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THE WEYL-VON NEUMANN THEOREM FOR 
MULTIPLIERS OF SOME AF-ALGEBRAS 

NIGEL HIGSON AND MIKAEL R0RDAM 

Introduction. A well known theorem of Weyl-von Neumann asserts that if X is a 
self-adjoint operator acting on a separable Hilbert space, then there is a decomposition 
1 = E en of the identity into finite rank projections so that we may write 

where the Xn are scalars and y is a compact operator with small norm. In other words, 
X can be approximately diagonalized. In this paper we consider the following question: 
given an AF-algebra / and a self-adjoint element X of fW(/), the multiplier algebra of /, 
can we express X in the above form, where now the en are projections in / (and £ en = 1 
in the sense of strict convergence) and y G /? This reduces to the Weyl-von Neumann 
Theorem in the case I — %^ 

We shall answer this question affirmatively in the case that / is simple and has a unique 
trace (up to scaling). Our approach is based upon the observation, which seems to have 
been made by a number of people (see especially [9]), that the problem is equivalent to 
showing that fW(/) has one of a number of basic structural properties. See Section 1. 
These properties can then be analyzed in terms of the ideal structure of fW(/), which in 
the case at hand is very straightforward. 

Our techniques would carry over to a somewhat larger class of AF- and other algebras 
/ (for example, simple AF-algebras with only finitely many extremal traces), and indeed 
we have no doubt that the answer to the question is affirmative for general AF-algebras. 
However, in order to make the exposition as clear as possible we shall consider only 
simple / with unique trace. 

This research was initiated whilst the first author was visiting Odense Universitet. 
He would like to thank the second author for arranging the visit, as well as the entire 
mathematics department, in particular U. Haagerup, for their hospitality. Both authors 
would like to thank I. Putnam for several helpful conversations. 

After this paper was first typed, we discovered that there is a considerable overlap 
between this article and work of others in this area (we are very grateful to S. Zhang for 
sending us preprints of his articles [9], [10] and to G. Pedersen for discussions and a draft 
of [3]). In fact, our Theorem 4.4 is contained within [9]. However, our arguments are, 
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for the most part, rather different, and since they are perhaps simpler and more direct, 
we hope that our article is still worthy of the reader's attention. 

1. Equivalent formulations. We shall make extensive use of the following result. 
For a proof see [2,3,8]. 

THEOREM 1.1. The following three conditions on a C* -algebra A are equivalent, 
(i) Each hereditary subalgebra of A has an approximate unit consisting of projec

tions, 
(ii) Every self-adjoint element in A is a norm limit of invertible self-adjoint elements. 

(Hi) Every self-adjoint element in A is a norm limit of s elf-adjoint elements in A with 
finite spectrum. m 

(In (ii), if A does not have a unit then replace A by the C*-algebra obtained by adjoining 
a unit.) 

We shall say that A has property FS (= finite spectrum, a reference to (iii)) if it satis
fies one of the above conditions. We shall move from one condition to another without 
comment. 

Lemma 1.3 below shows that the Weyl-von Neumann Theorem for 94(1) reduces to 
showing that 94 (I) has property FS. 

LEMMA 1.2. Let I be a separable C*-algebra with property FS, and let P be a pro
jection in 94.(1). There is a sequence {pn}^Z\ of mutually orthogonal projections in I 
such that 

oo 

n=\ 

where the sum converges in the strict topology. 
PROOF. The C* -algebra PIP is a hereditary subalgebra of /, and so there is a se

quence {pn}£Z\ of mutually orthogonal projections in PIP such that P = J2%L\Pn, the 
convergence being in the strict topology of 94(PIP). But this implies strict convergence 
94(1), for given x G / we have that 

AT N N 
II \ ~ ^ I l 2 II NT""* \ ~ ^ * II 
II L M I = II LJ l^PmXX pn\\ 

n—M m—Mn—M 
N N 

^ Il J2 I ] PmPxX*"Ppn\\ 
m—Mn=M 

= || f>„(P***P)J||2 

and(Pxjc*P)5 e PIP. m 

LEMMA 1.3 (SEE [9]). Let I be a separable C*-algebra with property FS. The follow
ing are equivalent: 
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(i) for every self-adjoint X G 9v[(J), every projection p G /, and every e > 0 there 

is a projection q G / such that q >p and \\[q,X]\\ < e; 

(ii) for every self-adjoint X G fW(/) and every £ > 0 J/zere w a family { en }£Z \ of 

mutually orthogonal projections in I such that E en = 1 (convergence in the strict 

topology), such that we may write X = £ Anen + y, w/iere A„ G R , v G / am/ 

|| v|| < e; and 

(Hi) ft{(I) has property FS. 

PROOF. (i)=>(ii) A simple induction argument shows that we can write X = Y,fkXfk+ 

y\ for some sequence {/*} of projections in / with Y,fk — 1, and where y\ G /, ||^i || < 

e/2. Using the fact that /, and hence fkIfk, has property FS, we can perturb each fkXfk 

by an element of norm less that £2_(*+1) to a self-adjoint element xk G fjfk with finite 

spectrum. The spectral projections of all the xk together then form a suitable family { en}. 

(ii)=Kiii) This is clear. 

(iii)=>(i) For fixed/? G /, the set of self-adjoint X G M (J) satisfying (i) for all e > 0 

is norm closed, and so it suffices to prove (i) for X with finite spectrum. Write X — 

£"= 1 XiPt, where Pt G fW(/) are projections, Pi + • • • + Pn = 1, and A; G R. From 

Lemma 1.2, we get X = Ej^j /i/^/ where the et G / are projections, £ 2 i ^ = 1 and 

/// G R (in fact, \ij — \ t for some /). Put/„ = E7
n

=1 ej. Then limn^oo ||(1 — fn)p\\ = 0. 

For « large enough,/„ is equivalent to a projection q € I with q > p and ||/n — g|| small. 

Since \fn,X] = 0, || [q,X\\\ is small. • 

We note that the Weyl-von Neumann Theorem for normal elements is much more 

complicated, if it is true at all, in the general situations we are considering. 

2. Comparison theory in lM(I). From here on, / will denote a non-unital, simple 

AF-algebra which has a unique semi-finite trace r , up to scaling. We may extend r to a 

trace function on M(I)+ by the formula 

T(X) = supr(enXen), 

where { en}^zl is any approximate unit for /. 

PROPOSITION 2.1. Let P and Q be projections in M(P>. 

(i) Ifr(P) < T(Q), then P < Q; and 

(ii) if neither ofP and Q is in I, and ifr(P) = r(Q), then P ~ Q. 

PROOF. Write P = J2pn and Q — Ylqn, as in Lemma 1.2. In case (i), by regroup

ing the qn (that is, replacing the qn with sums of the form Y^Mqn) we may assume that 
T(Pn) < T(qn). In case (ii), by regrouping both the pn and the qn, we may assume that 

Yfn=xr(pn) < T%=lT(qn), for every N, and also T%=lT(qn) < ^\r(pn) (this con

struction requires that both Ylr(pn) and E T ( ^ ) have infinitely many non-zero terms, 

which is where we use the fact that P,Q $ /, as well as the fact that / is simple, so that r 

is faithful). Now, it is well known (see [4]) that for projections p and q in /, if r (p) < r (q) 
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then/? < q. Thus in case (i) there exist partial isometries vn e I such that v*vn = pn and 
v«v* < qn, whilst in case (ii) there exist vn such that 

v*vi =pi, viv* <qx 

v*2v2 <P2, V2V2 = q\ - viv* 

V3V3 = p2 — v\v2, V3V3 < q2 

V4V4 <P3, V4V4 = q2 - V3V3 

and so on. In either case, the series V — ££i j vn is strictly convergent. In case (i) we 
have V*V = P, and VY* < Q, and in case (ii), V*V = P and W* = g. • 

3. Ideals in fŴ (T) and quotients. For the rest of the paper we shall denote by J 
the norm-closure of the set of elements X G 94 (I) with r(X*X) < 00. G. Elliot [5] and 
H. Lin [6] prove that J is an ideal in 94(1), that 0 Ç / Ç / Ç 94(1), and that 94(1) 
has no other ideals than these. Moreover, / ^ J if and only if / is non elementary (i.e., 
I ^ 9Q\ and J ^ 94(1) if and only if / is not finite (in the sense that r is unbounded 
on the positive unit-ball of/), and this again is equivalent to / being stable. These results 
hold because / is assumed to be simple (and AF) with a unique trace. 

LEMMA 3.1. Let X G 94(F). There is an approximate unit { un}^zlfor I such that 
linv^oo || unX — Xun\\ — 0 and unun-\ = un-\for all n. In fact, we may choose { w„}^j 
so that there is an approximate unit { e ^ } ^ of projections in I such that for each n, 
unen — en and unen+\ = un. 

PROOF. Let {fn}^Z\ be any approximate unit of projections for /. The argument of 
[1] (see also [7, Theorem 3.12.14]) shows that there is an approximate unit {wn}^x 

contained in conv{/„} such that \\wnX — Xwn\\ —• 0. Thus we can choose some u\ G 
conv{/„} with ||«iX — Xu\\ < 2_ 1 . Setting e\ — f\ wehavew^i = e\. For sufficiently 
large N, any element u of conv{^v,/jv+i,...} satisfies uu\ = u\, and so by the argument 
of [1] again, we can choose some u2 in conv{/#,/#+1, • • •} such that || u2X—Xu2 \\ < 2~2. 
For e2 = fy we have e2u\ — u\ and u2e2 — u2. Iterating this procedure, we obtain the 
desired approximate unit. • 

PROPOSITION 3.2. IfX > 0 is an element of 94(1), but not of J, then the hereditary 
subalgebra of 94(1) generated by X contains an infinite trace projection. 

PROOF. Choose {un}^zl and {en}^x as in Lemma 3.1, for which \\unX — Xun\\ 
is so small that \\dnX — Xdn\\ < 2~n, where dn — (un — un-\Y (and UQ = 0). Then 
E dnXdn = X+yu where yx = E ^ i dn[X, dn] G /. Let/?n = en+l - en-X (where e0 = 0). 
Note that pndn = dn and that the projections p2n-\(n = 1,2,...) are pairwise disjoint, 
as are the projections p2n(n — 1,2,...). By perturbing each dnXdn, within pnIpn, by a 
suitable operator z„, with say ||z„|| < 2~", we may write 

X + y = Y,xn> 
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where v = yi + £ z„ G /, and xn — dnXdn + zn is a positive element in pnIpn with finite 
spectrum. Since X # J it follows that X + y ^ 7 , and so (at least) one of Xe = T,x2n or 
X0 — £jt2n+i is not an element of J. Let us say Xe £ 7, and show first that the hereditary 
subalgebra generated by Xe contains an infinite trace projection. From Xe $ J it follows 
easily that Xe is not a norm limit of elements of M(I)+ of finite trace. From this it follows 
that for small enough e > 0, the spectral projection P£ of Xe corresponding to [e,oo) 
(defined in fAf (I) since Xe is an orthogonal strict sum of elements of finite spectrum) 
has infinite trace. But all the P£ are in the hereditary subalgebra generated by Xe. Now, 
the hereditary subalgebra generated by Xe is contained in the hereditary subalgebra A' 
generated by Xe + X0 — X + y, so A' contains an infinite trace projection P*'. The images 
in fW(/)/ / of the hereditary subalgebra A generated by X, and of A' are equal; therefore 
A/ AH I contains the image of Pf. Since A D / is an AF-algebra, this image lifts to a 
projection P in A (see [4]). It is easily verified that r(P) = oo. 

PROPOSITION 3.3. IfX > 0 is an element of J, but not of I, then the hereditary 
subalgebra of J generated by X contains a projection in J\ I. 

PROOF. Repeat the above decomposition of X into the sum X — Xe + Xo + y, with 
say Xe £ I. For suitable e > 0 we have dist(Xe,/) > e, and so since \\Xe — XePE || < e it 
follows that P£ $ I for such e. The rest of the above argument now produces a projection 
P in the hereditary subalgebra generated by X such that P—Pe G /. Since PE $ lit follows 
that P g I. m 

These two propositions give more information than we actually need, which is the 
following corollary. 

COROLLARY 3.4. The C*-algebra M (I)/ J is purely infinite, as is PJP/ PIP for every 
finite trace projection P G tM(I)\ I. 

PROOF. Recall that a unital C*-algebra different from C is said to be purely infinite if 
every non-zero hereditary subalgebra contains a projection equivalent to 1. For 9rt(I)/ J 
this follows immediately from Propositions 3.2 and 2.1. As for PJP/ PIP, by Proposition 
3.3 every hereditary subalgebra contains a non-zero projection, the image of a projection 
Q G PJP\ PIP. Now, it follows from Lemma 1.2 that there is a projection/? G PIP such 
that T(P — p) < T{Q), and so by Proposition 2.1 there is a partial isometry W such that 
W * < Q and W* W = P - p. If V denotes the image of W in PJP/ PIP then V is an 
isometry and so W* is a suitable projection in the hereditary subalgebra. • 

The remaining two propositions in this section generalize to J two basic properties of 
AF-algebras. We need the following lemma. 

LEMMA 3.5. Let p G / be a projection and let x G (plp)+. For any e > 0 there is a 
projection q < p with ||(1 — q)x\\ < e andr(q) < -r(x). 

PROOF. Using the fact that r is norm continuous on pip and the fact that pip is AF, 
we can reduce to the case where x lies in some finite dimensional C*-subalgebra. Take q 
to be the spectral projection for x corresponding to \ej 2, oo). • 
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PROPOSITION 3.6. Suppose that X £ M(I)+ and r{X) < oo. For any e > 0 there 
exists a projection Q G M (I) with ||(1 — Q)X\\ < e andr(Q) < oo. 

PROOF. Let {pn}%L\ be a sequence of mutually orthogonal projections in / such 
that Yl%L\Pn = 1. By regrouping the pn (as in Proposition 2.1) we may assume that 
for all w, \\PnXE\m~n\>2Pm\\ < ^~n (compare [5]). For Y = E\m-n\<2PnXpm we have 
||X — Y\\ < e. By Lemma 3.5, for each n there is a projection qn < pn such that || (1 — 
qn)pnXpn\\ < £ and r(qn) < ^r(pnXpn). The sum Q — Y.qn converges in the strict 
topology and 

3 °° 3 
r(Q) < - £ T(pnXp„) = -T(X) < w . 

£ n=\ £ 

Furthermore, 

110-0)111 
< 11(1 - Q)T,PnXPn-l\\ + 11(1 - Q)Y<PnXPn\\ + | | (1 " Q)Y,Pn*Pn+x\\ 

= sup ||(1 - q^pnXpn-iW +suv\\(\-q„)pnXpn\\ + sup||(1 -qn)pnXpn+\\\. 
n n n 

The middle term is no more than e, by construction of the qn. As for the other two terms, 
we have that 

||(1 - qn)pnXpn±i\\2 = ||(1 ~ qn)PnXpn±iXpn(l - qn)\\ 

<\\(l-qn)PnX2pn(l-qn)\\ 

<\\X\\ . \\(l - qn)pnXpn(l - qn)\\ 

<\\*\\e. 

Thus ||(1 - Q)Y\\ < (1 +2||X||)e,andso ||(1 - Q)X\\ < (2 + 2||X||)e. • 
We remark that the classification of the ideals of ^M(I) follows easily from this and 

Corollary 3.4. 

PROPOSITION 3.7. Every projection in fW(/)/ / lifts to a projection in 9v((I). 

PROOF. Let P be a non-trivial projection in 94.{J)j J. Applying Proposition 3.2 to 
any positive lifting of PL, we see that there is an infinite trace projection Q G 9vt(I) 
whose image in fW(/)/ J is orthogonal to P. We can write Q as an orthogonal sum Q — 
Qi + 03 + • • • of infinite trace projections, the sum converging in the strict topology. 
Setting Q\ — QL, which is also of infinite trace, and fixing a system of partial isometries 
between Q\ and Qn, we shall represent elements of 9^.(1) as infinite matrices, with repsect 
to the decomposition 1 = £ Qi, with entries in Q\M(T)Q\. Let X be any lifting of P 
with 1 > X > 0 (not necessarily a projection). Since Q\XQ\ is also such a lifting, we 
may assume X G Q\M.(I)Q\. Let gi,g2» • • • be a sequence of continuous, non-negative 
functions on [0,1] such that (i) supp(gn) C [xn+2,xn], where 1 = x\,xi,... is a sequence 
of points in ( \, 1 ] decreasing to \ ; and (ii) £ gn = 1 on ( | , 1 ] (note that for any x, at most 
two of the gn(x) are non-zero). Define functions/„ in terms of the gn by 

fn(x) = I {SnM ~ gn(x)2) 2 , Xn+2 <*< *n+\, 
[ 0, otherwise. 

https://doi.org/10.4153/CJM-1991-018-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-018-9


328 N. HIGSON AND M. R0RDAM 

Since at each xk every gn is either 0 or 1, the/„ are continuous on [0,1], The following 
relations are easily verified: 

fnfm = 0 ifn^m 

gn+\fn + gnfn = fm 

fn+l+82n+fn = gn-

From these it follows that the element 

jgx{X) MX) \ 
I MX) g2(X) f2(X) 

p = MX) g3(X) ••. 

is a projection (it is easily seen that the matrix does indeed define an element of (M([)). 
Since gi(l) = 1 and g\(0) = 0, the element g\(X) is a lifting of P, so it suffices to show 
that the element of M {I), obtained by removing the g\(X) term from P, is an element of 
/ . In fact, since/i(l) =/i(0) = 0, we have that/ï(X) G 7, and so it suffices to show that 
the positive element R obtained from P by deleting the terms g\(X) and/i(X) is in J. We 
will show that R is a norm limit of positive elements with finite trace. All the functions 
fn,gn(n > 2) are supported within [^,Jt2], s o there is a continuous function h on [0,1] 
with h > 0, and hfn = fn, hgn = gn for all n > 2. We have that h(X) G 7, and so there 
is, for every e > 0, an X£ G Q\M{I)Q\ with r(X2

£) < oo and \\h(X) - X£\\ < e. 
The element R£ obtained from R by multiplying each entry on the left and right by X£ 

satisifies \\R£ - R\\ < 2e andr(P£) = T^2r{X£gn{X)X£). Since 

£ X£gn(X)X£ = X£ (J: gn(X))x£ < X\ 

we see that T(R£) < OO. • 

4. Property FS for fTVf (/). The following two quite general lemmas reduce the main 
theorem to the properties of tM(I) and J that we have already established. 

LEMMA 4.1. ([9], Part III, Proposition 2.33). Let D be a unital C*-algebra and let 
L be an ideal in D such that every projection in Dj L lifts to a projection in D.IfL and 
Dj L have property FS then so does D. 

PROOF. The fact that projections lift from Dj L to D implies that every self-adjoint, 
invertible s G Dj I lifts to a self-adjoint invertible in D. Indeed, by polar decomposition 
we can write s = t(p — pL)t, {t — \s\^), and since t certainly lifts to some positive 
invertible t, s lifts to t(p — p^)t, where p lifts p. Given that Dj L has property FS, we see 
that any self-adjoint element x G D may be approximated by elements of the form s + y, 
with s invertible and y € L. Thus it suffices to approximate every s + y by self-adjoint 
invertibles. Writing s = (p — /r1)! s|, we have that 

l l 1 / I I i - 1 i 1 - -U 1 1 ! 

s +y — \s\ 2(p — p + \s\ 2y\s\ 2)\s\2 
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and so putting z = \ s\ ~2 y\ s\ ~ 2 we see that it suffices to approximate each element of the 
form/? — pL + z, (z G L), by self-adjoint invertibles. BothpLp andpLLpL are hereditary 
subalgebras of L, and so for any e > 0 there exist projections q\ G pLp and #2 G p^Lp1 

such that ||(1 - q\)pz2p\\ < e2 and ||(1 - qi)pLz2p1-\\ < e2. Let q = qx + <?2. This 
projection commutes with /?, and almost supports z: 

||(1-<7)Z|| <\\(l-q)pz\\+\\(l-q)p±z\\ 

= \\(l-qi)pz\\+\\(l-q2)p
±z\\ <2s. 

Thus || z — qzq\\ < 4e. Since qLq has property FS, there is a self-adjoint invertible 
qwq G gLg such that 11qwq — q(p— p1+z)q\\ < e. The element r= q±(p—p±)q± + qwq 
is a self-adjoint invertible with \\r — (p — p1 + z)\\ < 5s. m 

LEMMA 4.2. (cf. [10]). IfE is a purely infinite C*-algebra then E has property FS. 

PROOF. Let x G E be self-adjoint and let e > 0. Let g: R —• R+ be a continuous 
function, supported within (—e/ 3,e/ 3), and equal to 1 near 0. If g(x) = 0 then x is 
invertible (and so is certainly approximable by invertibles); if g(x) ^ 0 then there is 
a projection p G g(x)Eg(x) equivalent to 1. By definition of /?, \\px\\ < e/3, and so 
||JC — pLxpL\\ < 2e /3 . There is some v G E with v*v = 1 and vv* = p\ let s — 
vpL +/?-Lv* +/? — vpLv*. This is a symmetry (s = s* — s~l) and furthermorepLspL = 0. 
The self-adjoint element 

y = p xp + - J = ^ ^ ( - ^ x/7^ + l) 
3 3 £ 

is invertible, since (spLxpL)2 = 0, and \\y — x\\ < \\x—pLxp1-\\ + | | | s | | < e. m 

PROPOSITION 4.3. The ideal J has prpoperty FS. 

PROOF. By Proposition 3.6 it suffices to show that for each finite trace projection 
P, the C*-algebra PJP has property FS. But this follows from the fact that PJPj PIP is 
purely infinite (Corollary 3.4), and the fact that PIP is AF, so that it has property FS and 
projections lift (see [4]). • 

THEOREM 4.4. The C*-algebra M(I) has property FS. 

PROOF. This follows immediately from the above results, Corollary 3.4 and Propo
sition 3.7. • 
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