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AN ISODIAMETRIC PROBLEM WITH
LATTICE-POINT CONSTRAINTS

M.A. HERNANDEZ CIFRE AND P.R. SCOTT

The isodiametric problem in the Euclidean plane is solved for bounded convex sets,
which are symmetric about the origin, and which contain no interior non-zero point
of an arbitrary lattice L.

1. INTRODUCTION

Let L denote an arbitrary lattice in the Euclidean plane E2 with detL ^ 0. Let
KA denote the family of bounded convex sets K symmetric with respect to the origin 0
which contain no interior non-zero points of L, and which have area A. Let A(K) and
D(K) respectively denote the area and the diameter of K.

A classical theorem of Minkowski states that if K € K.A, then the area A = A(K) ^
4detL [2].

In 1979, Scott and Arkinstall [3] solved a lattice-constrained isoperimetric problem
in the Euclidean plane: for each allowable value of A find the set in KA of minimal
perimeter, in the case where L is the integer lattice Z2. In this paper, we solve the
corresponding isodiametric problem: for each allowable value of A find the set in fCA of
minimal diameter, but allowing L to be an arbitrary lattice.

Let H be the hexagon, centrally symmetric with respect to O and having no non-zero
lattice-points in its interior, which is constructed as follows.

Let G\ € L be a nearest lattice-point from the origin, and Gf 6 L its symmetral
with respect to O. Let T\ and rf be the straight lines through G\ and Gf respectively,
which are orthogonal to GfGi, and let S(r\) denote the slab bounded by those lines (see
Figure 1).

Now, let G2 £ L be a nearest lattice-point from the origin contained in the interior
of S(ri), and Gf € L its symmetral with respect to O, and r2, rf the lines through G2

and Gf respectively which are orthogonal to G|G2-
The parallelogram P bounded by the lines rx, rf, r2, rf may (or may not) contain

two lattice-points in its interior. If G3, Gf are lattice points interior to P, then let r3 and
rf denote the lines through G3 and Gf respectively which are orthogonal to GfG3.

Received 27th August, 1997

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 SA2.00+0.00.

289

https://doi.org/10.1017/S000497270003166X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003166X


290 M.A. Hernandez Cifre and P.R. Scott [2]

Figure 1: Hexagon H
The lines rt,rf (i — 1,2,3) determine the above hexagon H, which may possibly

degenerate to a parallelogram.
We next define a special set K*. Let Cr denote the circular disk centred at the

origin and having radius r, and let K* = H D Cr. The set K* is bounded, convex,
and contains the origin O but no interior non-zero points of L. We shall show shortly
(Lemma 1, Corollary 1) that A(H) = 4detL. It is clear that while K* is a proper subset
of H, the area A(K*) increases monotonically as r increases. It will follow that for each
A, 0 < A ^ 4det L, there is a unique value of r such that K* € KA-

We now state the main result of this paper:

THEOREM 1. For each K e KA, there exists K* € KA with D(K*)
Equality holds here when and only when K = K*.

The proof of the theorem will be established by the following lemmas:

D(K).

LEMMA 1. The vertices of the hexagon H lie on a circle centred at the origin.

COROLLARY 1. Tie area of the hexagon H is A{H) = 4detL. So, H is an
optimal set for Minkowski's Theorem.

LEMMA 2 . IfK,K*e KA then D{K*) ^ D{K).

LEMMA 3 . IfK,K*e KA, then D(K) = D{K*) if and only if K = K*.
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2. P R O O F S OF THE LEMMAS

P R O O F OF LEMMA 1:

Figure 2.

The six points ±20G{ (1 ^ i ^ 3) form the vertices of a lattice hexagon X. This
hexagon is partitioned into six congruent triangles by the three diagonals through the
origin. By construction, each vertex Vi of H is the circumcentre of one of these triangles.
Since the triangles are congruent, it follows that the six vertices are equidistant from 0,
and the result follows. D

From Lemma 1, D{H) - 2<2(Vr
i, O) for all i = 1 , . . . , 6; thus, all the vertices of the

hexagon H lie on the circle x2 + y2 = [D(H)/2]2. We observe in passing that each of the
points d, Gf (1 ^ i ^ 3) is the midpoint of the edge of the hexagon passing through it.

Corollary 1 follows by noting that the three diagonals of hexagon X partition H into
six quadrilaterals which are easily rearranged to fit into a fundamental parallelogram of
lattice 2L.

P R O O F OF LEMMA 2: From Minkowski's Theorem and Corollary 1, A(K) <
4detL = A(H). Since for any such value of A there is a set K* € K.A with
D(K') ^ D{H), we may asume that K lies within the disk CD{H)/2 • x2+y2 < [D(H)/2]2.

If K has any point in common with the circle CD(H)/2, then by the symmetry of K,

D(K) = D(H). As A(K) ^ A(H), we can clearly take a new convex set K* G KA, with

D(K') ^ D{K).

Hence, we may assume that K lies strictly in the interior of CD(H)/2-

Let r < D(H)/2 be the smallest positive real number such that CT D K.

As G{,Gf(i = 1,2,3) are not interior to K, there exist two parallel lines gt, gf

passing through G\ and Gf respectively, which bound a slab S(ffi) containing K.

Analogously, we can take parallel straight lines g2, g$ through G2 and Gf, and g3,

g$ through G3 and Gf respectively, defining slabs S(g2), S(g3) which contain K. We

notice that:

(i) If r < d(G\, O), then CT C H, and hence, the classic isodiametric inequality

gives the disk as the optimal set for the inequality A ^ nD2/4.

(ii) If d(Gi, O) <r ^ d(G2,0), we only take parallel lines through G\ and Gf;

in this case points G2, G3, Gf, Gf are not interior to Cr.
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(iii) Finally, if d(G2,0) < r ^ d(G3,0), we only take lines through Gu Gf, G2,
G2\ in this case points G3,Gf are not interior to Cr.

To allow for these cases, and to ensure that three slabs are always defined, for
i = 1 , . . . , 3 we define k to be the edge of the hexagon H through point G{. If G; is not
interior to CT, then we take S(gj) = S(lj) - the slab determined by the line along lj and

3

its symmetral in O. In this way P | S(gi) is well defined and never equal to the empty

set.

Then

KcCrn
\i=l

(see Figure 3).

Let 7 denote the circle which is the reflection of Cr in the line containing the edge
li of H (see Figure 3). Then 7 and CT meet on li at points E and F say. As OGi JL EF,

G\ is the midpoint of segment EF.

Henceforth, we shall use the shorthand notation < j4iy42^3 • • • At [ to denote the set
determined by a circular arc with endpoints Ai,A2, and the line segments A2A3,...,

Figure 3.

Using the notation of Figure 3, the set < P^EG\ \ is the symmetric reflection of

I PCFG\ \ with respect to G\ (because G\ is the midpoint of the segment determined by

hnCr).

On the other hand, it is clear that | P 7 £ ' G I | C IREGIQV Hence, we have
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and equality holds if and only if line gi contains the edge l\ of H, in which case the above
areas are equal to zero.

Carrying this out for each Gi (and Gf) for which this is possible (and taking into
account the previous notes (i), (ii) and (iii)), we obtain the inequality

( ' 3

A (crn(f]S(gi)))

Equality is attained here when and only when gi D li for each i, that is, when
3

•i=i

As K c Cr n f Pj S(gi) ), then

Thus, there is an r* ^ r and K* = H n Cr. for which K* € /C^ and D{K*)

This completes the proof of Lemma 2. D

P R O O F OF L E M M A 3: By Lemma 2, we may suppose that K c H.

We have K, K* £ K.A. Let r . be the radius of the disk CT, defining K* = HC\Cr..

If K ^ i("*, then JiT intersects at least two arcs of the circular boundary of disk Cr. •

Since K is centrally symmetric, D(K) is the distance from some point which is

beyond the arc of the circle Cr. (the farthest point from origin), to its symmetral with

respect to O. Then, D(K) > D(K') = 2r». Thus, the set K* is the domain with

minimum diameter when the area is fixed in the range (0,4detL] .

This completes the proof of Lemma 3, and establishes the Theorem. D

3. F I N A L C O M M E N T S

If we define JA{T) := A(H f~l Cr) , then as mentioned previously, JA{T) is an increasing
function of r. It follows that

and equality is attained precisely when K = K". This means that for each value of A(K)

we can theoretically obtain an inequality giving an upper bound for A(K) in terms of
D(K). However, in practice such inequalities are rather unpleasant. For example, in the
case of the integer lattice we have:

As the domain K is centrally symmetric with respect to O, the circumradius R(K)

of K satisfies R(K) — D(K)/2. So, we can state the following corollary:
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COROLLARY 2 . Let K be a. bounded convex set in the Euclidean plane E2, which
is symmetric about the origin O, but contains no non-zero point of an arbitrary given
lattice L in its interior. Let K have area A(K) and circumradius R(K). Then,

and equality holds if and only if K = K*, where K* &KA-

The following corollary is a consequence of the Theorem and Corollary 1.

COROLLARY 3 . The hexagon H/2 is the tile with least diameter that permits a
lattice-tiling of the plane E2.

PROOF: It is well known [1] that the only convex polygons which admit a lattice-
tiling in the plane are the parallelograms and the centrally symmetric hexagons with area
equal to det L.

If we consider the domain H/2, we have from Corollary 1 that A (H/2) — det L.
Hence, the family {H/2 + u, u e L} forms a lattice-tiling. Using the Theorem, we
inmediately obtain the result. D
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