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The bearded fireworm, Hermodice carunculata, is a common species in the marine annelid taxon Amphinomidae. It has a
widespread distribution throughout the Atlantic, Gulf of Mexico, the Caribbean, Mediterranean and Red Seas. We review its
environmental tolerances, defence mechanisms and feeding habits to evaluate its potential to survive in changing ocean con-
ditions, to increasingly emerge as a nuisance species and to invade new geographic areas. Hermodice carunculata tolerates a
wide range of environmental conditions, including temperature, salinity, oxygen saturation and various types of pollution. It
has few natural predators because it is protected by its sharp chaetae and probably by toxins. Hermodice carunculata is best
known for consuming live cnidarians, and has been implicated in transmitting coral pathogens, but it also feeds non-
selectively on detritus. In the short term, we predict that H. carunculata will be able to withstand many future ecological chal-
lenges and possibly contribute to coral reef decline. In the long term, ocean acidification may negatively impact its defence
mechanisms and survival. Its invasive potential may be significant. We highlight the gaps in our knowledge about the repro-
duction and development of this species, the nature and origin of its toxins and role of microbes in their feeding behaviour and
defensive strategies.
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I N T R O D U C T I O N

Marine shallow-water species currently face a multitude of
ecological challenges. Coastal waters are increasingly subject
to pollution, pathogens, hypoxia, overfishing, non-native
species and other anthropogenic and natural disturbances.
Additionally, shallow-water species are more exposed to
increased UV radiation, warming temperatures and acidifica-
tion than inhabitants of deeper water. We are only beginning
to understand the long-term consequences of these environ-
mental stressors, separately and in combination, on biological
communities. Shallow-water coral reefs, in particular, are in
decline worldwide, causing concern about the loss of biodiver-
sity associated with hermatypic corals (e.g. Pandolfi et al.,
2011; De’ath et al., 2012; Descombes et al., 2015). Some
shallow-water invertebrate species appear to be better
equipped than others to cope with particular challenges. For
example, calcifying species are especially vulnerable to acidifi-
cation (Kroeker et al., 2010, 2013).

In this contribution, we examine the potential of the
bearded fireworm, Hermodice carunculata (Pallas, 1776)
(Figure 1), to survive – and potentially thrive – in a changing
ocean environment. We argue that its ability to withstand
environmental extremes and fluctuations, its predator avoid-
ance strategies and its non-selective diet will probably

benefit its survival and possibly lead to its widespread emer-
gence as a nuisance species although the effects of ocean acid-
ification could interfere with its defence mechanisms in the
long term.

Hermodice carunculata is a common species of amphino-
mid polychaete with a distribution throughout the Atlantic
Ocean, the Caribbean, Gulf of Mexico, Mediterranean and
Red Seas (Yáñez-Rivera & Salazar-Vallejo, 2011; Ahrens
et al., 2013). The common name refers to the tufts of
‘harpoon chaetae’ which are flared when the worm is threa-
tened, causing serious irritation at the site of contact.

Hermodice carunculata is primarily reported from warmer
waters, but one questionable record exists from as far north as
the Dogger Bank in the North Sea (Fauvel, 1923). In the south,
it ranges to Rio de Janeiro in the west and to the Gulf of
Guinea in the east (Ahrens et al., 2013). It has also been
reported from Ascension and St. Helena Islands in the
South Central Atlantic (Yáñez-Rivera & Brown, 2015).
Hermodice carunculata inhabits primarily shallow water,
including the intertidal zone, but has been reported to a
maximum of over 300 m depth (Ehlers, 1887). The species
is common in a variety of habitats, such as coral reefs and sea-
grass beds, as well as artificial structures like pilings, bridge
spans and shipwrecks. Hermodice carunculata is primarily
active from dusk to dawn and often hides in crevices, under
overhangs or underneath rocks throughout the day.

Ahrens et al. (2013) showed that H. carunculata is genetic-
ally homogeneous throughout its distribution range, suggest-
ing high dispersal capabilities. Unfortunately, little is known
about the larval development of the species. Based on

Corresponding author:
A. Schulze
Email: schulzea@tamug.edu

1075

Journal of the Marine Biological Association of the United Kingdom, 2017, 97(5), 1075–1080. # Marine Biological Association of the United Kingdom, 2017
doi:10.1017/S0025315417000091

https://doi.org/10.1017/S0025315417000091 Published online by Cambridge University Press

mailto:schulzea@tamug.edu
https://doi.org/10.1017/S0025315417000091


chaetal characteristics, a planktotrophic larval type known as
rostraria is perhaps associated with amphinomids (Bhaud,
1972), but this association has never been confirmed by
direct observation of metamorphosis into a juvenile or by
DNA barcoding of the larva. Even accepting that the rostraria
is an amphinomid larva, assignments to particular species
cannot currently be made.

Apart from pelagic larvae, H. carunculata may also dis-
perse by rafting. Some studies have reported amphinomids
rafting on marine debris (Donlan & Nelson, 2003; Thiel &
Gutow, 2005; Farrapeira, 2011; Borda et al., 2012), although
none specifically mentions H. carunculata. McIntosh (1885)
mentions a large specimen of H. carunculata swimming
near the water surface.

H E R M O D I C E C A R U N C U L A T A I S
T O U G H

Many amphinomid species occur in habitats that are com-
monly described as ‘extreme’. A few examples are
Archinome species which inhabit hydrothermal vents and
seeps (Borda et al., 2013), Benthoscolex cubanus, a commensal
or parasite in the body cavity of sea urchins (Emson et al.,
1993), and Linopherus canariensis, a potentially invasive
species in a hypersaline lagoon in Sicily (Cosentino &
Giacobbe, 2011).

Hermodice carunculata is common in Caribbean coral
reefs, including reef crests exposed at low tide, with significant
short-term fluctuations in temperature, salinity and dissolved
oxygen. During these fluctuations, the metabolic rate, as mea-
sured by oxygen consumption, only changes marginally
(Sander, 1973; Ferraris, 1981). The species can be abundant
in organically enriched areas where microbial activity can
lead to oxygen depletion, such as the benthos underneath
fish farms (Heilskov et al., 2006; Riera et al., 2014) or coral
algae interfaces (Smith et al., 2006). In the Azores, H. carun-
culata has been reported from the shallow-water hydrother-
mal vents at D. João de Castro Seamount (Cardigos et al.,
2005). Remarkably, the worms occur in very close proximity
(,1.5 m) to the vents, where fluids with elevated temperatures

of up to 63.38C, low pH and high sulphide and heavy metal
concentrations are released (Cardigos et al., 2005). Shiber
(1981) reports that in the heavily polluted Ras Beirut, on the
Mediterranean coast of Lebanon, H. carunculata appears to
be unaffected by blasts from dynamite fishing and will feed
on dead or paralysed fish sinking to the seafloor. Among
benthic invertebrates in Ras Beirut, H. carunculata was the
species with the highest concentrations of lead, cadmium,
nickel, iron and zinc. Hermodice carunculata is also frequently
reported from marine and anchialine caves in the Caribbean
(Frontana-Uribe & Solı́s-Weiss, 2011), the Mediterranean
(Gerovasileiou et al., 2015; Knittweis et al., 2015) and the
Azores (Micael et al., 2006), ranging from the cave entrance
to the dark zone.

Like many annelids, amphinomids have the ability to
regenerate missing body sections after injury. Eurythoe com-
planata even routinely goes through cycles of asexual repro-
duction during which the worms fragment into two or more
parts and can regenerate both anterior and posterior body sec-
tions (Kudenov, 1974). To date, only posterior regeneration
has been demonstrated in H. carunculata (Ahrens et al.,
2014). Posterior fragments without a head can survive and
remain active for several weeks in an aquarium setting but
no new head formation has been observed (pers. obs.).

H E R M O D I C E C A R U N C U L A T A I S
A R M E D

Annelid bristles, or chaetae, are generally chitinous structures.
Amphinomid chaetae are unique in that they contain calcium
carbonate in addition to chitin (Gustafson, 1930). Each para-
podium carries tufts of dorsal notochaetae and ventral neuro-
chaetae. In Hermodice carunculata, the notochaetae may be
smooth and hair-like or distally serrated ‘harpoon chaetae’
(Gustafson, 1930; Yáñez-Rivera & Salazar-Vallejo, 2011).
Harpoon chaetae may be erected, or even ejected, for
defence (Penner, 1970; Halstead, 1971). When touched, they
will penetrate human skin and, thanks to the serration,
remain stuck in it. The neuropodial tuft probably only con-
tains a single type of chaetae (Gustafson, 1930). The texture
of the chaetae may be erodible and may depend on the
status of regeneration after they have been shed. Therefore
they are not used as diagnostic characters. However, as they
play an important role in defence and possible prey capture,
chaetal structure and arrangement should be further
investigated.

It is still unclear whether the irritation the chaetae cause is
merely mechanical or whether they are actually venomous.
Although no toxins specifically associated with the chaetae
have been identified to date, there are indications that
venoms are utilized. Localized reactions in the affected area
include an acute, intense stinging pain, itchiness, numbness
and swelling (Smith, 2002). These symptoms can last up to
several weeks. More notably, however, in rare cases, systemic
reactions such as nausea, cardiac and respiratory problems
can occur (Ottuso, 2013). The recommended treatment is to
remove the bristles with tape, to treat the area with vinegar
and to apply hot water (Smith, 2002). The vinegar may dissolve
the calcium carbonate in the chaetae. The heat treatment
implies that a toxin is involved which can be denatured by heat.

It has long been assumed that toxins are released through a
hollow core of amphinomid chaetae (e.g. Nakamura et al.,

Fig. 1. The bearded fireworm, Hermodice carunculata, observed off the South
Florida Atlantic coast.
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2008; von Reumont et al., 2014), but some studies have shed
doubt on this interpretation. Under light microscopy, the
clear core does appear hollow and sometimes a small
amount of fluid seems to be released from the tip of the
chaeta (Figure 2A). However, histological sections do not
reveal any glands near the bases of the chaetae in H. caruncu-
lata (pers. obs.) or Eurythoe complanata (Eckert, 1985).
Gustafson (1930) found that the core is actually filled with a
clear gelatinous substance consisting of individual fibrils
with a hexagonal cross-section. He attributes the toxic
nature of the chaetae to this substance. He described that
only the outer sheath of the chaetae, including the recurved
hooks, when present, are calcareous. In contrast, Tilic et al.
(2016), based on ultrastructural observations on Eurythoe
complanata, postulate that the central core is also filled with
calcium carbonate, contributing to the brittleness of the
chaetae. According to their study, the calcium carbonate is
deposited after the large central microvilli of the chaetoblast
retract and their canals fuse together. When exposed to
acidic conditions (e.g. many fixatives), the calcium carbonate
may dissolve and leave a central cavity. In some cases, we have
observed pieces of tissue adhering to the base of the chaetae
(Figure 2C, D) which we interpret to be the chaetoblasts.
Scanning electron micrographs reveal that chaetae may also

be grooved, adding another potential conduit for toxins
(Figure 2E).

While it is uncertain which, if any, toxins are associated
with amphinomid chaetae, several studies have documented
the presence of toxins in whole body extracts. Nakamura
et al. (2008) isolated complanine, an inflammatory com-
pound, from Eurythoe complanata. Hermodice carunculata
sequesters palytoxin (PTX) from its zoanthid prey, Palythoa
spp. (Gleibs et al., 1995). PTX maintains its haemolytic activ-
ity on human blood when isolated from the worm tissues.
Researchers observed H. carunculata preying on Cassiopea
spp., the upside-down jellyfish, in the Bahamas. Cassiopea
contains numerous toxins, indicating that H. carunculata
may sequester their toxins from various benthic cnidarians
(Radwan et al., 2005; Stoner & Layman, 2015).

As an interesting ethnographic side note, Davis (1983)
reports that H. carunculata is one of many ingredients in a
potent concoction used in Haitian voodoo rituals during
which victims are turned into ‘zombies’. During the prepar-
ation of the poison, the worms are combined with a toad in
a closed container, stimulating the toad to increase its own
toxin secretions. It is unclear, however, whether H. caruncu-
lata actually contributes any toxins to the final potion in
which tetrodotoxin is probably a key ingredient (Davis, 1983).

Even though H. carunculata is powerfully armed with
chaetae and toxins, it does have some natural predators.
Most notably, it provides a primary source of nutrition for
at least three species of cone snails in the Caribbean (Kohn
et al., 1972; Vink, 1974; Vink & von Cosel, 1985). Recently
Ladd & Shantz (2016) published the first observations of
two fish species, the white grunt (Haemulon plumierii) and
the sand tilefish (Malacanthus plumieri) feeding on H. carun-
culata in Florida. Whitebone porgies (Calamus leucosteus)
also seem to have an appetite for amphinomids, although
the species of amphinomid prey has not been identified
(Sedberry, 1989). D. Meyer, pers. comm. in Sebens (1982),
noted the predatory anemone Phyllactis flosculifera consum-
ing H. carunculata when the worms were trapped in eddies
in sand depressions. Specimens of H. carunculata have also
been fatally injured by snapping shrimp (Alpheus armatus)
living as symbionts with the anemone Bartholomea annulata.
The snapping shrimp thus successfully defend their host ane-
mones from fireworm predation (McCammon & Brooks,
2014). In aquarium settings, the coral-banded shrimp
(Stenopus spp.), the six-lined wrasse (Pseudocheilinus hexatae-
nia) and cleaner shrimp (Lysmata spp.) have been observed
preying on bristle worm species. Whether this also occurs in
natural settings remains to be determined.

H E R M O D I C E C A R U N C U L A T A I S
O M N I V O R O U S

Most reports of feeding activity of H. carunculata are on live
cnidarians, such as hermatypic corals (Ott & Lewis, 1972;
Miller & Williams, 2007; Wolf & Nugues, 2013; Miller et al.,
2014), gorgonians (Vreeland & Lasker, 1989), fire corals
(Whitman, 1988; Lewis & Crooks, 1996), zoanthids (Sebens,
1982; Francini-Filho & Moura, 2010), anemones (Lizama &
Blanquet, 1975) and upside-down jellyfish (Stoner &
Layman, 2015). Barroso et al. (2016) recently reported
feeding on several species of sea stars. Due to its relatively
slow movements, H. carunculata is limited in its feeding

Fig. 2. Light micrographs (LM) or scanning electron micrographs (SEM) of
chaetal structure in Hermodice carunculata. Images were taken of chaetae
released after the worms were mechanically irritated with a stream of water
from a pipette. (A) LM of chaetal tip, showing the serration, a clear core and
the release of a drop at the tip (arrow). (B) SEM of a chaetal tip, showing
the serration. (C) LM of base of a chaeta, showing the putative chaetoblast
adhering to the insertion point. (D) SEM of base of chaeta with tissue at
insertion point. (E) basal portion of a chaeta with a groove (arrow). All scale
bars: 10 mm.
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activity to slow moving, sedentary or sessile prey. When
feeding on cnidarians, it apparently remains unaffected by
their stings or toxins. It feeds by everting its buccal cavity
over a portion of its prey and drawing soft tissue into its
complex, muscularized pharynx. The digestive tract was
described by Marsden (1963) and consists of five regions:
(1) the buccal cavity, (2) the pharynx, (3) a short oesophagus,
(4) a long intestine and (5) a short rectum which terminates in
the anus. Using micro-computed tomography, Faulwetter
et al. (2013) demonstrated the presence of a rasping organ
in the buccal cavity, which would explain how the worms
remove soft tissues from the hard skeleton of corals or
gorgonians.

Apart from feeding on a variety of live prey, H. carunculata
is also an opportunistic scavenger which will feed on virtually
any dead animal or animal parts on the seafloor (pers. obs.,
Wolf et al., 2014). It actually seems to prefer decaying
corals, corals overgrown with algae or dead fish to live cnidar-
ians (Wolf et al., 2014). In captivity, H. carunculata will even
devour injured members of its own species (pers. obs.).

In the coral conservation community, H. carunculata has a
bad reputation, not only because it feeds on live corals, espe-
cially new recruits (Miller & Williams, 2007; Miller et al.,
2014), but also because it can act as a vector and reservoir
for coral pathogens. This has been demonstrated so far only
for the Oculina patagonica/Vibrio shiloi system in the
Mediterranean Sea (Sussman et al., 2003) but there is
concern that the phenomenon is more widespread.

C O N C L U S I O N S

We have reviewed the ability of amphinomids in general, and
Hermodice carunculata in particular, to withstand environ-
mental extremes, including a wide range of and fluctuations
in temperatures, salinities, oxygen levels, heavy metals and
other disturbances. Thanks to its arsenal of chaetae and
toxins, whether produced endogenously or sequestered from
prey, H. carunculata has few natural predators and its own
diet is highly flexible.

Hermodice carunculata is clearly an opportunistic species
with broad environmental tolerances. One factor that could
potentially affect it negatively is ocean acidification, as a
diminished pH could interfere with the formation or struc-
tural integrity of the calcified chaetae, a key feature for its sur-
vival. On the other hand, the occurrence of H. carunculata in
very close vicinity to acidic vent sites (Cardigos et al., 2005)
suggests that a minor decrease in pH leaves adult H. caruncu-
lata relatively unaffected. Larvae generally tend to be more
strongly impacted by acidification than adults (Kurihara,
2008; Dupont & Thorndike, 2009; Byrne & Przeslawski,
2013), presenting another reason to investigate the complete
life cycle of H. carunculata. In the short term, H. carunculata
will probably increasingly become a nuisance species. In par-
ticular, it may interfere with coral reef restoration efforts due
to its feeding behaviour (Bruckner & Bruckner, 2001; Wolf &
Nugues, 2013; Miller et al., 2014). This would be even more
troubling if new evidence emerges that it is involved in trans-
mission of other coral pathogens, in addition to the reported
Oculina patagonica/Vibrio shiloi system (Sussman et al.,
2003).

It is also noteworthy that H. carunculata probably has sig-
nificant invasive potential, as is the case with other

amphinomids (Cosentino & Giacobbe, 2011; Arias et al.,
2013). Its genetic homogeneity throughout the Atlantic and
its adjacent basins (Ahrens et al., 2013) suggests that it has
remarkable capabilities for long-distance dispersal. The exist-
ence of a long-lived planktotrophic larva is likely and its
potential to colonize new habitats may be increased by
anthropogenic vectors such as ships’ ballast water.
Additionally, juveniles and adults may be transported on
ship hulls, natural and anthropogenic marine debris, or ‘live
rock’ in the aquarium trade. ‘Live rock’ is a common hiding
place for amphinomids which can become aquarium pests
(Calado et al., 2007). To date, there are no reports of H. car-
unculata in the Pacific or Indian Oceans, except for the Red
Sea. Oddly, it has been referred to as a Lessepsian species
which invaded the Eastern Mediterranean through the Suez
canal from the Red Sea, not vice versa (Fishelson, 2001).
Considering that the Red Sea is the only location not originally
connected to the Atlantic Ocean, it does appear that it was
introduced there at some point, but whether this happened
through the Suez Canal or by other means cannot be
confirmed.

Hermodice carunculata is widespread, common and easy to
maintain in captivity. It therefore lends itself to experimental
studies of physiology, toxicology and behaviour. In the future,
it will be important to fill some gaping holes in our under-
standing of its biology. The most important of these are its
reproduction and development and the origin and nature of
its toxins. Microbiome studies could additionally shed some
light on toxin synthesis as well as their potential to transmit
coral and other pathogens. Future studies should also consider
the effects of ocean acidification on this calcifying annelid.
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