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Abstract

In this paper we prove the following result: let m, n ≥ 1 be distinct integers, let R be an mn(m + n)|m − n|-
torsion free semiprime ring and let D : R→ R be an (m, n)-Jordan derivation, that is an additive mapping
satisfying the relation (m + n)D(x2) = 2mD(x)x + 2nxD(x) for x ∈ R. Then D is a derivation which maps
R into its centre.
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1. Introduction
Throughout, R will represent an associative ring with centre Z(R). Given an integer
n ≥ 2, a ring R is said to be n-torsion free if, for x ∈ R, nx = 0 implies x = 0. As usual,
the commutator xy − yx will be denoted by [x, y]. We shall use the commutator identity
[x, yz] = [x, y]z + y[x, z] for all x, y, z ∈ R. A ring R is prime if, for a, b ∈ R, aRb = (0)
implies either a = 0 or b = 0 and it is semiprime in case aRa = (0) implies a = 0. We
denote by char(R) the characteristic of a prime ring R.

An additive mapping D : R→ R, where R is an arbitrary ring, is called a derivation
if D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R, and is called a Jordan derivation
in case D(x2) = D(x)x + xD(x) for all x ∈ R. Obviously, any derivation is a Jordan
derivation. The converse is in general not true. A classical result of Herstein [14]
asserts that any Jordan derivation on a prime ring with char(R) , 2 is a derivation.
A brief proof of Herstein’s theorem can be found in [6]. Cusack [9] generalised
Herstein’s theorem to 2-torsion free semiprime rings (see [2] for an alternative proof).
For generalisations of Herstein’s theorem, we refer to [1, 8, 11]. An additive mapping
D : R→ R is called a left derivation if D(xy) = yD(x) + xD(y) holds for all pairs
x, y ∈ R, and a left Jordan derivation (or Jordan left derivation) if D(x2) = 2xD(x)
for all x ∈ R. The concepts of left derivation and left Jordan derivation were introduced
by Brešar and Vukman [7]. One can easily prove that any left derivation on a
noncommutative prime ring is zero. Moreover, we have the following result.
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Theorem 1.1. Let R be a noncommutative 2-torsion free prime ring. Then the only left
Jordan derivation D : R→ R is D = 0.

This result was first proved by Brešar and Vukman [7] under the additional
assumption that R is 3-torsion free. Deng [10] removed the assumption that R is
3-torsion free. Theorem 1.1 is related to the theory of commuting and centralising
mappings. A mapping F which maps a ring R into itself is called centralising on R if
[F(x), x] ∈ Z(R) for all x ∈ R. In the special case when [F(x), x] = 0 for all x ∈ R, F is
called commuting on R. A classical result of Posner [16] (Posner’s second theorem)
states that the existence of a nonzero centralising derivation D : R→ R, where R is
a prime ring, forces the ring to be commutative. Posner’s second theorem cannot be
generalised to semiprime rings, as shown by the following example. Take R1 to be
a noncommutative prime ring and let R2 be a commutative prime ring that admits a
nonzero derivation d : R2 → R2. Then R = R1 ⊕ R2 is a noncommutative semiprime
ring, and the mapping D(r1, r2) = (0, d(r2)) is a nonzero derivation which maps R
into Z(R). This example also shows that Theorem 1.1 cannot be proved for general
semiprime rings. However, Vukman [21] proved the following result.

Theorem 1.2 [21, Theorem 2]. Let R be a 2-torsion free semiprime ring and let D be
a left Jordan derivation on R. Then D is a derivation which maps R into Z(R).

Let m, n ≥ 0 be fixed integers with m + n , 0. An additive mapping D : R→ R,
where R is an arbitrary ring, is called an (m, n)-Jordan derivation if

(m + n)D(x2) = 2mD(x)x + 2nxD(x), x ∈ R. (1.1)

The concept of (m, n)-Jordan derivation was introduced by Vukman [22]. It embraces
both Jordan derivations and left Jordan derivations, because a (1, 1)-Jordan derivation
on a 2-torsion free ring is a Jordan derivation and a (0, 1)-Jordan derivation is a left
Jordan derivation. Vukman made the following conjecture.

Conjecture 1.3 [22, Conjecture 1]. Let m,n ≥ 0 be distinct integers with m + n , 0 and
D : R→ R be an (m, n)-Jordan derivation, where R is a semiprime ring with suitable
torsion restrictions. Then D is a derivation which maps R into Z(R).

Fošner and Vukman [13] recently proved the following result.

Theorem 1.4 [13, Theorem 2]. Let m, n ≥ 1 be distinct integers and let R be a prime
ring with char(R) > (m + n)2. Suppose that D : R→ R is a nonzero additive mapping
satisfying the relation

(m + n)2D(x3) = m(3m + n)D(x)x2 + 4mnxD(x)x + n(3n + m)x2D(x) (1.2)

for all x ∈ R. Then D is a derivation and R is commutative.

One can easily prove that any (m, n)-Jordan derivation on an arbitrary ring satisfies
(1.2), which means that Theorem 1.4 proves Conjecture 1.3 for the case of a prime
ring.

The aim of this paper to prove the following result.
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Theorem 1.5. Let m, n ≥ 1 be distinct integers, R an mn(m + n)|m − n|-torsion free
semiprime ring and D : R→ R an (m, n)-Jordan derivation. Then D is a derivation
which maps R into Z(R).

The methods used in the proof of Theorem 1.4 differ from those used in
Theorem 1.5. The main tool in the proof of Theorem 1.4 is the theory of generalised
functional identities (Brešar–Beidar–Chebotar theory). See [4] for an introductory
account of functional identities and their applications and [5] for a full treatment of
this theory. The proof of Theorem 1.5 is, as we shall see, elementary in the sense that
one needs no specific knowledge concerning semiprime rings.

2. Proof of the main theorem

In the proof of Theorem 1.5, we shall use the following three results.

Theorem 2.1 [22, Proposition 1]. Let m,n ≥ 0 be integers with m + n , 0, R a 2-torsion
free ring and D : R→ R an (m, n)-Jordan derivation. Then the relation

(m + n)2D(xyx) = m(n − m)D(x)xy + m(m − n)D(y)x2 + n(n − m)x2D(y)
+ n(m − n)yxD(x) + m(3m + n)D(x)yx
+ 4mnxD(y)x + n(3n + m)xyD(x)

holds for all pairs x, y ∈ R.

Theorem 2.2 [23, Theorem 4]. Let R be a 2-torsion free semiprime ring. Suppose that
an additive mapping F : R→ R satisfies the relation

[[F(x), x], x] = 0

for all x ∈ R. Then F is commuting on R.

Theorem 2.2 generalises a result of Brešar [3]. The proof of Theorem 2.2 is also
due to Brešar. Theorem 2.2 has recently been generalised by Fošner et al. [12].

Lemma 2.3 [20, Lemma 1]. Let R be a semiprime ring. Suppose that the relation

axb + bxc = 0

holds for all x ∈ R and some a, b, c ∈ R. Then

(a + c)xb = 0

is satisfied for all x ∈ R.

Proof of Theorem 1.5. From the assumption that R is mn(m + n) |m − n|-torsion free,
it follows that R is 2-torsion free. The linearisation of the relation (1.1) gives

(m + n)D(xy + yx) = 2mD(x)y + 2mD(y)x + 2nxD(y) + 2nyD(x), x, y ∈ R. (2.1)
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From Theorem 2.1,

(m + n)2D(xyx) = m(n − m)D(x)xy + m(m − n)D(y)x2 + n(n − m)x2D(y)
+ n(m − n)yxD(x) + m(3m + n)D(x)yx + 4mnxD(y)x + n(3n + m)xyD(x)

(2.2)

for x, y ∈ R. Putting (m + n)xyx for y in (2.1) and using (2.2),

(m + n)3D(x2yx + xyx2) = 2m(3mn + n2)D(x)xyx + 2m2(m − n)D(y)x3

+ 2mn(5n − m)x2D(y)x + 2mn(m − n)yxD(x)x + 2m2(3m + n)D(x)yx2

+ 2mn(5m − n)xD(y)x2 + 2mn(3n + m)xyD(x)x + 2mn(n − m)xD(x)xy
+ 2n2(n − m)x3D(y) + 2mn(m + 3n)xyxD(x) + 2mn(3m + n)xD(x)yx
+ 2n2(3n + m)x2yD(x), x, y ∈ R. (2.3)

On the other hand, by substituting (m + n)(xy + yx) for y in (2.2) and applying (2.1),

(m + n)3D(x2yx + xyx2) = m(m + n)(n − m)D(x)x2y + 2m(m + n)2D(x)xyx
+ m(5m2 + 2mn + n2)D(x)yx2 + 2m2(m − n)D(y)x3 + 2mn(5m − n)xD(y)x2

+ 2mn(m − n)yD(x)x2 + 2mn(n − m)x2D(x)y + 2mn(5n − m)x2D(y)x
+ 2n2(n − m)x3D(y) + n(5n2 + 2mn + m2)x2yD(x) + 2n(m + n)2xyxD(x)
+ n(m + n)(m − n)yx2D(x) + 8m2nxD(x)yx + 8mn2xyD(x)x (2.4)

for x, y ∈ R. Since R is |m − n|-torsion free, comparing (2.3) and (2.4) yields

2m2D(x)xyx − m(m + n)D(x)x2y − m(m + n)D(x)yx2 + 2mnyD(x)x2

− 2mnx2D(x)y + n(m + n)x2yD(x) − 2n2xyxD(x) + n(m + n)yx2D(x)
− 2mnxyD(x)x + 2mnxD(x)yx − 2mnyxD(x)x + 2mnxD(x)xy = 0

(2.5)

for x, y ∈ R. Put yx for y in the relation (2.5), multiply the relation (2.5) on the right-
hand side by x and subtract the relations so obtained one from another. This yields

2mny[D(x), x]x2 + n(m + n)x2y[D(x), x] − 2n2xyx[D(x), x] + n(m + n)yx2[D(x), x]
− 2mnxy[D(x), x]x − 2mnyx[D(x), x]x = 0 (2.6)

for x, y ∈ R. From the above relation,

n(m + n)[D(x), x2]y[D(x), x] − 2n2[D(x), x]yx[D(x), x] − 2mn[D(x), x]y[D(x)x]x = 0,

for x, y ∈ R, which can be written in the form

n(m + n)[D(x), x2]y[D(x), x] + [D(x), x]y(−2n2x[D(x), x] − 2mn[D(x), x]x) = 0

for x, y ∈ R. From the last relation and Lemma 2.3,

(n(m + n)[D(x), x]x + n(m + n)x[D(x), x] − 2n2x[D(x), x]
− 2mn[D(x), x]x)y[D(x), x] = 0

https://doi.org/10.1017/S0004972715001203 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001203


[5] Jordan derivations of rings and Banach algebras 235

for x, y ∈ R, which reduces to

n(m − n)[[D(x), x], x]y[D(x), x] = 0, x, y ∈ R,

and finally to

[[D(x), x], x]y[D(x), x] = 0, x, y ∈ R.

By following the approach used to derive (2.6) from (2.5), the last relation yields

[[D(x), x], x]y[[D(x), x], x] = 0, x, y ∈ R,

whence it follows that
[[D(x), x], x] = 0, x ∈ R,

by using the semiprimeness of R. According to Theorem 2.2, it follows that

[D(x), x] = 0, x ∈ R. (2.7)

The relation (2.7) makes it possible to replace D(x)x with xD(x) in (1.1). Therefore,
(m + n)D(x2) = 2(m + n)xD(x) for x ∈ R, which reduces to D(x2) = 2xD(x) for x ∈ R.
Applying the relation (2.7) again, we arrive at D(x2) = D(x)x + xD(x) for x ∈ R. In
other words, D is a Jordan derivation, whence it follows that D is a derivation by
Cusack’s generalisation of Herstein’s theorem.

It is well known that any commuting derivation on a semiprime ring maps the ring
into its centre, but we shall proceed with the proof for the sake of completeness. The
linearisation of the relation (2.7) gives

[D(x), y] + [D(y), x] = 0, x, y ∈ R. (2.8)

The substitution of xy for y in (2.8) gives

0 = [D(x), xy] + [D(x)y + xD(y), x] = x[D(x), y] + D(x)[y, x] + x[D(y), x] = D(x)[y, x]

for x, y ∈ R. Therefore,
D(x)[y, x] = 0, x, y ∈ R.

The linearisation of the above relation gives

D(x)[y, z] + D(z)[y, x] = 0, x, y, z ∈ R,

and, in particular, for y = D(x),

D(x)[D(x), z] = 0, x, z ∈ R.

Substituting yz for z in the above relation gives

D(x)y[D(x), z] = 0, x, y, z ∈ R. (2.9)

By substituting zy for y in (2.9), multiplying (2.9) on the left-hand side by z and
subtracting the two relations so obtained one from the other, we arrive at

[D(x), z]y[D(x), z] = 0, x, y, z ∈ R,

whence [D(x), z] = 0 for x, z ∈ R by the semiprimeness of R. The proof of the theorem
is complete. �
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Johnson and Sinclair [15] proved that any linear derivation on a semisimple Banach
algebra is continuous. By combining this result with the Singer–Wermer theorem [18],
which states that a continuous linear derivation on a commutative Banach algebra
maps the algebra into its radical, one sees that there are no nonzero continuous
linear derivations on commutative semisimple Banach algebras. Thomas [19] proved
the Singer–Wermer theorem without the continuity assumption, whence it follows
immediately that there are no nonzero linear derivations on commutative semisimple
Banach algebras. Vukman [21] has proved the following result, which can be
considered an extension of the result we have just mentioned.

Theorem 2.4 [21]. Let A be a complex semisimple Banach algebra and D : A→ A a
linear left Jordan derivation. Then D = 0.

Theorem 1.5 will be used in the proof of our next result, which is in the spirit of
Theorem 2.4.

Theorem 2.5. Let A be a complex semisimple Banach algebra, let m, n ≥ 1 be distinct
integers and let D : A→ A be a linear (m, n)-Jordan derivation. Then D = 0.

Proof. Semisimple Banach algebras are semiprime, which means that all the
assumptions of Theorem 1.5 are fulfilled. Therefore, we have a linear derivation on A,
such that [D(x), y] = 0 for all pairs x, y ∈ A. Johnson and Sinclair [15] proved that any
linear derivation on a semisimple complex Banach algebra is continuous. Sinclair [17]
proved that any continuous linear derivation on a complex Banach algebra leaves the
primitive ideals invariant. Therefore, for any primitive ideal P ⊂ A, one can introduce
a derivation DP : A/P→ A/P, where A/P is the factor algebra, by DP(x̂) = D(x),
x̂ = x + P. It is well known that a complex commutative primitive Banach algebra is
isomorphic to the complex field. Since A/P is primitive, in case A/P is commutative,
we have DP = 0. It remains to prove that DP = 0 also in case A/P is noncommutative.
From [D(x), y] = 0 for x, y ∈ A, it follows that [DP(x̂), ŷ] = 0 for all pairs x̂, ŷ ∈ A/P.
Since A/P is prime, it follows from Posner’s second theorem that DP = 0. Hence,
DP = 0 in any case. In other words, D(x) is in the intersection of all primitive ideals of
A for any x ∈ A. Since the intersection of all primitive ideals is the radical, and since
A is semisimple, the proof of the theorem is complete. �
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