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Abstract

This paper is concerned with the problem of automatic continuity of derivations from group algebras
1}{G), where G is a locally compact group, and convolution algebras L}(w), where u is a weight
function. In the case of group algebras, it is shown that either the problem reduces to the case when G
is the free group on a countably infinite number of generators or there is a non-discrete group G with
a discontinuous /'(GJ-bimodule homomorphism from Ll(G). It is also shown that every derivation
from L}(G) to a commutative ^ (^ -b imodu le ;s continuous. Similar results are obtained for
weighted convolution algebras.

1980 Mathematics subject classification (Amer. Math. Soc): 46 H 25.

Introduction

It is not known whether derivations from group algebras L}(G) or weighted
convolution algebras Ll(u) to Banach bimodules over the respective algebras are
automatically continuous. For a discussion of the problem as to whether they are,
see Section 10 in [3] and, in particular, questions 22 and 24. The present paper is
concerned with developing some techniques which may be used to tackle this
problem and with applying them to some particular cases.

A related question is raised in Section 2, namely whether every left ^(O-mod-
ule (or /1(w)-module) homomorphism from L\G) (respectively L1^)) to an
arbitrary left Banach /1(G)-module (/1(«)-module) is continuous. Some evidence
is presented which suggests that all such homomorphisms are continuous. How
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300 G. A. Willis [2 ]

this is related to the automatic continuity problem for derivations from Ll(G) is
shown in Section 4 (Theorem 4.1). In particular, it is shown that either the
homomorpnisms problem has a negative solution or the derivations problem
reduces to the case when G is the free group on a countably infinite number of
generators. In other words, if the homomorphisms problem has a positive
solution, then the topology on G is not relevant to the derivations problem. An
analogous result is proved for Ll(u).

The other main result of Section 4 (Theorem 4.3) is a solution of a special case
of the derivations problem for group algebras. It is shown that every derivation
from L}(G) to a commutative Banach L1(G)-bimodule is continuous. Some
lemmas required in Section 4 are proved in Section 3. These lemmas are based on
parts of my Ph D thesis, which was completed at the University of Newcastle
upon Tyne under the supervision of Professor B. E. Johnson. I would like to
thank Professor Johnson for his supervision and many helpful suggestions.

1. Weight functions and other definitions

We begin by describing the convolution algebras on groups and on the positive
half-line with which we shall be working.

Throughout, G will denote a locally compact group. All notation concerning
group algebras will be as in [9] except that we shall identify certain algebras which
are shown to be isomorphic there. For example, C0*(G) will be identified with
M(G) (19.12), l\G) with Ma(G) (19.18) and l\G) with Md(G) (19.15). For
each x in G we shall denote the point mass at x by x.

Two notions of weight function have been used by varioous authors in the
definition of weighted convolution algebras. In both cases a weight function is
defined to be a function w: [0, oo) -» R+ such that

(1.1) a(s + t)< «(*)«( / ) , (s,te [0,oo)).

A function satisfying (1.1) is said to be submultiplicative. However, in [7], and [3]
for example, it is required that w should also be continuous and that «(0) = 1,
whereas in [1] the only requirement is that w should be measurable.

In any case, a weight function u> is said to be bounded if there is an M > 0
such that u(t) < M, (t e [0, oo)) and to be bounded near zero if there is an
M > 0 and 8 > 0 such that

(1.2) a(t)<M ( / e [ 0 , « ] ) .

If w is continuous, then it is automatically bounded near zero.
By Theorem 7.6.5 of [10], Um,_00 u(t)1/l always exists. If this limit is equal to

zero, then w is said to be a radical weight function.
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[31 Derivations and module homomorphisms 301

Two weight functions, wt and <o2, are said to be equivalent if there are

constants m, M > 0 with

For either notion of weight function, define the weighted convolution algebra

L}(u) to be the set of equivalence classes of complex-valued measurable functions

/ on [0, oo) such that

= n
Jo

where two functions are equivalent if they are equal almost everywhere. Define
M(u) to be the set of complex, regular, Borel measures ju on [0, oo) such that

Then /^(u) and M(u) are Banach algebras with convolution as their product
(see [1] and [7]). We will identify Ll(u) with the closed, two-sided ideal in M(u)
consisting of measures which are absolutely continuous with respect to Lebesgue
measure. Under this identification, Theorem 1.4 in [7] shows that, if « is a
continous weight, then the multiplier algebra of Ll(u) is isomorphic to M(u).

Certain properties of the weight function correspond to properties of the
weighted convolution algebra. For example, u is a radical weight if and only if
L}(u) is a radical Banach algebra and, if « is bounded near zero, then L}(u) has
a bounded approximate identity (see [1]). By comparing the norms of point
masses, we see that two weights ul and «2 are equivalent if and only if
M(<0j) = M(u2). Further, if u1 and w2 are equivalent, then it is clear that
L\Ul) = L\w2).

It is at this point that it begins to matter whether we take weights to be
continuous or merely measurable. If ul and «2 are continuous and L^Wj) =
L1(«2), then it may be shown that ux and w2 are equivalent. However, there are
inequivalent measurable u1 and <o2 with / ^ ( ^ I ) = Ll(u2).

For such a pair of weights Z-Hwi) = ^ ("2) but M(o3x) =£ A/(w2). Hence, as it
stands, Theorem 1.4 in [7] does not generalize from continuous to measurable
weights because there is no natural candidate for the multiplier algebra. On the
other hand, there ought to be some sort of generalization of this theorem to
weights which are bounded near zero because the most important feature of its
proof is the existence of a bounded approximate identity in L}(u).

This difficulty can be met by making an appropriate choice for the definition of
weight function. This choice is suggested by Proposition 1.1 below, the first part
of which is due to S. Grabiner [8, Corollary 3.6]. For this, define the Sorgenfrey
topology on [0, 00) to be that which has the base {[x, y)\x, y e [0, 00)} (see [5], ex.
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1.2.2). It is clear that a complex-valued function / on [0, 00) is Sorgenfrey
continuous if and only if limA_0+ f(t + h) = f(t), (t e [0, 00)). Every Sorgenfrey
open set is a Borel set. Hence a Sorgenfrey continuous function is Borel.

1.1. PROPOSITION. Let u be a measurable submultiplicative function on [0, 00)
which is bounded near zero. Then there is a Sorgenfrey continuous submultiplicative
function w on [0, 00) such that Ll(u) = L\u).

If a' is any Sorgenfrey continuous submultiplicative function with L}(u') - L}(u),
then «' is equivalent to u.

PROOF. The first part is Corollary 3.6 of [8]. To prove the second part, let w' be
a Sorgenfrey continuous submultiplicative function such that Ll(u') = L\u).
Define, for/ in L\u),

and

•'o

Then || • || and ||| • ||| are Banach algebra norms on l}(u) and are thus equivalent
by the argument given in [3, Theorem 7.6]. Hence there are constants m, M such
that

(1-6) m|||/|N||/1|< M|||/HI
Let / be in [0, 00) and for each h > 0 define

otherwise.

Then, because u and u' are Sorgenfrey continuous,

lim ||/J| = lim r \fh{s)\i5(S)ds
A-»0+ /i->0+ •'0

= hm

and limA^0+ |||/J|| = u'(t). Therefore, by (1.6), mu'(t) < u(t) < Mu'(t), (t e
[0, 00)), and so w' and « are equivalent.

In view of Theorem 1.1 we now define a weight function to be a Sorgenfrey
continuous submultiplicative function u: [0, 00) -> R+. Note that such weight
functions w are always bounded near zero and so the weighted convolution
algebra / / (« ) will always have a bounded approximate identity.
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With this notion of weight function we have that ux and cc2 are equivalent if
and only if L^Wj) = L}(u2). Also, we recover all the weighted convolution
algebras which arise from measurable submultiplicative functions which are
bounded near zero. However, this definition of weight function is still more
restrictive than that used in [1] because in that paper weights are allowed to be
unbounded near zero.

A version of Theorem 1.4 in [7] may now be proved for this more general
notion of weight function. By a multiplier on a Banach algebra A is meant a
continuous linear operator T: A -* A such that T(ab) = T(a)b, (a, b e A). The
set of all multipliers on A will be denoted by J((A). It is a closed subalgebra of
the algebra of all bounded linear operators on A .

For each /t in M(u), let 3~\). be the operator on Ll(u) defined by

•?>( / ) = /**/ ( / e L x ( « ) ) .

Then it is clear that 3~ is a continuous homomorphism from M(w) into
J?(L}(u)). We will show that 3~ is a bijection. As in [7], the proof will be
modelled on Wendel's proof that M(G) is the multiplier algebra of Ll{G) (see [9,
Theorem 35.5]). For this, it is necessary to represent M(u>) as a dual space.

Let C0(w) be the space of all continuous functions * on [0, oo) with

and

= sup \ + (t)u(t)1\< co,
te[ 0,oo)

lim
(-•00

Then (Co(«), || • ||) is a Banach space.

1.2 LEMMA. Let u be a weight function. Then C0(w)* (the dual space of C0(w))
is isomorphic to M(u).

PROOF. Define, for each /x in Af(w),

Then,

<( sup Itfa-Ar ad\p\ =
Mo, oo) >Joo,

Hence, #»„ is in C0(co)* and ||mM|| < \\fi\\.
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Both w and w ' are bounded on [0, t] for every t in [0, oo) and so the subspace
C, of Co(«) consisting of functions with support in [0, t) is isomorphic to Co[0, t).
Hence, if m is in Co(«)*, then, by the Riesz Representation Theorem [15,
Theorem 6.19] there is a regular Borel measure ju on [0, oo) such that m(ty) =
/o *p(s)dn(s) = /o00 i/'^M, O G C,). It is clear that n may be chosen indepen-
dently of t. We will show that jit is in M(w) and m = m^.

For each c in (0,1) define a function «e on [0, oo) by

<oE(O = 7 / « ( ; + * ) * ( re[o ,oo)) .
£ •'O

Then we is continuous on [0, oo). Since u is submultiplicative we have ut < Mu,
where M is an upper bound for w on [0,1] and, since u is Sorgenfrey continuous,
wE converges pointwise to « as e -» 0.

Now consider

= sup

We have, for each \p in Co[0,t), that i/<« is in /^ (H) , |^wj < |M^«| , and
converges pointwise to i//«. Hence, by the dominated convergence theorem,

/ \pudp.= lim / \po) dp..

Thus

/ w d\[i\ = sup< lim / ^wt
•'[0, t) l U - o •'o

lim sup{ / \l/uedn
E-.o \ I'-'o

= lim

The last equality holds because wj1 is continuous.
Since we < Mw, we have that, if H^w; 1 ^ < 1, then

sup

sup

M. Hence

= M sup< \ i .-H
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It follows that
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f ud\n\
J[0,i)

< M sup
\

305

by definition of the norm on C0(w)*. Therefore, JU, is in M(u) and

f ud\n\= lim /
0 t-*ao J[ 0,(

m

By the definitions of n and m^, the restrictions of m and m^ to C, are equal for
every t in [0, oo). Thus, since U,e[0jOo)C( is dense in C0(w) and w and m^ are
bounded, m = m^.

We have thus shown that the map ju. -» w^ is surjective and HWĴH < ||JLI|| <
Af HmJI. Therefore M(w) and C0(w)* are isomorphic Banach spaces.

Note that if w is continuous (in the usual sense), then M(u) and C0(w)* are in
fact isometric. For, if fi is in M(«), then

wd\u\ = sup{ I
o iKo

= sup

= m.,

is continuous, 1, and lim
(-•00

= 0

However, M(u) and C0(u>)* may not be isometric if w is not continuous. For
example, put

(2-t, 0
« ( 0 = ( 3 - r , l

U, t

< 1,

and let jn be the point mass at 1. Then ||ju|| = 2 but UmJI = 1.
For / in L}(u) and </> in C0(u) define their convolution ip * / by

=n
Then it is not difficult to show that ^ * / is in Co(«) and ||i// * / | | < ||<//|| ||/||. It is
also easily verified that mf.g(4>) = mg(yp * / ) , ( / , g e Lx(w), \p e C0(w)).

As is remarked in [1], the sequence («X[o,i/n]) is a bounded approximate
identity for Ll(u) because w is bounded near zero. It may be shown that this
sequence is also a bounded approximate identity for the Banach L1(w)-bimodule
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The required isomorphism may now be proved just as in [9]. A result analogous
to this for weighted convolution algebras on locally compact groups is proved in
[6].

1.3 THEOREM. Let w be a weight function. Then J((L1{(J>)) is isomorphic to

As for group algebras, we will identify l\u) with the discrete measures in
A/(w) and will identify Ll{u) with the measures in Af(«) which are absolutely
continuous with respect to Lebesgue measure.

The notions of left, right and two-sided Banach module over a Banach algebra
A will be as defined in [2]. Since Ll(G) (respectively L^w)) is a closed, two-sided
ideal in M(G) (M(w)) and l\G) (ll(u)) is a subalgebra of M(G) (A/(«)) it is
clear that L\G) (L\u))) is a two-sided Banach module over l\G) (l\u)). The
definitions of derivations and module homomorphisms wil be as given in [2].

Let T: X -» Y be a linear operator, where X and Y are Banach spaces. Then
the separating space of T, denoted S(T), is defined by

S(T) = {y e Y\3(xn) e X with xn -> 0 and Txn--y}.

The properties of the separating space which we will require are given in [16]. In
partcular, S(T) is a closed subspace of Y and S(T) = (0) if and only if T is
continuous. We will also require the following lemma [16,1.6].

1.4 LEMMA. Let X and Y be Banach spaces and let (Sn) and (Rn) be sequences
of continuous linear operators on X and Y respectively. If T is a linear operator from
X into Y with TSn - RnT continuous for every n, then there is an integer N such
that (/?! • • • RnS(T)y= (Rl ••• RNS(T)y for all n > N.

2. Some automatic continuity problems.

The following two problems are raised in [3] as questions 22 and 24 respec-
tively.

(A) For which locally compact groups G is every derivation from Ll(G) to a
Banach L^G^-bimodule continuous?

(B) For which weight functions u is every derivation from Ll(u) to a Banach
L^wJ-bimodule continuous?

As is remarked in [3], if G is an abelian group, then the closed ideals of LX{G)
satisfy the following two conditions:

(i) if / is a closed ideal with infinite codimension in Ll(G), then there are
s e q u e n c e s ( a n ) , ( b n ) i n L } ( G ) s u c h t h a t b n a l a 2 • • • a n £ I, b u t b n a x a 2 • • •
a,,an+\ e / , for/i = 1 ,2 ,3 , . . . ;
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(ii) if / is a closed ideal with finite codimension in L1(G), then / has a

bounded approximate identity.

These conditions guarantee that every derivation from Ll(G) is continuous by

Theorem 2 of [11]. The fact that commutative group algebras satisfy condition (i)

will be required in Section 4. It may be deduced from Wiener's Tauberian

theorem [14, 7.2.4].

It will be shown in Section 4 that questions A and B are related to two other

problems.

(C) For which locally compact groups G is every /1(G)-module homomorphism

from L}(G) to a Banach left (or two-sided) /1(G)-module continuous?

(D) For which weight functions w is every / x («)-module homomorphism from

Ll(u) to a Banach /1(w)-module continuous?

Once again, if G is an abelian group, then every /1(G)-module homomorphism

from Ll(G) is continuous. In [19] it will be shown that all derivations and

/1(G)-module homomorphisms from L}(G) are continuous for G belonging to a

much wider class of groups. There are no weight functions to for which it is

known that every derivation or every /^wj-module homomorphism from L ^ w ) is

continuous.

If G is a discrete group, then / ' ( G ) is equal to L}(G) and has a unit. Hence, in

this case, Ll(G) is a singly generated left /1(G)-module and it is clear that every

left / 1(G)-module homomorphism is continuous. The next lemma shows that, for

nondiscrete G, Ll(G) is an "approximately singly generated" left ll(G)-module.

The lemma will be required for the proofs of the automatic continuity results in

[19]. It may be that there is a complete solution to (C) based on this lemma which

generalizes the argument in the discrete case.

2.1 LEMMA. Let G be a locally compact group. Let {FY, F2,..., Fn) be a finite
subset of L}(G), U be a neighborhood of e, and e > 0. Then there is an F in Ll(G)
and {/„/„...,/.} C/!(G) with supp(F)c[/; ||F|| = 1; \\fk\\ < \\Fk\\, k =
1,2,.. . , n; and \\Fk - fk * F\\ < e, k = 1,2,..., n.

PROOF. Suppose first of all that the Fj's are positive, continuous functions with
compact support in G. Then the result follows from the proof of the existence and
uniqueness of Haar measure in [9, Theorem 15.5]. The fj's and F are constructed
in the lemma of step III of that proof.

Next suppose that the Fj's are characteristic functions of open sets. Then the
result holds because characteristic functions may be approximated, in the Z^-norm,
by positive, continuous functions with compact support. Hence the result holds
for simple functions, that is, for functions which are linear combination of
characteristic functions.
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Finally, the result holds in general because the simple functions are dense in
L\G).

Next we have the corresponding lemma for Ll(u). Its proof is straightforward
and will be omitted.

2.2 LEMMA. Let u be a weight function which is bounded near zero by M. Let
{ Fx, F2,...,Fn) be a finite subset of Ll(u) and e, S > 0. Then there is an F in
L\u) and {A./2,...,/,,} c /*(«) with supp(F) c [0,8]; ||F|| < M; ||/k|| < \\Fk\\,
k = 1 ,2, . . . .n; and \\Fk - fk* F\\ < t, k = \,2,• • • ,n.

Now approximate identity arguments applying Cohen's Factorization Theorem
[2, 11.10] have been widely used in the proofs of automatic continuity results (for
example, see [11, 12]). Thus an obvious question is whether a factorization
theorem can be deduced from 2.1 and 2.2. We ask whether the following assertion
holds for each nondiscrete group G and each weight function w.

(E) There is an integer k such that, for each sequence (Fn)™=1 converging to
zero in L\G) (L\u)), there are functions F1, F2,...,Fk in L\G) (L\a)) and
sequences (f*)™=1, (fn

2)^v..., (/,*)?_! converging to zero in l\G) (l\a)) with

It is immediate that, if (E) holds for some G, then every left /1(G)-module
homomorphism from L\G) is continuous and similarly for weight functions.

Since Lemmas 2.1 and 2.2 show that L\G) and L\u) are "approximately
singly generated" it is to be expected that, if (E) holds at all, then it will hold with
k = 1. However, the example below shows that, in the group algebra case, (E)
may not hold with k = 1.

2.3 EXAMPLE. Let T be the circle group with Haar measure normalized so that
X(T) = 1. Let {xn\n

 G Z} be the set of continuous characters on T and define
Fn = (l/2n2)Lm<nxk, n = 1,2,3,.... Then each Fn is in Ll(J) and

IÎ IN A I WxA<\.
2n \k\<n "

Hence (Fn)™_l is a sequence converging to zero in L^T).
Suppose that there are functions F in Ll(T) and /„ in ^(T), n = 1,2,3,...,

such that Fn = fn* F, n = 1,2,3, Taking Fourier transforms we have

Fn(k)=fn(k)F(k), n = 1,2,3,..., * e Z .

If F{k) = 0 for some k, then Fn(k) = 0, for every n. Thus, since Fn(k) = l/2n2

when n > \k\, we must have that F(k) =£ 0 for every k e Z. Since Fn(k) = 0 for
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\k\ > n, it now follows that fn(k) = 0 for \k\ > n, n = 1,2,3, Hence, /„ is in
the span of {X-n+i>X-n+2>--->Xn-i>X«-i}> which contradicts the assumption
that /„ is in l\T).

3. Some automatic continuity lemmas

The results of this section are based on some lemmas in Chapters 4 and 5 of
[17]. They simplify the problems of continuity of derivations and module homo-
morphisms from LX(G) (and Lx(w)) by reducing them to the special cases when
the range module is L°°(G X G) or /°°(G) ((Lx(w) <8 L\a))* or /°°(w)).

Let A be a Banach algebra and A <8> A be the protective tensor product of A
with itself (see [2, 42.9]). Define v4 ® ̂ 4 to be a Banach v4-bimodule by putting
f-(a®b) = {fa)® b and ( a ®b)-f= a® (bf),(f<BA, a ® Z> e A ® y4), and

then extending this action of / to the rest of yl ® v4 by linearity and continuity.
The dual space, (̂ 4 ® A)*, then becomes a Banach yl-bimodule under the dual
action. If A' is a left /4-module, then A • X will denote {a • x\a ^ A; x & X)
and, if X is an ,4-bimodule, then A • X • A will denote [a • x • b\a, b e A;
X<E X).

The next lemma was suggested to me by Professor B. E. Johnson.

3.1 LEMMA. Let A be a Banach algebra with a two-sided bounded approximate
identity.

(i) If X is a Banach A-bimodule and D: A -> X is a derivation, then S(D) is a
closedsubmodule of X and S(£>) = A • S(Z>) • A.

(ii) If every derivation from A to (A ® A)* is continuous, then every derivation
from A to an arbitrary Banach A-bimodule X is continuous.

PROOF, (i) It is well known and easily verified that, when D is a derivation,
S(Z)) is a closed submodule of X.

Now let s be in S(Z)) and (an) be a sequence in A with an -* 0 and
D(an) -* s. Since A has a bounded approximate identity there is, by Cohen's
Factorization Theorem, an a in A and a sequence (a'n) in A such that a'n -* 0
and an = aa'n for every n. Hence,

i = lim D(aa'n) = lim (a • D(a'n) + D(a) • a'n) = lim (a-D(a'n)).
n—*oo n—*cc «—*oo

Take e > 0 and choose an integer n such that \\s - a • D(a'n)\\ < e. Let
(e

MV«=/v be a bounded approximate identity for A with bound K and choose
H(n)such that

\\a-eila\\<e/\\D(a'n)\\ (/i > M"))-
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Then, for every fi > /i(«),

\\s - e,- s\\<\\s - a • D{a'n)\\ + \\{a - e>1a) • D(a'n)\\

Hence (efl)fieAf is a bounded approximate identity for S(D) regarded as a left
Banach A -module.

Similarly, (^M)AieAf is a bounded approximate identity for S(D) as a right
Banach A -module. Therefore, for each s in S(D), there is, by Cohen's Factoriza-
tion Theorem, an s' in S(D) and c, d in A such that s = c • s' • d.

(ii) Suppose that all derivations from A to {A ® >4)* are continuous. Let D be
a derivation from A to A' and let s be in S(Z>). Then, by (i), there is an s' in
S(Z>) and c, d in A with s = c • s' • d.

Choose a linear functional, / , in X* such that f(s) = \\s\\ and define a linear
operator, /?^, from X to (A ® A)* by

(Rfx)(a<8> b) = f(b • x • a) {x ^ X, a ® b & A ® A).

Let x be in I and / = E"=1a, ® ft, be in .4 ® ̂ 4. By the definition of the norm
on A <§> A we may, for each e > 0, suppose that E,"=1 ||a,|| ||6,.|| < \\t\\ + e. Then

a,)
1 = 1

Hence Rf is a bounded linear operator and \\Rf\\ <
Now let a, b and c be in yl and x be in X Then

(R,(x • c))(a ® b)=f(b (x • c) • a)=f(b (x • c) • a) = f{b • x -(ca))

= (Rfx)(c-a9b)={{R,x)-c)(a9b).

Hence Rf(x • c) = (RfX) • c. Similarly, Rf(c • x) = c • (RfX). Therefore Rf is a
bimodule homomorphism from X to {A ® A)*. It follows that Rf°D is a
derivation from A \o(A ® /4)* and is thus continuous.

Since s' is in S(D) there is a sequence (an) in A such that an -> 0 and
D(an) -> 5'. Hence, since ^ « Z> is continuous,

0= lim (R,oD)(an)(d® c)
• n-»oo

= Urn Rf(D(an))(d ® c)
n-*oo

= f(c-s'd)

= /(*) = Pll-
Therefore j = 0. It follows that S(Z)) = (0) and so D is continuous.
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The same argument, slightly simplified, may be used to prove Lemma 3.2
below.

3.2 LEMMA. Let A be a Banach algebra with a two-sided bounded approximate
identity and X be a Banach left A-module such that A has a bounded approximate
identity for X.

(i) / / Y is a Banach left A-module and T: X —» Y is an A-module homomorphism,
then S ( r ) is a closedsubmodule of Yand S(T) = A • S(T).

(ii) If every A-module homomorphism from X to A* {regarded as a left A-module
under the dual action) is continuous, then every A-module homomorphism from X to
an arbitrary Banach left A-module Y is continuous.

The following corollary was first proved in [12]. It is required for the proof of
the next lemma.

3.3 COROLLARY. Let A be a Banach algebra with a two-sided bounded approxi-
mate identity. Then every homomorphism from A to a Banach right A-module X is
continuous.

PROOF. Let T be a such a homomorphism. If we make X into an yl-bimodule
by defining a • x = 0 (a e A, x e X), then T becomes a derivation. Hence, by

The next few lemmas will be concerned only with derivations from Ll(G) or
L\u). It will be necessary for (L\G) ® L\G))* to be an M(G)-bimodule and
( L 1 ^ ) ® L\u))* to be an M(w)-bimodule. For this, recall that L^G) is a
closed two-sided ideal in M(G) and so may be regarded as an A/(G)-bimodule.
We may now define L}(G) ® Ll{G) to be a Banach A/(G)-bimodule by putting
p.- (a ® b) = (ft* a )® b and (a ® b) • ft = a ® (b * ju), (a, b e Ll(G), ft e
M(G)), and extending this action of M(G) to the rest of L\G) ® Ll(G) by
linearity and continuity. The action of M(G) on {Ll(G) ® Ll(G))* is now
defined to be the dual module action. We define (Ll(u) ® L^w))* to be a
Banach Af(w)-bimodule in the same way.

3.4 LEMMA. Let G be a locally compact group and D be a derivation from Ll(G)
to (L ' (G)® L}(G))*. Then there is a unique derivation, D, from M(G) to
(L\G) ® L\G))* which extends D.

PROOF. For each /t in M(G) define the operator S^ from L1(G) to (L1(G) ®
L\G))* by Sll(f) = D(ti*f)-li-D(f) (feL\G)). Then, for / and g in
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L\G),

(3.1) $ . ( / • * ) = D O * * / • * ) - / i • / > ( / * * )

Hence S^ is a right Ll(G)-module homomorphism from L}(G) to {Ll{G) ®
l}(G))*. Since //'(G) has a two-sided bounded approximate identity, it follows
from 3.1 that S^ is continuous.

Let (e x ) X e A be a bounded approximate identity for Ll(G). Then ( S ^ X ^ E A

is a bounded net in (LX(G) ® LX(G))* because 5M is continuous. For each ju in
M(G), f in LX(G) and x in //(G) ® L\G),

(3.2) ^ ( / ) ( x ) = lim 5^(eA*/)(x) (since 5̂  is continuous)
A

= lim (SM(ex) • / ) (*) (by (3.1)).
A

Now (e x ) X e A is a bounded approximate identity for the L^G^bimodule Ll(G)
® -L^G), and so, by Cohen's factorization theorem, every element x' may be
expressed as x' = / • x, for some / in L\G) and x in L}(G) ® L^G). Hence, by
(3.2), UmxSM(exX*') exists for every jc'̂ in LJ(G) ® LX(G) and so (S^(ex))XeA

converges in the w*-topology on (Ll(G) ® L:(G))*.
Define D by putting 5(ju) = limxS^(ex), (n e Af(G)). Then, by (3.2), for each

/ in L\G) and jn in Af(G),

Thus,

(3.3) M

To show that D is a derivation, let n and P be in M(G). Then, for every / in
L\G),
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Hence

D(fi * c) = lim D(n * v) • ex
A

= hm (D(p) • v + p -D(v)) • e
AA x

(where the limits are with respect to the w*-topology on (Ll{G) ® Ll(G))*).
To show that ~D extends D, let / be in l}(G). Then, for every g in Ll(G),

g = S,(g) = D(f*g)-f-D(g) = D(f)g. Hence, D(f) = limx5(/)

Finally, let 5 be a derivation from M(G) to (L^G) <l Ll(G))* which extends
. Then, for every ju. in M(G),

= lim ( 5 - «)(p* O - M <D - 8)(ex) = 0,
A

because /x * ex and ex are in Ll(G). Therefore D is the unique derivation
extending D.

The argument used above will also prove the next lemma.

3.5 LEMMA. Let u be a weight function and D be a derivation from Ll(u) to
(L^w) ® Lx(w))*. Then there is a unique derivation, D, from M(u) to (L}(u) ®
!/(«))* which extends D.

The next two lemmas begin to show the value of being able to extend
derivations from ^-algebras to measure algebras.

3.6 LEMMA. LetTfbe a derivation from M(G) to (Ll(G) ® L\G))* and define a
map 8 from G to (L\G) ® L\G))* by 8(x) = D(x), (x <= G). Suppose that there
is a neighborhood U of the identity in G and a positive constant M such that
\\&(x)\\ < M, (x e U). Then 8 is continuous with respect to the group topology on G
and the w*-topology on (L\G) <§> L\G))*.

PROOF. Let (xx)xe A be a net in G which converges to e, the identity element of
G. Then, by passing to a subnet if necessary, we may suppose that ||8(xx)|| < M,
(X G A). Now the unit ball in (L}(G) ® L\G))* is compact in the w*-topology
[9, Theorem (B.25)]. Hence (8(xx))XeA has an accumulation point. Let X be
such an accumulation point and {8{xfJ))lie N be a subnet which converges to X in
the w*-topology.
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For each / in L\G) ® Ll(G) and each n in N,

Now

because left translation in LX(G) ® LX(G) is strongly continuous. Similarly,
«(*MX/ • * „ - / ) -^ 0. Hence, lim^C*2)*/) = 21im/,fi(^X/) = 2X(f), for ev-
ery / in Ll(G) ® L*(G). That is, (S(x,2))Me# converges to 2X in the w*-topol-
ogy. It may be shown in the same way that, for every positive integer k,
l i m ^ ( ^ ) = kX.

Suppose that X ¥= 0 and choose an integer k such that k\\X\\ > M. Then
8(**) -• kX, but eventually ||8(^*)|| < M < \\kX\\, which is a contradiction.
Hence ^ = 0 and 0 is the only accumulation point of (8(xx))AeA. Therefore,
8(xx) -> 0 whenever (xx)X e A is a net in G which converges to e.

Now, let x be in G and (xx)x^A be a net which converges to x. Then
x-1xx —» e, and so,

x • 8{x-lxx) + S(x) -(x-lxx)- - 8(x).

Therefore 8 is continuous.

3.7 LEMMA. Let D be a derivation from M(a) to (Ll(u) ® L}(a))* and define a
map 8 from [0, oo) to (L\a>) ® Lx(w))* by 8(x) = D(x), (x e [0, oo)). 5 M ^ O ^
f/ia? there is an e > 0 and a positive constant M such that ||8(x)|| < M, (x e [0, e)).
77ien 8 is continuous with respect to the usual topology on [0, oo) and the w*-topol-
ogy on (Ll(u) ® L\u))*.

PROOF. It may be shown in exactly the same way as in (3.6) that, if (xn) is a

sequence in [0, oo) which converges to 0, then 8(xn) -» 0.
Let x be any number in [0, oo) and (xn) be a sequence converging to x with

xn> x for every n. Then we must have that for every n, xn = x + tn, where
tn G [0, oo) and /„ -» 0. Hence

8 ( x J = 5(jc * r j = x • 8(tn) + 8(x) • /„ - «(x).
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Now let (xn) be a sequence converging to x with xn < x for every n. Then
||8(xn)| | is bounded. To show this, choose y < x with \y - x\ < e. Then xn e
[y, x] for all but finitely many n and so

which is bounded because xn - y is in [0, e) and so \\8{xn - y)\\ < M. We have
that for every n, x = xn + tn, where tn e [0, oo) and tn -> 0. Hence, for each F

\8(xn)(in • F — F) + 8(tn)(F • xn) |

Therefore, 8 is continuous.

4. Applications of the lemmas

We will now use the lemmas of the previous section to show how the continuity
of derivations and module homomorphisms problems may be related. For the
first result, let Fo denote the free group on a countably infinite number of
generators.

4.1 THEOREM. Suppose that there is a discontinuous derivation from Ll(G) to a
Banach L}(G)-bimodule X for some locally compact group G. Then either there is a
discontinuous ^(Gybimodule homomorphism from LY{G) to {LX{G) ® Ll{G))* or
there is a discontinuous derivation from /^IFo) to ( ^ ( F Q ) ® 11(¥Q))*.

PROOF. By Lemma 3.1(ii), there is a discontinuous derivation D from Ll(G) to
(L}(G) ® L}(G))* and, by Lemma 3.4, this extends to give a derivation D from
M(G) to (L\G)® L\G))*.

Suppose that the restriction of D to ll(G) (the subalgebra of discrete measures
in M(G)) is continuous. Then (5(3c)|x e G} is a bounded set in (Ll(G) ®
LX(G))* and so by Lemma 3.6 the map 8: x -» D(x) is continuous with respect to
the group topology on G and the w*-topology on (L\G) ® Ll(G))*.

Define a map A: M(G) -> (L\G) ® L\G))* by

The integral exists because the function x •-» D(3c)(^) is bounded and continuous
on G. It is clear that A is a bounded linear operator and that the restrictions of A
and D to l\G) are equal.
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Let n and v be in M(G). Then, for every \p in L\G) ® L\G),

= f D(x)(i)d(fi*v)(x)
JG

= [ D(xy)(xP)dfi(x)dv(y) (by [9, Theorem 19.10])
* n v nJGXG

GxG

= f [D(y)(4> • x) + D(x)(y • +)] dn(x) dv{y)
JGXG

= f D(y)( + • M) dv(y) + f D(x)(p
JG JG

Hence, A is a derivation from M(G) to (Ll(G) ® L\G))*.
Now let / be in ll(G) and g be in L\G). Then,

(D - A) ( /*g) =f(D - A)(g) +(D - A)( / ) -g

= f-(D-A)(g)±

because D and A agree on l\G). Similarly, (D - A)(g*/) = (D - A)(g) •/.
Hence the restriction of D — A to L}(G) is a /1(G)-bimodule homomorphism to
(L^G) ® L^G))*. Since the restriction of ~D to Ll(G) is £>, which is not
continuous, and since A is continuous, this restriction of D - A to Ll{G) is not
continuous.

On the other hand, suppose that the restriction of D to ll(G) is not continuous.
Then there is a sequence (/„) in /X(G) such that /„ -> 0 but D(fn) -** 0. Let H be
the discrete subgroup of G which is generated by the supports of the functions
fi,f2, Then H is countably generated and the restriction of D to l\H) is not
continuous.

Since H is countably generated it is a quotient of Fo and so there is a Banach
algebra homomorphism A from ^(IFo) onto ll(H). Then D » A is a discontinuous
derivation from ^(FQ) to (Ll((?) ® L^G))* (where the /^Fo^action on (l}{G)
® L:(G))* is induced by A). By Lemma 3.1 now, there is a discontinuous
derivation from l\F0) to (^(Fo) ® /^Fo))*-

It follows from the theorem that, if all /1(G)-module homomorphisms from
Ll(G) are continuous for every G, then the continuity of derivations problem for
group algebras may be reduced to the case when G = Fo. In the case of weighted
convolution algebras there is no similar reduction of the derivations problem to a
particular weight function. However, a similar argument to that above yields the
following result.
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4.2 THEOREM. Let u be a weight function and suppose that there is a discontinu-
ous derivation from L}(u) to a Banach L}(u)-bimodule X. Then there is either a
discontinuous lx(ui)-module homomorphism from l}(u) to {Ll(w) ® L}(u))* or
there is a discontinuous derivation from /1(w) to (/1(w) ® 'H40))*-

We will conclude by showing that certain derivations from group algebras are
continuous. Recall [2, Section 43] that an L1(G)-bimodule X is said to be
commutative if / • x = x • f, ( / e LX{G), x e X). Proposition 43.14 of [2] shows
that if G is amenable and A" is a commutative Banach L1(G)-bimodule, then
there is no non-zero continuous derivation from Ll(G) to X.

4.3 THEOREM. Let G be a locally compact group and X be a commutative Banach
Ll{G)-bimodule. Then every derivation from Ll{G) to X is continuous.

PROOF. Put Z = {z <= (L\G) ® L\G))*\f • z = z • f, (feL\G))}. Then Z
is a w*-closed subspace of (L\G) ® L\G))*.

The argument used in Lemma 3.1 shows that, in order to prove the theorem, it
will suffice to show that every derivation from L^iG) to (Ll(G) ® Ll{G))* whose
range is contained in Z is continuous. Let D be such a derivation. Then by (3.4)
there is a unique derivation D from M(G) into (Ll(G) ® L1(G))* which extends
D. Because of the form of D, and the fact that Z is w "-closed, the range D is
contained in Z. (Note that Z is not necessarily a submodule of (L^G) ® L^iG))*
and so, strictly speaking, D and D are not derivations into Z.)

Now S(D) is a closed submodule of (L}(G) 8> L}(G))* and is contained in Z.
Hence, S(D) is a closed, commutative submodule of (Ll(G) ® L\G))*. Put

Let x and y be in G. Then for each 5 in S(D), (xy)'- s = x • (y • s) = (y • s)
• x = (s • y) • x = s • (yx)~= (yx)~- s. Hence, (G')~, the closure of the commu-
tator subgroup of G, acts trivially on S(D). It follows that if we define J to be the
closed, two-sided ideal in L\G) generated by {/ - x * f\x e (G')~, f e L1(G)},
then J c / .

Suppose that / has infinite codimension in Ll(G). Then I/J has infinite
codimension in Ll(G)/J, which is isomorphic to the commutative group algebra
Ll(G/(G')~), by [13, Section 1]. Hence by condition (i) at the beginning of
Section 2, there are sequences (an), (bn) in L}(G) such that bn+1 * ax * • • • * an£ I
but bn+l*ax* ••• *an*an+1 e /. We may now deduce a contradiction to
Lemma 1.4 just as in Theorem 2 of [11]. Therefore I has finite codimension in
L\G).

Since Ll(G)/I is commutative and finite dimensional, there are multiplicative
linear functionals Xi»X2>-»X/1

 o n LX(G) such that / = C\"=1 ker(x7). For each
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Xj, define an element %j ® Xj m (Ll(G) ® Ll(G))* by putting

(Xj ® X,-)(/« g) = X,-(/)x,(g) ( / , g e Ll(G)),

and then extending x> ® Xy t 0 t n e r e s t °f £*(G) ® £'(G) by linearity and
continuity. Then C(xy ® Xy) is a one-dimensional submodule of (L\G) ®

)* and C( x , ® Xj) = {z e (L'(G) ® L^G))*!/- z = z • / = Xj(f)z, ( / e
}. Now, since S(D) is a commutative submodule of (Ll(G) ® L^G))* and

/ is the annihilator of S(D), it follows that

(4.1) S(D)= 0 C ( x , ® x 7 ) .
7 - 1

In particular, S(D) is finite dimensional.
Put P = {»// e LHG) ® L1(G)|i(^) = 0, (5 G S(Z)))}. Then P is a closed

L^G^submodule of Ll{G) ® LX(G). For each /̂ in P define a linear functional
T* by ^ ( / ) = D(f)W> ( / e ^ ( G ) ) . Then r^ is continuous because T^ =
R+fQ" D, where Q is the quotient map of (L^G) ® Ll(G))* by S(D), so that
Q o D is continuous, and R^ is the continuous linear functional on (Ll(G) ®
L\G))*/S(D) defined by R^z + S(D)) = z(^). Hence, for each / and a in
LX(G) and </> in P,

(4.2)

= j f(x)T^(x*a) dx (by [4, Theorem III 2.19(c)])j

Let / be in Ll(G) and ^ be in P. Then, since LX{G) has a left bounded
approximate identity for L}(G) ® Ll(G) and P is a closed L^G^submodule,
there are elements a in Ll(G) and >̂ in P such that ^ = a • </>. Hence

(4.3)

= f f(x)(-x • D(a) + D(x *a))M dx (by (4.2))

= /7(*)Z)(jc)(*),
JG
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Now for each x in G, (x), the subgroup of G generated by x, is abelian and
thus is amenable. Hence, by Proposition 43.14 of [2], the restriction of D to
Ll((x)) is zero. In particular, D(x) = 0 for every x in G. Therefore, by (4.3),
D(fM) = ° for every / in L\G) and every $ in P. That is, D(/)(«//) = 0 for
every ip which is annihilated by S(Z)). Hence, since S(D) is finite dimensional,
£>(/) is in S(I>) for every / in Ll(G). Thus, by (4.1), D is a direct sum of point
derivations from Ll(G) to the one-dimensional bimodules C(x^,®x^,), j =
1,2,...,«. However, by the theorem in [18], there are no non-zero point deriva-
tions on Ll(G). Therefore D is continuous.

Note added in proof. Since writing this paper I have solved problem (C) in
Section 2. As anticipated in Section 2, the solution uses Lemma 2.1, and a result
similar to the conjecture (E). A consequence of this is that Theorem 4.1 is
strengthened because the first alternative in its conclusion cannot occur. The
solution, together with some results which were originally intended for the
reference [19], will now appear in two papers

[a] 'The continuity of derivations from group algebras: factorizable and con-
nected groups',
[b] 'The continuity of left /^GJ-module homomorphisms from Ll{G)\
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