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1. Introduction

If # is a class of groups, we denote by RUS the class of groups which are
residually in # ; i.e. G e R*€ if and only if 1 # g e G implies that there exists a normal
subgroup N of G such that g$N and GjNe &. A group G is residually a finite
p-group if it belongs to R3Fv, where !F p denotes the class of finite p-groups.
One also says that the groups in R3F p are residually of order equal to a power
of the prime p. Given a group G with one defining relator r, one might ask for
conditions on the "form" of the relator that would guarantee that G have certain
residual properties. In this context, Baumslag (1971) has proved that if all the ex-
ponents of the generators appearing in r are positive, then G is residually solvable.
In the same paper he also concerned himself with the residual nilpotence of one-
relator groups, and found that the situation there was much more complicated.
If one goes one step further and asks for conditions that will ensure that for a
given prime p the one-relator group be residually a finite p-group, then very little
seems to be known. Of course, if one takes r to be one of the generators:

G = (a,b, — ;a)

then G is freely generated by the remaining generators, and hence is in RlFp for
all primes p (Mahec (1949), Lazard (1965), 3.1.4). Our main purpose in this paper
is to develop methods of generating examples of one-relator groups that are re-
sidually of order equal to a given prime p.

To every group G one can in a canonical way associate a pro-p-group
G = lim GjN, called its pro-p-completion, and the canonical map G -* G is
injective iff G is in RtF p. (Here N runs through the normal subgroups in G of
index a power of p.) If G has the presentation

G = (xi,x2,---,xn;r)

then G has the "same" presentation as a pro-p-group; i.e.
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386 D. Gildenhuys [2]

G = F(xux2, ••-,xn)l(r),

where F{xux2, •••,xn) is the free pro-p-group on the symbols xux2,---,xn and
(r) denotes the closed normal subgroup of F(x1,x2, ••-,xn) generated by r
(Recall that F(xux2, •••,xn) contains the free group F(xt,x2, •••,xn) on xlt---,xn

as a dense subgroup, and is its pro-p-completion (Lazard (1965), 3.1.4)). The
pro-p-completion of a one-relator group is therefore a one-relator pro-p-group,
and such groups have been studied in Labute (1967),(1967a), Gildenhuys-Lim
(1972), Gildenhuys-Ribes (1974), and Gildenhuys (1968), (to appear). Labute's
theorem 4' (1967) enables one to describe a large class of one relator groups B with
the property that the completed group algebra ZP[[G]] is a valued ring, and hence
has no zero divisors. If, in addition, G is in R.^p, then its integral group ring Z[G]
is embedded in ZP[[G]] and therefore has no zero divisors. We give here some
examples (Proposition 2.2 and Theorem 5.1) based upon this observation, and in
support of the well-known conjecture that the integral group ring of a torsion-free
one-relator group is without zero divisors. The examples consist of the (discrete)
one-relator groups defined by Demuskin relators and groups defined by certain
types of commutators. The {t, jp)-filtrations of Lazard (1965) constitute the main
tool of our investigations. These filtrations share many of the properties of the
derived series and the central descending series of a group, and many of Baumslag's
results in (1972) carry over when the derived series is replaced by a (r, ^-filtration.
Given a finitely generated group G and fixed prime p, the (t, p)-filtrations all
define the same topological group structure on G, and the topology is seperated
iff G is in R!F p (see Proposition 1.1 below).

The author thanks the referee for pointing out to him that his Theorem 1.4
may have been derived by the methods contained in Baumslag's paper: 'On the
residual finiteness of generalized free products of nilpotent groups, Trans.
AMS 106 pp 193-209 (1963). Also, the absence of zero-divisors in certain group
rings might have been deduced from the groups being locally indicable.

To describe the nature of our remaining results, we recall the basic break-
down of one-relator groups (Magnus, karass and Solitar (1966), section 4.4).
Suppose G = (a, b, •••, c; r), r is cyclically reduced and a occurs in r with exponent
sum zero. Putting

bt - a~'ba' ,---,Cj = a~'ca} (i, ••-,;' = 0, + I,---), we can rewrite

r as a shorter word r0 in the letters bm(b),-,bmb),--;cm(c),-;cM(c). The sub-
group No of G generated by these letters has the presentation

and we call this simpler one-relator group the reduced one-relator group oj G.
Given that No is in R^p, what conditions do we have to impose upon the form
of r to ensure that G is also in R^p1 Theorem 4.1 gives a partial answer to this
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[3] One-relator groups 387

problem. Let N be the normal subgroup of G generated by b,--, c, and let M be

the closed normal subgroup of G generated by the images of these letters. One

has a commutative diagram with exact rows:

1 -> AT -> G -»• F(a) -> 1

l a iP ly
1 -> M -> G -> / ( a ) -* 1

The structure of the pro-p-group M can be described as an inverse limit of
push-outs (colimits) of circular diagrams in the category of pro-p-groups
(Gildenhuys (to appear)). The group N is a direct limit of generalized free products
of isomorphic copies of JV0. The map a, and hence /?, will be injective if a certain
type of embedding problem for circular amajgams can be solved (Lemma 3.2).
This is the basic idea behind the proof of Theorem 3.1.

2. (t, p)-Filtrations and Amalgamations of Groups

We first introduce some terminology. Let H be a subgroup of a finitely
generated group G and let co : G -> R U { oo} be the (t, p)-filtration on G,
where t is some positive real number (Lazard (1965), 3.2.1). If the restriction
co\H: H -» R U { oo} of co to H is the (t,p)-filtration on H, we will call H a
(t, p)-isometric subgroup of G. We write

Gv = {geG:co(g)^ v},

and we say that a subgroup H of G is (t,p)-separable in G if C\V>OH • Gv = H.

PROPOSITION 1.1. (a) Afinitely generated group G is in R3Fp if and only if
the identity subgroup of G is (t,p)-separable in G for some t > 0, if and only if
the identity subgroup of G is (t, p)-separable in G for all t > 0.

(b) If G is in R3Fp and H is a subgroup of G, then H is (t,p)-separable in
G for all t > 0 if and only if H is (t,p)-separable in G for some t > 0, if and
only ifG C\ H = H, where H denotes the closure of H in G.

PROOF, (a) Suppose G e R^p and t > 0. Let co (respectively a>) denote the
(r.p)-filtration on G (respectively G) (Lazard (1965), 3.2.1, 3.2.8.1). The identity
subgroup is (t, p)-separable in G if and only if co(g) = oo => g = 1. The restriction
c5 | G of d> to G is a p-filtration with the property that (d) | G)(g) ^ t for all geG.
Hence eb(g) S; aj(g) for all geG. Since co defines the topology of the separated,
topological group G, it follows that for all geG,

co(g) = oo => <b{g) - oo => g = 1

and the identity subgroup is (t,p)-separable in G. Conversely, if <~^V>OGV = (1)
then the canonical map
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388 D. Gildenhuys [4]

G -> lim G/Gv

is injective, and it only remains to verify that each quotient GjGy is a finite p-group
Referring to Lazard (1965), 3.3.2, we let

0 < ^! < A2 < ••• < oo

be the set of values of the (t, p)-filtration, and we recall that the mixed Lie algebra

grG = £ GJGUil
i I

is generated by the images of a finite set of generators for G. It follows that each
homogeneous component GlJGx. + l is finite. The first homogeneous component
is GjGXl, and if we make the induction assumption that G/G}. is finite, then the
exact sequence

shows that G/GXl + l is finite. This proves (a) of the Proposition.
By Lazard (1965), 3.2.8.2 the mixed Lie algebra gr G of G is generated by the

images of a (finite) set of (topological) generators of G, so that, by the same
argument as before, the closed subgroups

Gv = {yeG:A(y) ^ v}

are of finite index in G, and hence constitute a fundamental system of open
neighborhoods of the identity. Since a finite set of generators for G is a set of
(topological) generators for G, the mixed Lie algebras gr G and gr G are isomorphic
and Gv = GY n G. (Lazard (1965), 1.1.8, 3.2.8). The equalities

n H • GV = n w • (G, n G) = i n w • GV) n c - n n c
v> 0 v>0 v> 0

now show that H is (f, ^-separable if and only if H = H n G.
We will always use the term p-filtration in the sense of Lazard [14]. This

term should not be confused with the term !Fp-jilter, which we will use in the
sense of Gruenberg (1957), section 1; i.e. we will say that {Ay)x eA is an &p-filter of
a group A if:

(1) each Ax is a normal subgroup of A;
(2) each quotient AjA% is in &p ;
(3) each intersection Ax n A^ contains a member of the J%-nlter.

PROPOSITION 1.2. Let H (respectively K) be a subgroup of a group A
(respectively B) and let <p: H -* K be an isomorphism. Suppose that {Ak}XeA

and {Bx}XeA are equally indexed &p-filters of A and B respectively such that

(i) tf = r \ 6 A t f - ^ , i C = n X e A x - B , ;
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[5] One-relator groups 389

(ii) <p(H O Ay) = K n Bk, so that <p induces isomorphisms;

cpk:HAJAk^KBJBk, (AeA);

(iii) The generalized free product

Px = {(AjAx) * (BIBX): H o AJAk *K • BJBJ

is residually a finite p-group, for each Ae\.
Then

P = {A * B: H = K}

is residually a finite p-group.

PROOF. Let 6k: P -> Ph be the map induced by the projections: A -> AjAk,
B -* BjBk, (X e A). Let S (respectively T) be a set of right coset representatives for
A modH (respectively B modX) containing the identity. Suppose that 1 / j e P .
If y eif, then y has a non-trivial image in some A\AX, and dk(y) / 1. Since i \ is
in RSFp, there then exists a homomorphism from P into some finite p-group such
that the image of y is not the identity. So we may suppose that y $H. Then y
can be uniquely presented in the canonical form

y = hclc2---cr (heH, 1 # cteS U T, r ^ 1)

where cf and c j + 1 are not both in A and not both in B. (See Magnus, Karass
and Solitar (1966), Theorem 4.4). From (i) and (3) we deduce the existence of an
element Ao of A such that for all i,j = 1,2, •••, r

(a) cteA => crfH • AXo; c,eB => crfK • B,o;

(b) c,-, cy e 4 , Cj # c; => c,~ V; £H • Ako;
cit Cj6B, c( # c7- =*• cj1 Cj$K • B

l0.

One can then find a set 5 (respectively T) of right coset representatives for
H • AjAo (respectively K • BJBXo) in A/AXo (respectively BjB}J such that

J fo r all i = l,--,r. It follows that

01.00 = olo{h) • ^ ( C l )

is a canonical presentation and 0^00 / 1. Since PXo e R^p, the result follows.

PROPOSITION 1.3. Let H {respectively K) be a subgroup of a group A
(respectively B) in R^p. Suppose that {An}n<sN and {Bn}neN are &p-filters of A
and B respectively, satisfying (i) and (ii) of Proposition 1.2, as well as the
following:

(iii) AJAn+l and Bn/Bn + 1 are finite abelian groups of exponent p;
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(iv) H n AJH n An + 1 (respectively K n BJK n Bn+1) lies in the center
of A/An + 1 (respectively B/Bn+1)for all neN.

Then
{A*B;H = K}eR3?p.

PROOF. We need only verify condition (iii) of Proposition 1.2, and by
Higman's theorem (1964), we need only prove that each amalgam (AIAn)KJ(BIBn)
with intersection HjH n An = KjK n Bn is embeddable in a finite p-group.
We do this by induction on neN. It is clear that the amalgam (A/A,) U (B/Bj)
of /yvector spaces with intersection HjH n At = K/K n Bx can be embedded
in an Fp-\ector space Mo. More generally, the amalgam (AJAR+l) U (BJBn+1)
of /yvector spaces with intersection /f n >ln/H n ^ n + 1 = X n Bn/X n B n t l

can be embedded in an Fp-vector space Mn, for each neN. We now assume that
the amalgam (A/An) u (BjBn) with intersection HjH (~\ An = K/K n Bn is embed-
ded in a finite p-group 7n. Let

6n: HjH n A,,+1 -* H/H n

and consider the exact sequence

1 -> / / n A./H n An + 1 -> H/if n ^ + 1
9 A yn.

Using Higman's terminology and his Corollary to Lemma 1 (loc. cit.), we choose
a standard embedding

and extend the composite:

HjH n An + 1^>(H n AJH n An + 1) I Yn^(AjAn + 1) I Yn

(respectively KjK n Bm+1 - ^ ( K n Ba//C n Bn+1) i Yn^(BJBn+l) I Yn) to a

standard embedding

(respectively vn+1: BjBn+1 — (BJBn+1) I Yn)

Note that we have identified HjH r^An + l with KjK n B , + 1 and H O AJif r\An + 1

with K O Bn/K O 5 , t l . The two embeddings /in + 1 and vn+1 now give rise to
emleddings of AjAn+l and BjBn+1 in Yn+1 = Mnl Yn, which completes the
proof.

The group P of the following theorem is our first example of a one-relator
group belonging to
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THEOREM 1,4. Let F and F' be free groups and suppose that aeF (res-

pectively beF') is not of the form z" for + 1 ^ neZ\pZ, zeF (respectively

zeF'). Then the generalized free product

P = {F * F':a = b}

is residually a finite p-group.

PROOF. The words a and b involve only finitely many generators. Let G be
the subgroup of P generated by the remaining generators, if any; then G is a free
group and is a free factor of P. Since free groups are in R&p, and the free product
of two groups in R^p is again in R&p (Gruenberg (1957), Theorem 6.2), we may
assume without loss in generality that F and F' are finitely generated.

Let t,t' eR,t,t' > 1, and let co, (respectively cot) be the (t, p)-filtration on F
(respectively F'). It follows from Lazard (1965), 3.2.6.1 that the values co',(a) and
cot(b) depend continuously on t. So, we can choose t and t' in such a way'that
(ot(a) = <o't.(b). Let grF (respectively grF') be the Lie algebra with coefficients
in the polynomial ring Fp\n\, corresponding to co, (respectively co,'.) (see
Lazard (1965), Chapter II, 1.2). Since these Lie algebras are free (Lazard (1965),
3.2.2, 3.2.5), gra (respectively grb) generates a free Lie subalgebra gr / / (respec-
pectively grJQ in grF (respectively grF') , where H (respectively K) denotes the
cyclic subgroup of F (respectively F') generated by a (respectively b). So, the
isomorphism <p: H -* K that maps a onto b induces an isomorphism gr// -» grK
of graded Lie algebras. It follows that if we let

/ < kl < X2 < ••• < oo

denote the union of the ranges of u>, and a>,', (see Lazard (1965), 3.2.6.2), and write

An = {aeA:co,(a) ^ ;.„},

then (ii) of Proposition 1.2 is satisfied. The families {An}n eJV and {Bn}neN are
i^p-filters. Indeed, the (t, p) -filtration on the finite p-group AjAn n Am defines
its discrete topology (Lazard (1965), 3.1.5, 3.2.8.1), and this filtration is the quotient
filtration of the (t, p)-filtration on A (see Lazard (1965), 3.2.3); hence there exists
an Ak contained in An C\ Am. In order to show that condition (i) is satisfied we,
need only prove that H nF = H and R n F' = K (see Proposition l.l(b)).
But, H is a free pro-p-group on one generator; it is isomorphic to the additive
group of the ring of p-adic integers, and the abelian subgroup H C\ F of F must be
of the form {z" :aeZ} for some zeF. Since H is contained in ft n F, we must
haye a = z1 for some y e Z,|and, by hypothesis, 7 = ± 1 or pk for some keN.
However, g r / / = gr/ / is freely generated as an Fp[n]-module by gr z and is also
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freely generated by gra, so that if a = zpk, keN, we would have gra = rc*grz,
which is impossible. Thus a = z and H O F = H. Similarly R n F' = K.
The result now follows from Proposition 1.3.

3. Examples based upon Theorem 1.4.

PROPOSITION 2.1. If a group G has the presentation

(v v . v- • v"°v'" . . . v""^

w/iere eot'/i M( is o / the form p k i , kt ^ 0 , / = 0, !,••-, m, ?/ien G is residuaHy
a finite p-group.

PROOF. The result follows from Theorem 1.4 by a simple induction argument.

Our second example in this section consists of the Demuskin relators (see
Labute(1967a), (1), (2), (3), (4) on pages 106,107). These relators appear as defining
relators for Galois groups (pro-p-groups) of p-algebraic closures of finite extensions
of the field Qp of the p-adic numbers (See Serre (1962/63), (1964)). We will show
that if we view these relators as defining relators for (discrete) groups, then the
groups are in R&p, and the Demuskin groups are therefoe Hausdorff completions
(See Bourbaki (1951), §3, no. 4, Theorem 1) of these groups. The Demuskin
relators are either of the for

(1) r = x1(xux2)(xi,x4)---(xn_uxn)

where 2 ^ q = pk for some prime, and n is even, or it has one of the following
forms:

(2) x\x2i(x2,x3)-(xB-uxn)

(where 2 ^ / ^ oo, with 2X = 0),

(3) x^2\x1,x2){x3,xA)-(x2n.1,xln) ( 2 g / g o o )

(4) x2
l(xux;)x2

3
f(x3,x4)---(x2n-ux2ll) ( 2 ^ / ^ o o ) .

(See Labute (1967a)).

PROPOSITION 2.2. The group G = (xl,x2,---,xll; r) is in R&p if r is of the
form (1), (2), (3), or (4) and p = 2. Moreover, the integral group ring Z[G]
has no zero divisors.

PROOF. By Labute's Theorem 4' (1967), there exists a g-filtration of the
completed group algebra ZP[[G]] with the property that the corresponding
graded algebra grZp[[G]] has no zero divisors. Thus Zp[[G]] is a valued ring
(Lazard (1965), 2.2.1, 2.3.6) and has no zero divisors. We need only prove G
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[9] One-relator groups 393

since then Z\G~\ <= ZpHGj]. By virtue of Theorem 1.4, we need only consider
relators r of the form r = x[k(xl,x2) where keN, or of the form r = x2 + 2 /(xt,x2),
2 ^ fe N. In the first case, one has a commutative diagram

F(x2) > 1

F(x2) > 1

where N is the group with generators z, ='.xj'x1x'2 (ieZ) and relators z,"r z1+1

O'eZ) with y = 1 — pk
g (See Magnus, Iarass and Solitar (1966), Section 4.4). One

obtains an isomorphism of N onto the additive group of the subring Z\y ~*] of Q,
by mapping z, onto yl. The group F(x2) is the free group on one generator and
the maps n and v are canonical maps of groups into their pro-p-completions.
The pro-p-group M is isomorphic to the additive group of the ring Zp, and if we
identify M and f(x2) with Zp, then we can describe G as the semi-direct product
of Zp with itself according to the action

d: Zp -> Aut(Zp), 0(<x)(/J) = yao p,

(See Gildenhuys (1972), Theorem 3.2). Note that

lies in the multiplicative pro-p-group of invertible elements of Zp, and if we identify
N with Z[yl{] , then X is just the inclusion: Z [ y l i ] <= Zp (See Serre (1970), Chap-
ter II, §3, Proposition 8, p. 32). It follow that n is injective and G e

If

we put y = — (1 + 2f), and reason in the same way as before.
The above proof also shows that the cyclic subgroup H of

generated by x, is not (t, p)-separable. Indeed, H n G contains an isomorphic
copy of Z f j " 1 ] , so that H (~\ G ^ H ^ Z (See Proposition 1.1 (b))).

4. Circular amalgams

In this section we keep the notation of the introduction (Baumslag's nota-
tion (1971)) for the basic breakdown of a one-relator group G = (a, b, ••-,c; r).
Our purpose is to find conditions under which No e R^p implies G e RlFp. We
are assuming that r is cyclically reduced, and a occurs with exponent sum zero
in r. We recall the following notation of Baumslag (1971), Section 2: N is the
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normal subgroup of G generated by b, •••, c; for each integer k, Nk is the subgroup
of N generated by

^m(6) + lt> • " > "\HV) + k> • " ' c m ( c ) + fc> ' " > cM(c) + k >

Hk is the subgroup of N generated by

and for i ^ j , we let NtJ denote the subgroup of N generated by Nt, •••,NJ.
Let t be some fixed positive real number. For every finitely generated group A,

the range of the (t, p)-filtration co on A is a discrete subset

t = Ao < l j < A, < ••• < oo

of R U {oo }, and we write

dnA = {aeA:co(a)^ln}, (neN).

The corresponding mixed Lie algebra is denoted by gry4, and its m-th homo-
geneous component is denoted here by

grmA = 5mAISm+1A = AJAXm+i (m £ 0)

THEOREM 3.1. Suppose that
(i) Ho and Hj are (t, p)-isometric subgroups of Nt j
(ii) Ho and Hj are (t, p)-separable in Ntj ;
(iii) (gr//0) n (grH,) = (0) in grNt y, for all j ^ some n0

(iv) NoeR^p

Then the original one-relator group G is in RFP.

PROOF. Let j be some fixed power of p for which (iii) is valid, as well as:

j > sup{M(b) - m(b),-,M(c) -

Define

Bi = NijAj+j_1, {ieZ)

and let k be a natural number for which pk > 2j. Write

and let n: Z -» Z/pkZ denote the canonical projection. Using functional notation:

ri — ri{k>m(b) + i> b )

we now define for each i e ZjpkZ:

ri = ri{bn(m(b) + i)> '' '> ^

and we note that in the presentation for Bt:
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[11] One-relator groups 395

" i = ( o m ( i , ) + i j , • • ' , 0 M ( 6 ) + U + . / - 1 ' ' " > Cm(c) + ij> '"> cM(c) +ij + j - I »

we may replace the relators r^, • • • , c y + J _ 1 by /•/,-, •••,r'ij+J_1, and view the indices
of the generators as elements of the cyclic group Z/pkZ. For all i e ZjpkZ one has

In view of condition (i), we may also write

( B A A ) n(Bi+1/«SmBj+1) = HIJ+j-1ldmHlJ+l-l

for all m e N. We will say that a finite p-group Ym contains an image of the circular
amalgam {BijdmBl)ieZipkz if there are homomorphisms

at:B,l5mBt^ Ym,

(not necessarily injective), such that for all ieZ/pkZ the restriction of a-, to
H,J+j_1ldmHij+j_l agrees with the-restriction of aj+1 to Hij+j.lldmHij+j_l.
A sequence

BJd~mBs, B s + JdmBs+l, • ••, B , + A A + ,

contained in the above circular amalgam is said to be properly mapped into Ym if
there are maps at satisfying the above condition for /, i + 1 e {s,s + 1, ---.s + t}.
If these maps are all injective, we say that the sequence is properly embedded
inYm.

LEMMA 3.2. Assume the hypotheses of Theorem 3.1; let

n = sup{M(/>) - m(b),—,M(c) - m(c)}

and suppose that: v,k,meN, j = p", w = A: — v > 0, ;' > n, pk > n + j + 1,
j ^ n0, t = m — 1, pk > 3f + n + 1 . One can f/ie/j find a finite p-group Ym

containing an image of the circular amalgam {#;/<5mBi},-sZ/pwZ, such taht the
sequence

B(/c>mB,, Bt+i/SmB, + 1, •••,Bpw_2,-1/t'mBp«._2f-i

is (properly) embedded in Ym.

PROOF. The proof goes by induction on m. For each meN and ieZ/pwZ
we choose in the /yvector space grmBj a complementary subspace Cmi for the
subspace gr„,#;;_! + gTmHij+J_l. We recall that by the Freiheitsatz, H^-.j and
Hij+j^i are free groups, so that for each ieZjpwZ there is a natural embedding
am j of grm/ / 0_1 + gTmHij+j_1 into the m-th homogeneous component

8,TmF(bo>---, V-1' '""> c0, •••,cpk_1),

of the mixed Lie algebra of the free group on the indicated letters, with am t res-
pecting the indices (mod pkZ) of the generators, so that am f and <xm I + 1 agree on
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gr m / / , J - + J _ 1 . (We use here the hypothesis (iii))). Hence there is a natural embedding

of g r m B, in to

Um = ( 0 CmJ) © grmF(fr0, ••-,*>,,„_,, •••,<•<,, •••,cpk_1)
i e Z/p™Z

for each ieZ/pwZ. So for m = 1, we have embedded the circular amalgam

Suppose now that pk ̂  3m + n + 1. Our induction hypothesis is that the
circular amalgam {Bi/8mBj}ieZ/p^z is mapped into a finite p-group Ym by the
maps Xt: 5;/<5mB,- ->• Ym say, and Xi is injective for

ie{t,t+ l,---,pw-2t- 1}, (r = m - 1).

Let f7ni be the direct sum of the vector space

c — (T\ C
v m ~~ \D L m.i

,^Z/p"Z

and the m-th homogeneous component of the mixed Lie algebra of the free
group on the letters

cM(c) + mj-j> '"i f»W4p'-2»ij+2rl •

Let nm: Um -> Dm be the identity map on Cm and let it coincide on

with the restriction of the projection q of the free mixed Lie algebra (Lazard
(1965), 3.2.5)

• - • , fcpi--,, • • • , ( - 0 , • • • , f p i - , )

onto the free mixed Lie algebra

' ' i f ( r ) » /n./ - / > ' " ) ( ' « l ( ) + p 1 - 2 m / + 2 ; - 1)

such that q maps each of the generators

2mj+2j- 1) " ' )

(c) + mj- j i ' ' "> g r '•m(c) + pk - 2ra./ + 2/ - 1

onto itself, and each of the remaining generators onto 0.
In what follows, we will use the terminology and the Corollary to Lemma

of Higman (1964). For every

ie{t,t + \,---,pw -2m + 1}

the map
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gives rise to a commutative diagram with exact rows:

1 -> gr„,//,;_! -> H,j-ll5m+1HiJ-l -

1 - grmB, > B,l8m+iB,

t t
1 -» grHu +,-_!- Hij + j-lISm+1Hij + j

Let

be a standard embedding of HtJ+J-JSm + lHtj+j-1 in the weath product of
&nfltj+j-i. and Ym. Since grmHtj+j^l is in the center of B,/5m + 1B, and in the
center of Bt+1ISm+lB,+ u we can find standard embeddings

lYm

such that the following diagram commutes:

BJ5m+1B, l (grmB,) lY

t
> (grmH,

t+\ (grmB,

Moreover, the image of er + 1(grm// ( ( + 1 ) J + J_1) in Um lYm is contained in the
center of Um I Ym, since e,+ 1 maps the subgroup grmBr + 1 of Bt+il3m+1Bt+1 into
the diagonal of (grmBt+1)

Ym. (By the "diagonal" we mean the subgroup of
constant maps). Consider now the commutative diagram with exact rows:

1 -» U.

- l
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where r\ is obtained by restricting et + 1 to H(t+l)J+j-ll5m+1Hv+l)J+j.1 . Let

be a standard embedding. By Higman's Corollary to Lemma 1 (loc. cit.), the
composition of 5 and the map:

(grmH{,+l)J+j-1)lYm<^(yZ-) lYm

can be extended to a standard embedding:

U ) Y c-> (l]Ym } ) Y

and the composition of d and the map:

(grmtf ( ( + i ) ; + J - i )* Ym-+(grmBt + 2) lYm

can be extended to a standard embedding:

(gTmBt+2) lYm-*Uml Ym.

The image of gr mB,+2, and hence of grmH(l+2)J+,•_ j is in the center of (l/^m

In the above commutative diagram one can replace the top row by

and t by t + 1. We can then again apply Higman's Corollary of Lemma 1, to
obtain a commutative diagram:

BJ5-+iBt
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[15] One-relator groups 399

We proceed in this manner upto the index p w — 2m + 1 of B to obtain maps

where Z = y^w-3m+1 , that define a proper embedding of the sequence

into Uz
mlYm. For

ie{t,t+l,---,pw~2m

AJ: BJSm+lB,

define

Note that A,'maps grmB, into the diagonal of the subgroup U^xYm = (0l)Ym of
0* I T . . For

ie{ - 2w+ 2, - 2 m + 3, •••,m-2}
define

^ ym -> t /^ i ym>

where the last map sends y e Ym to the pair (y,0).

CLAIM. The circular amalgam {Bijdm+1Bi}ieZlpWZ is mapped into Ym

= 0% I Ym by the maps A-, and the sequence

is (properly) embedded in Ym+1.

PROOF. Clearly the sequence

is properly mapped into Ym+1 ; and the sequence

- 2 m + 3 »

is properly mapped into ym, hence into Ym+1, by the induction hypothesis. We
must show that the two sequences are properly linked together at the edges.
So suppose that

Then
ApW_2m+2(z) = (ApW_2m+2(i),0)e Ym+l,

where z is the image of z in Bpw_2m+2/5mBpw_2m+2- On the other hand,
*pw-2m+i(z) is of the form (ApVV_2m+1(z), ?tz o \ji), where TC Z: t/m

z-» C?m
zis induced
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by n: Um-* Um; i// is a mapping: Ym -> U*, and z is the image of z in
£ P w- 2 m + 1 /<5JV- 2 m + 1 • By the induction hypothesis,

The map Apw_2m+i factors through a map

Bpw-2m+i/^m+iBpw_2m+1'^-(grmBpW_2m+1) ?7m ^>C/m lYm

that sends g r ^ p * - ^ . ^ ; - ! into the diagonal of £/*m. Hence the mapping \jt
factors as follows:

p -2mj

where the last map is the diagonal map. The images in Um of the elements of
grmHpk_2mj+2j_i are homogeneous mixed Lie polynomials in the symbols

But, n maps these polynomials to 0, and we conclude that nzo xji = 0. Thus

^p™-2m+l(2) = ^p«-2m+2(z)-

Finally, if z £//m,-;_ JS^^^^j.t, then

where z is the image of z in B,ldmBt. On the other hand, X'm^2{z) is of the form
(Am_2(z),7tzo t/f) where l/̂ : Ym -»• l/^ factors as follows:

The images in l/m of the elements of grm//m j_J_1 are homogeneous mixed Lie
polynomials in the symbols

Since n maps these elements to 0, it follows that nzo ip = 0. By the induction
hypothesis, Am_!(f) = Am_2(z); hence

A ; _ . ( Z ) = A ; _ 2 ( Z ) .

To prove the second statement of the Claim, we recall that for

ie{t + l,t + 2,---,pw -2m- 1 } ,
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A- is the composite map:

AJ: BJS^B, Vi>Vz
mlYm^tJllYm= Y

m+l,

and q>i is injective. If g eBijdm+1Bi and X-(g) = 1, then Af maps the image of g in
BildmBi to the identity. Hence g belongs to the kernel grmBj of A,-. The restriction
of <pt to grmBf factors as follows:

gr mBt ->Um-^ U™™ = (uy- - ([/*) I Ym.

The images of the elements of grmB( in Um are uniquely expressible in the form
c + d, where ceCt and d is a homogeneous, mixed Lie polynomial in the symbols

Since for i e {t + 1, f + 2, ••-, pw - 2m - 1} the indices

m(b) + ij,—,M(b) + ij +j - 1

belong to {M(b) + mj - j , - , m(b) + pk - 2m] + 2/ - 1},

etc., we have n(d) = d; i.e. the restriction of jt to the image of grmBj in t/m is
injective. It follows that A' is injective for all

ie{m,m + 1, •••,?" — 2m — 1}.

This proves the Claim and the Lemma.
We can now complete the proof of the Theorem. As explained in the intro-

duction, we need only show that the map a of the following commutative diagram
with exact rows is injective:

• N -* G -* F(a) -> 1

1" I' 1'
M -> 6 -> P(a) -> 1

The bottom row is an image of the exact sequence

1 -» F(Z1 U - 0 Z P ) -» F(a,b,-,c) -* F(a) -> 1

of free pro-p-groups, where

F(ZP U "• U ZP) = u m H(Z/pkZ) U ' " U (Z/pkZ))

is the free pro-p-group generated by the coproduct (disjoint union), in the category
of topological spaces, of as many copies of the underlying topological space of
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Zp as there are generators b, •••, c. (See Gildenhuys, Lim (1972), Corollary 2.2 and
Proposition 1.7). It follows that M is the inverse limit of the pro-p-groups

Dk = ( o 1 p

(pk > 2/ > 2ri).

Each Dk is the colimit in the category of pro-^-groups of the circular diagram
consisting of the pro-p-completions

'••) cm(.c) + ij> •"> cM(c) + ij + j-l)l(rij> '"

and the inclusions

AtJ+J-! -*S b H i J + J _ , — Bi+ lf ( i s

where j = p", k, w and n are as in Lemma 4.2. (We use the hypothesis (i) of the
theorem.) Let

be the isomorphism that sends the sequence of (topological) generators

(om(6) + 0> '"

for i?; onto the sequence

of generators for ^ 1 + m _! . The group Ym of the Lemma also depends on k, and
we write Ymk = Ym. Consider the maps

p,-.m k: Sj-i* J j + m _ 1 = limBi+m_1/<5nBj+ni_1 -• 5j + m_1/^mBf + m_1 - YmJl,
n

(see Lemma 3.2), and let Lf m denote the kernel of the canonical map:

Note that pOm,k has kernel LOm. The maps pimk (ieZ/pwZ) induce a map
ak:Dk-* Ymk out of the colimit Dk of the circular diagram described above.
Since p0 m k factors through this map:

fi T* r. °* v
Po.m,k:JiO -> L>k -»• *m,k>

the canonical map tk has kernel Kt contained in Lo m. iVote that xk preserves
the indices of the generators. We now choose an ascending sequence {km}m ejV of
positive integers, such that pkm > 3(m - 1) + n + 1 for all m. The maps
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xk :B0-+Dk

now induce an embedding

£: So = lim SQ/Kk_ -* KmDkm = limD, = M.
m

From Proposition 1.3 and the equality

Bo = N0J_1 = {N0J-2 * Nj_t; tf,_2},

one deduces by a simple induction argument that Bo e RFP, so that the maps

£OJ-I--NOJ-1 = BO^B'O-!UM

are all injective. By shifting the indices, we conclude that the natural maps

C-,.»: N.tJ -> M

are injective for all i, heN, with j = h + i + l=pv sufficiently large. Now, N
is the direct limit of these groups N_ih and a: N -+ M is induced by the maps
£_,-,(,. So a, and hence jS: G -> G is injective, and we are done.

5. One-relator groups whose reduced one-relator groups
are residually of order equal to a power of p.

THEOREM 4.1. Suppose that

(i) the reduced one-relator group No is residually a finite p-group;

(ii) r0 belongs to V C\W, where V (resp. W) is the normal subgroup of

b)> ""'» "M(b)> ''•> cm(c)> '"> cM(c)l

generated by the first elements bmm,---,cm^c) (resp. last elements bMm,---,cM{c))
of each sequence

Then Ho and Hx are (t, p)-isometric subgroups of Nu and if Ls denotes the

(free) subgroup o /N, generated by a proper subset S of the given set of generators

for Nu then g rL s is embedded in grJVj. Suppose furthermore that

(iii) g rL s n g r L r = g r L S n r (with grLSnT = (0) if S n T = cj>).

Then

PROOF. Let _/ ^ 1. By (ii) the inclusion maps Ho -> iVj j and Hj -»JVt y have
left inverses, say a,- and /?,- respectively. If feH 0 1^6^t j then ( = ay(() e 5,H0.
Thus Ho O cijiV! y = 5jH0) and similarly Hj n SjJVi j = SiHj. Taking j = 1 we
see that the first statement of our theorem is verified. We will now assume that

https://doi.org/10.1017/S1446788700034431 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034431


404 D. Gildenhuys [20]

the hypotheses (i), (ii) and (iii) are satisfied and proceed to verify condition (ii)
of Theorem 3.1. One has a commutative diagram:

I I
and

xe f| Ho • 5jNt * x e 5 0 = ^ 0 * iS^x) = x => at(x) = x.
ieN

Thus
fl Ho • 5,*i - Ho

ieN

and, similarly n ^ . W . fll.
JeJV

Since

we can argue by induction on j , and deduce the result from Proposition 1.3.
(The separability condition of Proposition 1.3 is verified by replacing the above
diagram by

and using the same argument).
The third hypothesis of our theorem guarantees that for j sufficiently large,

condition (iii) of Theorem 3.1 is satisfied, and the result now follows
Unfortunately, properties (i), (ii), (iii) are in general not inherited by the

reduced one-relator group of a given one-relator group. Nevertheless, this theorem
can be used in conjunction with Labute's Theorem 4' to generate many examples
of one-relator groups in R^p, whose integral group rings have no zero divisors.
The simplest examples are probably of the type (b, a), (b, (b, a)), (b, (fa, (fa, a))),
Denoting the j-th term of this sequence by r,-, we see that G} = (a,b;rj) is the
reduced one-relator group of GJ+l. One easily proves by induction that Gj is in
K3Fp for every j e N and prime p. Moreover, Z[Gj-] is without zero-divisors.
This result is only a very special case of Theorem 5.1 below.

6. One-relator groups defined by commutators
THEOREM 5.1.

Let r be the commutator (u,v) in the free group F = F(xlt •••,xn,y1, ••-,)>„,),
wherev=v(yl,,ym) andu is in the normal subgroup of F generated byxu---,xn.
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Suppose u = u\, v = v\, t,seZ, where ut and vt are not proper powers
in F. Then the one-relator group

G = (x1,—,xn,y1,—,ym;r)

is residually a finite p-group iff" t and s are of the form t = + ph, s = + pk,
with k,h^0.

PROOF. Let Y = F(yu---,ym) and let t (respectivelly G) be the pro-p-
completion of Y (respectivelly G). One has a commutative diagram with exact
rows:

! ^ N $ G I Y -> 1

•v sr •*•

1 -> M ^ G A Y ^ 1

where /?(*,) = 1, ̂ (jj) = yJt i = 1, ---.n, j = 1, •••,m. Clearly G is residually a
finite p-group iff y is injective. Our proof of the theorem will depend upon an
explicit description of N as a tree product of free groups and of M as an inverse
limit of generalized free products (pushouts) of free pro-p-groups.

In order to obtain presentations for N and M, we first note that the following
sequences are exact:

1 -> F(Y x {xl,-~,xa})'3>F(x1,-,xK,yl,-,yJ$ Y^l

1 - F(t x {xu-,xn})% P(xu-,xn,yu-,ym)^Y -»l

where F(Y x {xu---,xn}) is the free pro-p-group generated by the topological
space f x {xu "-.x,,} (see [6], Corollary 2.2), e(x,) = 1,

eO;) = yj,Kxd = 1,%,-) = yJt i = U—,n,j = l ,-- ,m;

^(w,x,) = w~1xiw for we 7, i = 1, •••,n,

^(fj^i) = t~1xit for every generating pair (t,xt), tef, i = !,•••,n.

We can write u as a word in the pairs (w1,xii),---,(ws,xis):

u = u((w1,xil),—,(ws,xtM)),wieY,iJe{l,—,n},j = l , - , s ,

and we will now write

u(w) = M((ww1,xil),"-,(wwJ,x,,)).

Then 5 maps M(w)~1M(fw) to

w~1«~1ww~1i;~1Mt;w = w~1(u,v)w = w~1rw.
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So we see that N is the group generated by the pairs

(w,x^(weY, i - l,—,n),

with denning relations

w(w) = ii(vw) (w e 7).

Let V be the cyclic subgroup of Y generated by v. Then V acts upon the set Y by
left multiplication. We decompose Y into a disjoint union of orbits and we choose
a set of representatives

one from each orbit. For each h e Z, we let A(wy, h) denote the free group on
the n pairs

i/wy,xi),---,{vhwy,xn)

and for h' > h, we consider the generalized free product

P(wy,h,h') = {A(wy,h) * A(wy,h + 1) * ••• * A(wy,h');

u(v"wy) = u(vh + 1wy) = ••• = u(vt"wy)}.

Let C(wy) = lim P(wy, — h, h), with respect to the obvious (injective) maps.
-*

heN

Then N is easily seen to be the free product * C(wy). It can also be viewed as a
i-er

graph-product of free groups on n generators, where a cyclic subgroup is amalga-
mated along each connected path (orbit) of the graph.

In order to describe the structure of M, we first note that for each normal
subgroup U of 7, of index a power of p, one has an obvious map

x {xu - , *„}) - /((y/J7) x {xu - , *„})

and, by Gildenhugs and Lim (1972) Prop. 1.7,

F(f x {xlt •.•,*,,}) = lim/((Y/C7) x {xu-,xn}).
4 -

V

Let R denote the closed normal subgroup of P(x1,---,xn,yl,---,ym) generated
by r. Then S = q>~1(R) is the closed normal subgroup of F(f x {xu—,xB})
generated by u(w)~'* u(vw), (w e Y). Define

Ev = P({YjU) x {xu-,xn])lnv{S)

Then M = limEy, with respect to the obvious maps. Let v denote the image of
v in YjU, and let V be the cyclic subgroup of YjU generated by v. Then V acts
on the set YjU by left multiplication. There exists a finite subset A of T, such
that the images wx (A e A) of wx in Y/U form a complete system of representatives
for the orbits. We can now describe Ev as the pro-p-group on the set
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(Y/U) x {*!,-,*„},

of generators, with defining relations

u(wk) = u{v-hwx), (AeA, fc = 0 ,1 , - ,c - 1),

where c is the order of v in YjU. I.e. £D is just the pro-p-completion of the free
product

* P(wx,0,c-l)
X e A

Suppose now that u = wf", v = v*', and u1; i^ are not proper powers in Y.
It follows from a trivial generalization of theorem 1.4, that P(wx,0, c — 1), and
hence * P(w^,0,c—1), is residually a finite p-group (Gildenhuys (1968),

UA

Theorem 4.1). Thus * P(wx,0,c — 1) is naturally embedded in EV. The struc-
XeA

tures of N and M have now been completely described, and it remains to show
that N -y M is injective. So let

1 T£ z = z1z2---z,eN = * C(wy)

be in reduced form, with zteC{wy), i = 1,2, •••,/. Each z, belongs to P(wY.,ht,h\)
say (ft; > ht e Z). Since we can always replace the orbit representative wY( by
i/1 wyi, we may assume without loss in generality that ht = 0.

CLAIM 1. Y contains a normal subgroup U of index a power of p, such
that (i) the images wyi and wyj are in distinct orbits in YjU whenever wyt and
wyj are distinct in Y, (i = 1,2, •••, /), and

(ii) the order cofv in Y/U is larger than all the integers h'u •••,h'l.

PROOF. The family $ of normal subgroups of index a power of p in Y is
closed under finite intersections. So we need only to prove that if a, b e Y are
such that for all U e O there exists nveZ with

ab~l =v"vmodU,

then there exists an integer k such that ab~l — vk in Y. Since the ring Zp of p-adic
integers is compact, there exists a p-adic integer a and a chain of normal subgroups

in $ such that
lim nVi = a in 2p,

i-*oo

and nf=1 U{ = (1). One easily sees then that ab ~l= vxmf. However

{*? nY
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is an abelian subgroup of the free group Y, hence is the cyclic subgroup of Y
generated by some element v2. The hypothesis on v now implies that v = »f' for
some t ^ 0. There also exists an integer / such that ab~l = v{ = v% • a. It
follows that a lies in Z and this completes the proof of Claim 1.

We now choose U as in the claim, and we let A be a finite subset of T, con-
taining yu •••,Vn a nd with the property that

is a set of orbit representatives. We may view z as an element of

* P(wx,0,c-i) <= N
X e A

As pointed out before, this group is embedded in its pro-p-completion Ev. Hence
the image of z under the map

* P(wk,0,c - 1) <= N -> M ^Ev
XeA

is non trivial. It follows that y is injective.

To prove the converse of the theorem, we need the following

LEMMA. Let a, b be two elements of a pro-p-group K, and let T be the
closed normal subgroup of K generated by the commutators (f,(a,b)),feK.
Then

(i) (a", b) s (a, Vf mod T for all a e Zp.

(ii) ifa$pZp and (a",b) = 1 in K, then (a,b) = 1.

PROOF, (i) Since T is closed, we may assume without loss in generality that
a e Z, and since

(a-",b) = ib,an)iib,an),a-n),

we may assume without loss in generality that neN. But one has

(a'+1,b) = (a,b) • {{a,b),an) • (a",b)

and the result follows immediately by induction on n.
(ii) Suppose (a, b) =£ 1. Let Km be the central descending series of the pro-

p-group K, and suppose that m is the smallest integer such that {a,b)$Km.
Then T <= Km. Let j8 = a - 1 in ZF. Then

(a,b) = (aaP,b) = {a\bf = lmodKmJ the desired
contradiction.

Suppose now that u = uf, 1 # keZ — pZ. It follows from the Lemma
that the image of (uu v) in (5 is the identity. So we need only show that the image
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of (u1, v) in G is not the identity. Clearly the image e of (ut, v) in G lies in N, and

from the description given of JV as a generalized free product, we see that e can

be identified with the element

of the generalized free product

P( l ,0 , l ) = {,4(1,0) * .4(1,1); 5(1) = u(v)}

contained in JV, where it has been assumed that 1 is the chosen representative of

the orbit {v"e Y: neZ). Clearly e ± 1 in P(l,0,1), and the proof is complete.
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