe R& strongly regular ring. By l(iii) there is a z in R with x==xzx 
and xz=zx. Let y=zxz. Then xyx—x and yxy=y, so such a y exists. Assume that 
y±eR with x=xy±x and y1=y1xy1. By l(iii) x commutes with y and yx so 
yi=yixy1=yixyxy1=y1yxy1x=y1yx=y1yxyx=(xy1x)yy=xyy=y which shows the 
uniqueness of y. 

An involution on a ring R is a function *:R->R such that for all r, s e R, 
(i) (rs)* = (s)*(r)*, (ii) rr*=0=>r=Q, and (iii) (r*)*=r. 

COROLLARY 5. A strongly regular ring admits an involution. 

Proof. Define * on R be letting ;c* be the y of lemma 4. It is easy to check (i) 
and (ii). (iii) holds because x is the unique element for y. 

Kaplansky has shown implicitly in (3, lemma 4) that if R is a regular ring with 
involution * then given x there is a unique y with x=xyx, y=yxy, (xy)*=xy 
and {yxY=yx. In the case where R is strongly regular and * is defined as above 
lemma 4 implies that (<?)*=e for any idempotent element. Thus Kaplansky's 
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result reduces to the statement of lemma 4, however in order to define the involu
tion on R one needs the uniqueness so it does not seem to be possible to obtain 
lemma 4 as a corollary of Kaplansky's result. If R is the ring of nxn matrices 
with complex entries and if * is the conjugate transpose operator then Kaplansky's 
result becomes that of [1, p. 1-3] for the generalized inverse of a matrix. Thus the 
existence and the uniqueness of the generalized inverse is an algebraic result. 
Four equivalent formulations of interest are found on [1, p. 11]. 

It is clear from lemmas 1 and 4 that strong regularity is equivalent to the demand 
that given x there exists a unique y such that x=xyx, y—yxy and xy=yx. Thus 
the full subcategory of the category of rings consisting of all strongly regular rings 
and all ring homomorphisms between them can be equationally defined. (See 
[6, p. 120] for the meaning of "equational" and "equalizer"). The following 
example shows that the corresponding result is not true for the full subcategory 
of regular rings. For if it were equational it would be closed under the formation 
of equalizers. If oc, (i:R-+S are ring homomorphisms then the equalizer of oc and /? 
is the subring {r eR | oc(r)=/3(r)} of R. Thus it suffices to exhibit R, S regular, 
and maps a, ft such that the equalizer of a and /? is not regular. Let R=3 be the 
ring of 2 x 2 matrices with rational entries, a regular ring. Let a be the identity 
mapping and let (5:R-^R be defined by f3[a

c ^] == [^Ls-d &+<*]• The equalizer of a 
and j8 is £={[& °] | a> b E Q}- S i n c e G olG aHi o]=[o oL E contains no quasi-
inverse for [? Q] a n ( i therefore is not regular. Since JR is a ring with involution, 
the same example shows that the full subcategory of regular rings with involution is 
not equational either. This does not contradict the earlier result of Kaplansky 
since the definition of an involution involves an implication as well as equations. 
From the above example one can construct a regular ring T containing regular 
subrings 7\ and T2 such that Tx n T2 is not regular. Let T be the ring of 4 X 4 
matrices over g , let Tx be the subring having elements of R in the upper left and 
lower right hand corners and zeroes elsewhere, and let T2 be the subring having 
elements of R in the upper left hand corner, elements of fi(R) in the lower right 
hand corner, and zeroes elsewhere. It is easy to check that T, Tl9 T2i and T± n T2 

have the desired properties. 
We close with a remark on quasi-inverses. If one calls an element x of a ring R 

regular if x=xyx for some y then a product of regular elements if regular in the 
commutative case. No formula is known for a quasi-inverse of a product of two 
elements in terms of the elements and their quasi-inverses in the general case. 
No formula can exist for the quasi-inverse of a sum in view of the following 
example. Let/? be a prime, A=Zj(p), G equal the cyclic group of order/?, and R 
the group ring AG, Every element of R is the sum of regular elements but R is 
not regular [4, p. 155]. It is known in the commutative case that if xl9 x2 and x±+x2 

are regular with unique (in the sense of lemma 4) quasi-inverses yl9 y2 and y3 

respectively then y±+y2 is regular with unique quasi-inverse x1(l—x2y2)+ 
x2(l-x1yj+x1x2yz. 
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