
7. CELESTIAL M E C H A N I C S ( M F X A N I Q U E CELESTE) 

PRESIDENT: G. N. Duboshin. 
VICE-PRESIDENT: P. J. Message. 
ORGANIZING COMMITTEE: G. A. Chebotarev, A. Deprit, M. Davis, G. E. Giacaglia, Y. Hagihara, 

J. Kovalevsky, Y. Kozai, V. G. Szebehely, F. Zagar, J. Schubart. 

INTRODUCTION 

Up to the recent past, approximately to the first half of the 20th century, celestial mechanics 
represented a rather unpopular field of astronomy and an even less popular field of science in 
general. 

The few experts in celestial mechanics were occupied almost exclusively with the motion of celes
tial bodies in the solar system, spending a lot of their time and trouble on cumbersome and time-
consuming mathematical calculations with logarithms and primitive hand-arithmometers. 

Problems of primary importance on celestial mechanics at that time were those of creating the 
tables of planetary, lunar and satellite motions and also that of the stability of the solar system. 

The first problem was always significant for applications, whereas the second was of general 
interest. 

Searcely anybody attempted the study motions of stars and stellar system, and if so, then only as 
abstract systems of mass points with arbitrary masses, which represented a purely mathematical 
problem related to the study of properties of solutions of certain sets of differential equations. In the 
second half of the 20th century the situation, as is well known, has radically changed. Launchings of 
artificial satellites round the Earth and later on round the Moon, Mars and Venus, flights of space
craft and space stations in part of the solar system, and also future space flights to the stars required 
from celestial mechanics the immediate solution of totally different new problems which, in turn, 
brought about a rapid development in this field of astronomy as well as in theoretical mechanics. 

Due to the high degree of accuracy required for space flight computations the classical solutions 
of the problems of the motions of the Earth, Moon, and other planets proved to be insufficient and 
this circumstance called for new, more precise theories of the motion of these natural bodies. On 
the other hand, the newly obtained data concerning the motions of artificial satellites and space 
vehicles offered opportunities of developping our knowledge about the dimensions, shapes and 
structure of celestial bodies, particularly of the Earth and the Moon, and at the same time to deter
mine different astronomical constants with a high degree of accuracy. 

The solution of the above problems was greatly aided by the use of electronic computers, which 
not only enabled one to carry out the high speed calculations needed for the solution of astrodyna-
mical and celestial mechanics problems but also allowed one to advance and successfully solve enti
rely new problems which could not be solved by classical celestial mechanics at all (for instance, 
problems concerning the motion of a very great number of stars constituting a stellar system, in
cluding our own galaxy). 

Finally, laser methods have recently been advanced and developed, providing direct determina
tion of the distances from the Earth (later on from the Moon and other planets) to different arti
ficial and natural celestial bodies, which required numerous observations and cumbersome calcula
tions in the past. 

This has resulted both in the increase of the amount of research in the field of celestial mechanics 
and in the number of scientific publications in different periodicals dealing with various aspects of 
this field of science. 

The increase of the number of researchers in celestial mechanics can well be traced from the 
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number of the members of IAU Comission 7 which is continuously uncreasing with each successive 
General Assembly. 

At present Comission 7 has 80 members and this number will most likely reach 100 at the XVth 
Assembly in Sydney. 

It should also be borne in mind that apart from IAU members many other scientists and researchers 
with backgrounds other than celestial mechanics are fascinated by and concerned with the problems 
of celestial mechanics. The number of these is extremely high and quite obviously greatly out
numbers the memebership of Commission 7. 

The number of scientific publications on celestial mechanics and related branches of science 
(Astrodynamics, Theoretical Mechanics, Mathematics) is certainly very numerous and can hardly 
be appreciated accurately. It should be noted, however, that some years ago, on the initiative of a 
group of researchers in celestial mechanics from different countries, a special journal was established 
- Celestial Mechanics. The aim of the journal was to publish manuscripts concerned with the mathe
matical, physical and computational aspects of this branch of science and related fields. During the 
four years of its existence six volumes have appeared, each containing 4 issues. The total number of 
scientific contributions published therein is nearly 300. 

At the same time, publications on celestial mechanics appear regularly in several other journals 
on astronomy, mathematics, mechanics, physics and so forth. 

It is therefore impossible to cite all authors concerned with celestial mechanics or indicate all the 
publications relating to this domain even for the last three years. 

Thus, only a general account of recent advances in the field of celestial mechanics for the above 
period is given here, together with a list of scientific publications which, being far from complete, 
is based mainly on information sent at my request by the members of the Organizing Committee of 
Commission 7. I take the opportunity of expressing my deep gratitude to all those who kindly 
rendered me their essential assistance in compiling the report. At the same time, I regret the incom
pleteness of the report which is explained both by the fact that some members of the Organizing 
Committee were apparently unable to send in the required materials on time, and because I myself 
could not collect them for some reason or an other. 

For the sake of convenience, the contents of the present Report falls into 3 parts, each with its 
own title. The first is entitled'Analytical Celestial Mechanics'and deals with publications and meth
ods providing an analytical solution of the problem, that is, by means of finite or infinite expres
sions of mathematical formulae in literal form enabling one to calculate the necessary quantities for 
any value of an independent variable (certainly at some interval) for predetermined numerical 
values of parameters of importance for a given problem. 

The second part is named 'Qualitative Celestial Mechanics'. It discusses investigations of general 
properties of motion either in the absence of, or without considering the solutions of differential 
equations. These are, for instance, stability problems of particular solutions of the equations of 
motion, problems concerning the existence of periodic, asymptotic, collision or recessing solutions, 
as well as the problems of the desintegration of a material system, and so forth. 

The third part, 'Numerical Celestial Mechanics', deals with both semi-analytical and purely 
numerical problems and methods requiring the use of electronic computers and giving numerical 
results. 

It goes without saying that this division is rather arbitrary, as it is impossible to draw a clear 
distinction between these three parts, first, essentially, and secondly because many scientific in
vestigations require a combination of methods falling into different parts in the above classification. 
Thus, the division proposed here should not be ascribed any methodological significance: it simply 
appeared to me to be the most rational one. 

It is also noteworthy, that I do not at all deal with publications pertaining to the competence 
of other related IAU Commissions, such as 17,19 and 20. The report would have otherwise been 
too lengthy and would have contained a repetition of parts of other reports. This report gives 
separately a list of monographs on which I have been able to obtain information, and which have 
appeared in the course of the last three years. 
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The list may prove to be incomplete and in this case I apologize to the authors of the books 
which have been missed out in advance. 

The list of references is given a similar code as the list given by the late President of Commission 
7, W. J. Eckert, but slightly simplified and abbreviated. 

The code gives first the number of the Journal according to the list published in the Report 
for 1970, then follows the last digit of the year of publication, and then designation of the volume 
which contains the paper. For instance, the code 58 2 6 indicates that the article appeared in the 
journal Celestial Mechanics in the year 1972, Volume 6. 

1. ANALYTICAL CELESTIAL MECHANICS 

Analytical methods for the investigation of motion of celestial bodies have been developped 
for theories of the motions of the major planets, of the Moon, of artificial satellites round the 
Earth, Moon, and other planets, as well as for other theoretical investigations. 

Chapront (1) in association with a group of associates at the Bureau des Longitudes (Paris) is 
preparing the development of a literal planetary theory. Thus the theory may be applied to large 
values of the ratio of the semi-major axes, and is constructed with an accuracy up to the first 
degree of the masses of the four major planets. The secular terms have been obtained with an 
accuracy of the second order. In cooperation with Brumberg (1), Chapront has been constructing 
an analytical theory of the motions of the four major planets in purely trigonometrical form. 

Morando has been carrying out a study of the long periodal terms of the Jupiter-Saturn system. 
The important problem of critical inclinations and eccentricities in the general «-body problem 

has been investigated by Krassinsky (1). A new method of regularization relating to the integration 
of the equations of the major planets motions has been devised by Miachine (1). The effects in 
planetary motions caused by the application of the scalar-tensor theories of gravitation were 
treated by Finkelstein (1). 

In constructing a unique analytical theory of planetary motions an algorithm for the computation 
of the first order inequalities in orbital elements has been devised with an accuracy of up to the 
10th degree of eccentricities and inclinations (Krassinsky, 2; Pius, 1). 

A comparison of Hori's theory with von Zeipel's to terms of the second order has been conducted 
by Hori (1). 

Yusa (1) extended this comparison to the third order terms. Musen carried out a detailed in
vestigation of secular perturbations in the motions of the major planets using a modification of Hill's 
method (Musen, 1). Henrard has developed a perturbation theory based on Lie's method (Henrard, 1). 

Broucke presented the solution of the n-body problem by means of a power series technique 
analogous to that of Steffensen (Broucke, 1). Investigations by Petrovskaya in which the new 
expansions of the perturbing function are given, valid for any orbits including the intersecting 
ones, are also related to the planetary motion problem in the solar system (Petrovskaya, 1, 2). 
The properties of the above expansions have undergone detailed study. Danby devised a matrix 
technique for the perturbation theory utilizing regularization coordinates (Danby, 1). Garfinkel 
has carried out a complete study of an ideal resonance problem, given its general solution and 
applied it to some particular problems (Garfinkel, 1, 2, 3). 

To this field may also be related investigations on the influence of the instability of the pro
portionality factor in Newton's law (Finkelstein, 1; Vinti, 1). The researchers cited below dealt 
with analytical investigations of separate celestial bodies in the solar system. Laubscher (1) inves
tigated the motion of Mars. Nacozy (1) studied the theory of Pluto's motion. The theory of the 
Moon's motion was treated by Musen (2), Griffiths (1) and Bourne (1). Analytical theories of 
the motion of natural satellites of major planets have been developed by Orlov (1, 2, 3) for the 
remote satellites of Jupiter, by Elmabsout (1) for the satellites of Saturn, by Saguier (1) and Mello 
(1) for the Galilean satellites of Jupiter, by Duncomb (1) for Uranus, and so forth. 

It is appropriate to note that at present the construction of theories of motion for the natural 
satellites of major planets is closely connected with some astrodynamical problems. 
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Indeed, the investigation of interplanetary space, natural planetary satellites included, by means 
of automatic space stations, demands sufficiently precise information concerning the motion of 
planetary satellites. On the other hand, observations obtained by space stations yield a more exact 
definition of our knowledge both about planetary satellites and their motions. 

Consequently, astrodynamics, that is the part of celestial mechanics dealing with the study of 
the motion of artificial bodies launched from the Earth, is of utmost importance in modern celestial 
mechanics and the number of investigations in this field is rapidly increasing. In the above field 
we should like to emphasize first of all the investigations concerned with the theory of the gravitation 
potential of the Earth and the Moon since the main force governing the motion of artificial satellites 
is that of the gravitation of an inhomogenous non-spherical body. Here the expansion of the 
perturbing function of a non-spherical body for an arbitrary reference plane has been derived by 
Brumberg (25), Evdokimova (1), Kochina (1). Investigations of properties of the classical expansion 
of a three-dimensional body potential into spherical functions were carried out (Kholshevnikov, 1). 

Kholshevnikov (2) has also continued his investigations on the representation of the gravitational 
potential of the Earth by means of the field of the system of points. 

Vinti's study (1) also pertains to the investigation of the gravitational potential of the Earth. 
It should also be noted that several investigations related to the represention of the potential of 
a gravitational body by expansion into Lame's functions have appeared (Walter, 1, 2). This will 
undoubtedly be of great importance for astrodynamics in the future. 

Many investigations concerned the construction of analytical theories of motion of artificial 
satellites in the gravitational field of an oblate planet (either the Earth or the Moon). 

Batrakov (1) derived analytical expressions for the perturbations of orbital elements from zonal 
harmonics of the Earth's potential with an arbitrary index and for any eccentricity. Analytical 
expressions of perturbations from tesseral harmonics have been obtained by Batrakov (2) and 
Filenko (1, 2). Deprit (1) and Rom (1) have developed a detailed analytical perturbation theory 
for the motion of an artificial satellite from the second harmonics of the Earth's potential. 

Kovalevsky and his associates have also greatly contributed to the above problem (Kovalevsky, 
1; Morando, 1; Challe, 1; Laclaverie, 1; Berger, 1, 2; Cazenave, 1). 

Fominov (1) investigated the motion of artificial satellites in the atmosphere of the Earth and 
constructed analytical theories of motion. Noskov (1, 2) treated the combined problem of the 
non-sphericity of the Earth and its atmosphere. 

Nasonova (1) studied the influence of the third order terms on the second harmonic. 
An investigation of long-period inequalities was carried out by Aksenov (1) and Noskov (3). 

Uralskaya (1) and Domozhilova (1) were also involved in the above-mentioned investigation. 
A whole series of investigations have dealt with the study of the influence of solar radiation 

pressure taking into account the Earth's shadow effect on the motion of artificial satellites (Ere-
menko, 1; Polyakhova, 1; Vashkoviak, 1; Mello, 2; Moraes, 1; Kunitsyn, 1; Isaev, 1). 

Remote satellites of the Earth have been investigated and analytical theories have been con
structed; an appreciable effect of lunar or solar perturbations being considered (Batrakov, 3; 
Sokolov, 1; Uralskaya, 2; Chepurova, 1). Much research has been engaged in the problem of 
resonance in satellite motion (Batrakov, 3; Orlov, 1; Rappaport, 1; Garfinkel, 1; Allan, 1; Mello, 
2; Martins, 1). In all cases the authors constructed analytical theories applying the new mathe
matical methods. 

Analytical theory of interplanetary flight for the Earth-Moon case has been derived by Nacozy 
(2) who used Chebyshev's polynominals for this purpose. (Yarov-Yarovoy, 1 and Lancaster, 1) 
Yarov-Yarovoy based his investigations on Bernstein's polynomial theory (polynomials of best 
approximation). Some other influences affecting the motion of artificial satellites, for instance the 
tidal effect, have been treated by Musen (3) and Estes (1). In concluding this section, I should like 
to briefly refer to developments concerned with the analytical theory of the rotational motion of 
a satellite about the center of gravity as well as the theory of the translational-rotational motion, 
that is the simultaneous treatment of the translational motion of a satellite along its orbit and 
its rotation about the center of the masses. 
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It should be noted that the above branch of astrodynamics is not very popular amongst celestial 
mechanicians whereas scientists in the adjacent fields have contributed greatly to the subject. 

The review of these developments will be confined here to listing the contributions by Brackwell 
(1, 2), Hitzl (1), Nahon (1), Lange (1), relating to the theory of the rotational motion of satellites 
both along circular and elliptical orbits, (Cohran's, 1) investigation on the theory of a satellite's 
rotation along an elliptical orbit, and some papers on the theory of the translational rotational 
motion, concerned mainly with the treatment of the most ordinary special cases when a moving 
body is of a simple structure and shape (Pascal, 1,2; Osipov, 1; Shinkarik, 1) being, for instance, 
a one-dimensional spindle, a dumbbell, a disk and so on. 

2. QUALITATIVE CELESTIAL MECHANICS 

In the domain of qualitative studies on celestial mechanics the restricted circular problem of 
three bodies (which is the simplest after the classical two-body problem) dominates the field. 

The problem, which was without any practical value till the second half of the twentieth century, 
later received extraordinary attention from theorists and mathematicians who were concerned with 
the problem of stability (in Lyapunov's sense) of the well-known libration points and from those 
engaged in the problem of the existence of periodic solutions, mainly in the plane restricted problem. 
At present, the restricted three-body problem is widely adapted in important practical applications 
to astrodynamics in connection with the study of the motion of artificial celestial bodies in the 
Earth-Moon and Earth-Sun systems. In view of the above, interest in this problem, as well as 
the number of investigations, has significantly increased. After the appearance of the famous 
investigations of Siegel, Kolmogorov, Arnold, Moser and Leontovich, the problem of stability 
of the triangle points of libration for the plane circular case was completely solved by Markeyev 
in 1969. Markeyev pointed out that for any value of the parameter ft, satisfying the condition 
n(\ —fi)< 1/27 the triangle libration points are stable but for two special values of fi for which 
the above libration points are unstable. Subsequently, Markeyev (1) has shown that this result 
is valid for the spatial circular problem too. Thus, the problem for the circular restricted case of 
three bodies is solved completely. 

Consequently, it became possible to turn to the investigation of the libration points in the 
elliptic problem (in the case of rotating coordinate axes, utilizing pulsating coordinates). The 
problem had already been solved by Lyapunov in linear treatment but till now many theorists 
were unaware of that fact. Later on the problem attracted the attention of many other researchers. 
For the period under review Szebehely (1), Giacaglia (1), Kinoshita (1), Tshauner (1), Vinti (1) 
continued to study the problem. The transition from the linear approach to the problem of stability 
of the triangle libration points to a non-linear one and especially to the non-linear spatial problem, 
proved to be more complicated, and though considerable primary results have already been ob
tained (Alfriend, 1; Markeyev, 1, 2) the problem as a whole, remains unsolved. 

It is also of interest to note that no one but Lyapunov, who used the linear approach, investigated 
the problem of the stability of Lagrange's triangular motions in the general three-body problem. 

Another problem of primary importance in this field (that is in the restricted problem of three 
bodies) is that of the search for and the proof of the existence and the analytical construction 
of various periodic solutions. The classical results in that field are presented and analyzed in the 
well-known book Periodic Orbits by Szebehely published in 1967. Since then, and especially for 
the last three years, various new original results of practical value have appeared. New families 
of periodic solutions of the first and second kind have been discovered and investigated by Giacaglia 
(2, 3), Shelus (1), Message (1), Tshauner (1), Alfriend (1), Meyer (1), Bruno (1). 

In some of these papers a combination of numerical and qualitative methods is used. 
Periodic solutions were also dealt with in some other problems of celestial mechanics that are 

of importance to astrodynamics. Thus, Delmas (1) established the existence and investigated the 
stability of periodic orbits in the problem of the motion of a satellite around a spheroid. Periodic 
and quasi-periodic solutions in the general plane three-body problem were attacked by Lieberman 
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(1). Modi (1) and Williamson (1) treated periodic solutions of the rotational satellite motion. 
Kinoshita (3) treated the problem of the motion of an axissymmetrical body under the attraction 
of a sphere and analyzed stationary solutions of the above problem. 2uravlev (1) was engaged 
in the investigation of the stability of the libration point of a homogenous triaxial ellipsoid and 
that of the existence of periodic orbits in the vicinity of such points. 

In the «-body problem (mass points) mainly the stability questions of a given material system 
after Lagrange were treated as well as those related to the problem of the integral existence and 
the general characteristic of sets of differential equation in Hamiltonian form. 

Kholshevnikov continued to study the stability problem of the solar system but the investigation 
is not yet completed and the results are yet to be published. 

Merman (1) developed a method for the investigation of the stability of the Hamiltonian system 
with many degrees of freedom. 

The general topological investigation of a differential equation set applicable to the three-body 
problem was published by Marchal (1). In another publication the above author (Marchal, 2) 
derived a sufficient condition for the complete disintegration (instability after Lagrange) of the 
H-body system. Szebehely (2) presented a precise classification of motions in the plane restricted 
problem of three bodies. Sperling (1) treated various collisions of binaries and multiples in the 
general «-body problem. Waldvogel (1) pointed out the possibility of a new regularization in the 
plane problem of three bodies. Irigoyen (1) and Nahon (1) treated the zero-energy case of the 
plane three-body problem. Henon (1) performed an extensive investigation, involving numerical 
methods of constructing the solutions of differential equations of celestial mechanics, in particular, 
for Hill's problem. Froeschle carried out a systematic investigation of the surface section method 
and studied also the nature of some solutions of the system with two degrees of freedom. Danby 
(2) treated transformations extending the domain of convergence of power series representing the 
solutions of celestial mechanics equations. Yoshida (1) improved Hilmi's and Merman's criterions 
for the case of hyperbolic-elliptical motion in the general 3-body problem. The dynamic evolution 
in the general many-body problem was investigated by Saari (1) and Wielen (1). 

Finally, a few comments will be added bearing on Duboshin's investigations which may 
be related to analytical and qualitative celestial mechanics and which deal with the gener
alized problem of three- and w-bodies (material points and dimensional bodies) when the 
operating forces depend not only on the mutual distances but also on their derivative and on 
time. Here the conditions of the existence of the Lagrangian and Eulerian solutions are de
rived (Duboshin, 1) as well as those of the existence of the first integrals analogous to the classical 
ones (Duboshin, 2). 

Duboshin had also investigated the Lagrangian and Eulerian solutions in the three-rigid-body 
problem (in press). 

3. NUMERICAL CELESTIAL MECHANICS 

By means of numerical integration of differential equations for a time interval of considerable 
length Duboshin and his associates have investigated the problem of the dynamical stability of 
Orion Trapezium (Duboshin, 3; Rybakov, 1,2; Kalinina, 1,2; Kholopov, 1, 2) and have discovered 
that the system is stable in Lagrange's sense, the latter being at variance with the known Am-
bartsumyan's conception. 

Solovaya (1) has investigated the stellar problem of three-bodies for the case when one of the 
stars is very distant from the two others. Eneyev and his associates have studied numerically the 
evolution of a system containing a considerable number of stars (galaxies) due to the transition 
of a large star (Eneyev, 1; Kozlov, 1). Szebehely (4) has investigated numerically the influence of 
three material point masses on their motion. 

In the study of the solar system numerical methods are generally combined with analytical ones, 
for which reason such methods are called semi-analytical. Below some results of the application 
of these methods will be given. Brumberg and Chapront have developed an algorithm for the 
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electronic computation of the first order inequalities for the major planets in rectangular coordinates. 
This computational work is supposed to be completed in 1973. 

The second order corrections relative to planetary masses to the Leverier-Laplace theory have 
been obtained (Brumberg, 3; Yegorova, 1). A computational method has been derived for obtaining 
the planetary perturbations of the first and second orders on electronic computers (Boudnikova, 
1). A new version of Gylden's and Hansen's methods of specific anomalies has been worked out 
(Skripnichenko, 1) as well as a long-range modification of Brouwer's planetary method. 

A method for the numerical integration of the equations of celestial mechanics based on Encke's 
conceptions has been derived (Batrakov, 4; Makarova, 1). 

Krasinsky (3) has performed numerical integrations of the averaged motion equations of the 
major planets for 2000 years ahead. A joint integration of the motion equations of eight major 
planets has been carried out by Miachin (2). 

The programming of the literal theory of the Moon's motion by Kovalevsky's method has been 
accompolished. The first computations with an accuracy up to the ninth order relative to the 
small values have been carried out (Kovalevsky, 2; Meyer, 1; Bee, 1). 

A semi-analytical theory of the Moon's motion has also been constructed (Chapront-Touse, 
1). A numerical theory of the motion of Jupiter's ninth satellite has also been derived (Bee, 2; 
Edelman, 1; Polavieja, 1). Utilizing numerical methods and basing himself on a comparison with 
observational data, Bee (3) has defined more exactly the parameter values in the system of Saturn's 
satellites. Griffith (1) calculated the perturbations in the motions of the four inner planets caused 
by the five outer ones. 

Oesterwinter (1) and Cohen (1) obtained a new system of orbital elements for the Moon and 
the major planets. Numerical methods are widely applied in the theory of motion of artificial 
objects but the majority of the investigations of that kind are beyond the scope of celestial mechanics 
and therefore they are not listed and analyzed in this Report. 

Within the limits of celestial mechanics numerical methods are applied to astrodynamical 
problems mainly for checking the results obtained by means of analytical formulae as well as 
for finding the numerical values of the parameters of the systems under investigation by comparing 
analytical formulae with numerous observational data. On the other hand, numerical methods 
may also be applied in the numerical study of solutions of specific problems in celestial mechanics, 
such as the restricted problem three bodies in its astrodynamical aspect. In this respect, Kozai's 
publications are noteworthy. 

He investigated numerically both stationary and periodic solutions in the restricted problem 
(Kozai, 1) and suggested a new semi-analytical method for computing the lunar perturbations 
in the motion of an Earth's satellite. 

Kinoshita found numerically new types of periodic solutions both for the circular and elliptical 
problems of three bodies. Numerical methods were also applied widely by Bruno, Guillom and 
Markeyev in qualitative investigations reviewed in the second part of the present Report. Giacaglia 
(1) developed a semi-analytical theory of the motion of a lunar satellite. The collision orbits in 
the restricted three-body problem were derived numerically by Standish (1). 

Finally, numerical integration has found a considerably wide application in the theory of the 
rotational motion of artificial satellites. 
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