ON THE SEMIGROUP OF HADAMARD DIFFERENTIABLE MAPPINGS

SADAYUKI YAMAMURO

(Received 26 October 1970) Communicated by J. B. Miller

The main purpose of this paper is to prove that every automorphism of the semigroup of all Hadamard-differentiable mappings of a separable real Banach space into itself is inner. This generalizes the result of [7] which is a generalization of a result proved by Magill, Jr. [5].

We start with a brief account on the Hadamard differentiation.

1. The Hadamard differentiation

The following method of defining derivatives has been given by Averbukh and Smolyanov [1,2], where it was also proved that the Hadamard differentiability defined below is equivalent to the quasi-differentiability defined by Dieudonné [3, p. 151].

Let E be a real Banach space, and let M be a class of some subsets of E. We denote by $\mathscr{L} = \mathscr{L}(E)$ the Banach algebra of all continuous linear mappings of E into itself with the usual algebraic structure and the upper bound norm. Then, a mapping $f: E \to E$ is said to be *M*-differentiable at $a \in E$ if there exists $u \in \mathscr{L}$ such that, for any $M \in M$,

$$\sup_{x \in M} \left\| \varepsilon^{-1} r(f, a, \varepsilon x) \right\| \to 0 \quad \text{if} \quad \varepsilon \to 0,$$

where

$$r(f, a, x) = f(a + x) - f(a) - u(x).$$

We denote by \mathscr{D}_{M} the set of all $f: E \to E$ which are *M*-differentiable at every point of *E*.

(1) If M is the class of all single point sets, then $f \in \mathcal{D}_M$ is said to be *Gâteaux-differentiable*. In this case, we denote \mathcal{D}_M by \mathcal{D}_G .

(2) If M is the class of all compact subsets, then $f \in \mathscr{D}_M$ is said to be Hadamard-differentiable. In this case, we denote \mathscr{D}_M by \mathscr{D}_H .

(3) If M is the class of all bounded subsets, then $f \in \mathscr{D}_M$ is said to be Fréchetdifferentiable. In this case, we denote \mathscr{D}_M by \mathscr{D}_F . S. Yamamuro

In each of these cases, the continuous linear mapping u is determined uniquely and is denoted by f'(a). It is called the *Gâteaux*-, the *Hadmarad*- or the *Fréchet*derivative of f at a respectively.

Obviously,

$$\mathscr{L} \subset \mathscr{D}_F \subset \mathscr{D}_H \subset \mathscr{D}_G,$$

and the inclusions are generally strict. If E is finite-dimensional, we have $\mathscr{D}_F = \mathscr{D}_G$, and if E is one dimensional we have $\mathscr{D}_F = \mathscr{D}_H = \mathscr{D}_G$.

The following theorem will be used in the following section. We shall denote by \mathscr{K} the set of all completely continuous (i.e., continuous and compact) mapping of E into itself. We also denote by \mathscr{K}_1 the set of all $f: E \to E$ such that

$$f(x) = \mu(\langle x, \overline{a} \rangle)$$
 for every $x \in E$,

where μ is any differentiable *E*-valued function of a real variable, $\bar{a} \in \bar{E}$ (the conjugate space of E and $\langle x, \tilde{a} \rangle$ is the value of \tilde{a} at x. Obviously, $\mathscr{K}_1 \subset \mathscr{K}$.

In the sequel, the composition of two mappings $f, g: E \to E$ is denoted by fg that is,

$$(fg)(x) = f(g(x))$$
 for every $x \in E$.

THEOREM 1. 1) If $f \in \mathscr{D}_H$, then $fk \in \mathscr{D}_F$ for any $k \in \mathscr{D}_F \cap \mathscr{K}$ and

(*)
$$(fk)'(a) = f'(k(a))k'(a) \quad for \ any \quad a \in E.$$

2) If $f \in \mathcal{D}_G$, and if for every $k \in \mathcal{D}_F \cap \mathcal{H}_1$ it is true that $f k \in \mathcal{D}_G$ and (*) is satisfied, then $f \in \mathcal{D}_{H}$.

PROOF. 1) For $f \in \mathscr{D}_H$ and $k \in \mathscr{D}_F \cap \mathscr{K}$,

$$fk(a + x) - fk(a) - f'(k(a))k'(a)(x)$$

= $f'(k(a))[k(a + x) - k(a)] + r(f, k(a), k(a + x) - k(a)) - -f'(k(a))k'(a)(x)$

$$= f'(k(a))r(k, a, x) + r(f, k(a), k(a + x) - k(a)).$$

Then, for a bounded set B, since $k \in \mathcal{D}_{F}$,

$$\sup_{\substack{x \in B}} \|\varepsilon^{-1}f'(k(a))r(k, a, \varepsilon x)\|$$

$$\leq \|f'(k(a))\| \sup_{\substack{x \in B}} \|\varepsilon^{-1}r(k, a, \varepsilon x)\| \to 0 \quad \text{if } \varepsilon \to 0,$$

$$\sup_{x \in B} \|\varepsilon^{-1}r(f, k(a), k(a + \varepsilon x) - k(a))\|$$

and

 $x \in$

$$\int_{B} \|\varepsilon - r(f, k(a), \kappa(a + \varepsilon x) - \kappa(a))\|$$

=
$$\sup_{x \in B} \|\varepsilon^{-1}r(f, k(a), \varepsilon[\varepsilon^{-1}(k(a + \varepsilon x) - k(a))])\| \to 0 \quad \text{if } \varepsilon \to 0,$$

because, since $k \in \mathcal{K}$, for any $\varepsilon_n \to 0$, the set

On the semigroup of Hadamard differentiable mappings

$$\left\{\varepsilon_n^{-1}(k(a+\varepsilon_n x)-k(a)) \mid x \in B, n=1,2,\cdots\right\}$$

is contained in a compact set. In fact, since

 $\varepsilon_{\bullet}^{-1}(k(a+\varepsilon_{\bullet}x)-k(a))=k'(a)(x)+\varepsilon_{\bullet}^{-1}r(k,a,\varepsilon_{\bullet}x),$

the fact that $k'(a) \in \mathscr{K}([6, p. 27])$ implies that $\{k'(a)(x) \mid x \in B\}$ is contained in a compact set and the fact that $k \in \mathcal{D}_F$ implies that the second term converges to 0 as $n \to \infty$. Therefore,

$$fk \in \mathcal{D}_F$$
 and $(fk)'(a) = f'(k(a))k'(a)$.

2) Let us assume that $f \notin \mathscr{D}_{H}$. Then, there exist $\varepsilon_n \downarrow 0$, $a \in E$ and $x_n \to x_0$ such that

$$\varepsilon_n^{-1}r(f,a,\varepsilon_nx_n) \nleftrightarrow 0 \text{ as } n \to \infty.$$

Now, the method used in [2, p, 92] supplies a differentiable E-valued function $\mu(\xi)$ of a real variable such that

 $\mu(0) = a, \quad \mu(\varepsilon_n) = a + \varepsilon_n x_n \text{ and } \mu'(0) = x_0.$

Then, consider the mapping $k \in \mathscr{K}_1$ defined by

$$k(x) = \mu(\langle x, \tilde{a} \rangle),$$

where $\bar{a} \in \bar{E}$ and $\langle a, \bar{a} \rangle = 1$. By the assumption,

 $fk \in \mathcal{D}_G$ and (fk)'(0) = f'(k(0))k'(0).

On the other hand,

$$k'(0)(a) = \lim_{\varepsilon \to 0} \varepsilon^{-1} [k(\varepsilon a) - k(0)]$$

=
$$\lim_{\varepsilon \to 0} \varepsilon^{-1} [\mu(\varepsilon) - \mu(0)] = \mu'(0) = x_0,$$

and

$$\varepsilon_n^{-1} r(f, a, \varepsilon_n x_n)$$

$$= \varepsilon_n^{-1} [f(a + \varepsilon_n x_n) - f(a) - f'(a)(\varepsilon_n x_n)]$$

$$= \varepsilon_n^{-1} [fk(\varepsilon_n a) - fk(0) - (fk)'(0)(\varepsilon_n a)] + (fk)'(0)(a) - f'(a)(x_n)$$

$$= \varepsilon_n^{-1} r(fk, 0, \varepsilon_n a) + f'(a)(x_0 - x_n) \to 0 \quad \text{if} \quad n \to \infty,$$

which is a contradiction.

2. \mathcal{D}_{H} as a semigroup

It is well-known that if $f, g \in \mathscr{D}_F$ then $fg \in \mathscr{D}_F$. In other words, \mathscr{D}_F is a semigroup with respect to the composition. For any semigroup \mathcal{D} , a one-to-one mapping ϕ of \mathcal{D} onto itself is called an *automorphism* if

331

[3]

S. Yamamuro

$$\phi(fg) = \phi(f)\phi(g)$$
 for $f, g \in \mathscr{D}$.

If there exists $h \in \mathcal{D}$ such that it has the two-sided inverse h^{-1} in \mathcal{D} and

 $\phi(f) = hfh^{-1}$ for every $f \in \mathscr{D}$

then the automorphism is said to be inner.

Eidelheit [4] has proved that every continuous automorphism of the semigroup \mathcal{L} is inner.

On the other hand, Magill, Jr. [5] has proved that, if E is one-dimensional, every automorphism of the semigroup \mathscr{D}_F ($= \mathscr{D}_H = \mathscr{D}_G$) is inner.

These two results take us naturally to the question whether every automorphism of the semigroup \mathcal{D}_F on a general Banach space is inner.

Eidelhiet's result suggests that we may need some continuity assumptions. In fact, in [9], we have shown that, in the semigroup of all boundely and continuously differentiable mappings, where the topology is defined by

$$||f||_n = \sup_{||x|| \leq n} \{ ||f(x)|| + ||f'(x)|| \}, \quad n = 1, 2, \cdots,$$

an automorphism is inner if and only if it is continuous.

On the other hand, in [8] we have given a necessary and sufficient condition for an automorphism ϕ of \mathscr{D}_F to be inner. The method used there has been refined in [7], where we have generalized the Magill's result mentioned above to arbitrary finite-dimensional Banach spaces.

Now, we turn to the set \mathscr{D}_H . As Averbukh and Smolyanov [1,2] have pointed out, the Hadamard differentiation is, in a sense, the weakest differentiation which has the composition property: if $f, g \in \mathscr{D}_H$, then $fg \in \mathscr{D}_H$ and

$$(fg)'(a) = f'(g(a))g'(a)$$
 for every $a \in E$.

Moreover, if E is finite-dimensional, then $\mathscr{D}_F = \mathscr{D}_H$. Therefore, the following result is a generalization of that of [7]:

THEOREM 2. Let E be separable. Then, every automorphism of the semigroup \mathcal{D}_H is inner.

PROOF. Let ϕ be an automorphism. Exactly the same argument as in [7], if \mathscr{D}_F there is replaced by \mathscr{D}_H , gives the following facts:

(1) there exists a unique one-to-one mapping h of E onto E such that

$$\phi(f) = hfh^{-1}$$
 for every $f \in \mathscr{D}_H$.

(2) $h \in \mathscr{D}_G$ and $h^{-1} \in \mathscr{D}_G$;

(3) $(a \otimes \bar{a})h \in \mathscr{D}_H$ for any $a \in E$ and $\bar{a} \in \bar{E}$, where $a \otimes \bar{a}$ is an element of \mathscr{L} defined by

$$(a \otimes \overline{a})(x) = \langle x, \overline{a} \rangle a$$
 for every $x \in E$;

and

(4)
$$((a \otimes \overline{a})h)'(x)(y) = \langle h'(x)(y), \overline{a} \rangle a$$

We shall prove that $h \in \mathcal{D}_{H}$. Since we may start with ϕ^{-1} instead of ϕ , we use the fact that any result containing h remains true if we replace h by h^{-1} .

Now, by Theorem 1, we have only to prove that

$$hk_1 \in \mathscr{D}_G$$
 for any $k_1 \in \mathscr{K}_1 \cap \mathscr{D}_F$

and

$$(hk_1)'(x) = h'(k_1(x))k'_1(x)$$

Let us take an arbitrary
$$k_1 \in \mathscr{K}_1$$
:

$$k_1(x) = \mu(\langle x, \bar{a} \rangle),$$

and let $a \in E$ be such that $\langle a, \bar{a} \rangle = 1$. Then, we have $k_1 = k_1(a \otimes \bar{a})$. Since Since $a \otimes \bar{a} \in \mathscr{L} \subset \mathscr{D}_H$, there exists $k \in \mathscr{D}_H$ such that

Since

$$k(x) = h^{-1}(\langle h(x), \bar{a} \rangle a),$$

 $\phi(k) = a \otimes \bar{a} \, .$

where $\langle h(x), \bar{a} \rangle$ is continuous by [8, p. 506] and $h^{-1}(\xi a)$ is continuous with respect to ξ by (2) above, we see that $k \in \mathcal{K}$. Therefore, from (3) it follows that

 $(a \otimes \overline{a})hk \in \mathscr{D}_H$.

Since

$$(a \otimes \overline{a})hk(x) = \langle hk(x), \overline{a} \rangle a$$
,

the mapping $\langle hk(x), \bar{a} \rangle$ of E into the set of real numbers is Hadamard-differentiable. Therefore, the mapping $\mu(\langle hk(x), \bar{a} \rangle)$ of E into E is Hadamard-differentiable and obviously,

$$\mu(\langle hk(x), \bar{a} \rangle) = k_1 hk(x)$$
 for every $x \in E$.

In other words,

$$k_1 h k \in \mathcal{D}_H$$
.

Therefore,

$$\phi(k_1hk) \in \mathscr{D}_H$$

and

$$\phi(k_1hk) = hk_1hkh^{-1} = hk_1\phi(k) = hk_1(a \otimes \bar{a}) = hk_1,$$

from which it follows that

$$hk_1 \in \mathcal{D}_H$$
.

Thus, it only remains to prove the equality (*) of Theorem 1. First, since $a \otimes \tilde{a} \in \mathcal{D}_H$ and $hk_1 \in \mathcal{D}_H$, we have

$$(a \otimes \overline{a})hk_1 \in \mathscr{D}_H$$
 and $((a \otimes \overline{a})hk_1)'(x)(y) = \langle (hk_1)'(x)(y), \overline{a} \rangle a$

Also, by applying Theorem 1, 1) to $(a \otimes \overline{a})h$ and k_1 we have

$$((a \otimes \bar{a})hk_1)'(x)(y) = ((a \otimes \bar{a})h)'(k_1(x))k_1'(x)(y)$$

and by (3) and (4) the right hand side here is $\langle h'(k_1(x))k'_1(x)(y), \bar{a} \rangle a$. Therefore,

$$\langle (hk_1)'(x)(y), \bar{a} \rangle a = \langle h'(k_1(x))k_1'(x)(y), \bar{a} \rangle a.$$

Since \bar{a} is arbitrary, (*) follows, Thus. $h \in \mathcal{D}_H$ and hence ϕ is inner.

REMARK. With the product defined above and the addition f + g defined by

$$(f+g)(x) = f(x) + g(x)$$
 for every $x \in E$,

 \mathscr{D}_H is a near-ring. The fact that every near-ring automorphism of \mathscr{D}_H is inner can be proved in the same way as in [9]. In this case, h is in \mathscr{L} .

References

- V. I. Averbukh and O. G. Smolyanov, 'The theory of differentiation in linear topological spaces,' Russian Math. Survey, 22: 6 (1967), 201-258.
- [2] V. I. Averbukh and O. G. Smolyanov, 'The various definitions of the derivative in linear topological spaces,' *Russian Math. Survey*, 23:4 (1968), 67–113.
- [3] J. Dieudonné, Foundations of Modern Analysis (1960).
- [4] M. Eidelheit, 'On isomorphisms of rings of linear operators.' Studia M. 9 (1940), 97-105.
- [5] K. D. Magill, Jr., 'Automorphisms of the semigroup of all differentiable functions,' Glasgow Math. J. 8 (1967), 63-66.
- [6] J. T. Schwartz, Non-linear Functional Analysis (Gordon and Breach, New York, 1969).
- [7] G. R. Wood and Sadayuki Yamamuro, 'On the semigroup of differentiable mappings' (II); (to appear in Glasgow Math. J.).
- [8] Sadayuki Yamamuro, 'On the semigroup of differentiable mappings,' J. Australian Math. Soc. 10 (1969), 503-510.
- [9] Sadayuki Yamamuro, 'On the semigroup of bounded C^1 -mappings,' (to appear in J. Australian Math. Soc.)

Department of Mathematics Institute of Advanced Studies Australian National University

334