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The concept of cleft extensions, or equivalently of crossed products, for a Hopf algebra
is a generalization of Galois extensions with normal basis and of crossed products for a
group. The study of these subjects was founded independently by Blattner-Cohen-Mont-
gomery [1] and by Doi-Takeuchi [4]. In this paper, we determine the isomorphic classes of
cleft extensions for a infinite dimensional non-commutative, non-cocommutative Hopf alge-
bra k,[X, X~!, Y], which is generated by a group-like element X and a (1,X)-primitive ele-
ment Y. We also consider the quotient algebras of the cleft extensions.

Throughout we work over a field k. Algebra, Hopf algebra, linear and ® mean k-alge-
bra, Hopf algebra over k, k—linear and ®;, respectively.

1. Preliminaries. In this section, we recall some fundamental definitions and results on
cleft extensions.

Let A be a Hopf algebra with coalgebra structure A, ¢. Fix an algebra C.

A right H—comodule algebra 4 (with H-comodule structure p: A — A ® H) is called an
H-cleft extension over C [2,p.41], if A contains C as coinvariant subalgebra; that is,
C={a€ A|p(a) =a® 1}, and if there exists a right H—comodule map ¢ : H — 4 which is
invertible in the convolution algebra Hom(H, 4) [10, p. 69]. In this case, ¢ can be chosen so
as to be unitary (¢(1) = 1) [4, p. 813]. A unitary invertible H—comodule map H — A4 is called
a section [3, p. 3056]. We call a pair (4, ¢) of an H—cleft extension 4/C and a section ¢ a cleft
system for H over C.

A morphism (isomorphism) f: A — A’ between H—extensions over C means a morphism
(isomorphism) of H-comodule algebras such that f(c) = ¢ for all ¢ € C. Denote by

Cleft(H, C)

the set of isomorphic classes of H-cleft extensions over C.

LEMMA 1.2. Let f: A — A’ be a morphism of H—extensions over C. If A/C is an H—cleft
extension, then A'{C is also an H—cleft extension and f is an isomorphism.

Proof. See the proof of [8, Lemma 1.3]

A cleft system (A, ¢) can be characterized as a crossed product. Explicitly, if (4, ¢) is a
cleft system, set

h—c=Y_¢tha)cd™ (ha), (ceC,he H)
a(h,g) =Y dlha)dEa)e™ (o), (h,g € H)

then (—, o) is a crossed system for H over C, and one can form a crossed product C#,H
which is an H-extension over C with structure map id® A : C#,H — CH#,HQ H [4], [1].
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In this case, C#,H — A, c#h— ce(h), is an isomorphism of H-extensions over C.
Conversely, if (—,0) is a crossed system, C#,H is the corresponding crossed product,
then id® A : CH#.,H — C#,H® H makes C#,H into an H-<cleft extension over C, and
¢ H— CH.H, h— 1#h, is a section. See [2] and [3]. These give a 1 — 1 correspondence between
the isomorphic classes of cleft systems and the crossed systems (both for H over C).

An H—cleft extension A/C is said to be twisted (respectively, smashed), if there exists a
section ¢ such that ¢(H) C A€ (respectively, ¢ is an algebra map), where A€ is the centralizer
of Cin A. See [3, p. 3056, p. 3059].

Throughout, the boldface letters N, Z, stand for nonnegative integers, all integers
respectively. U(R) denotes the group of units in an algebra R.

2. Cleft Extensions for k[X,X"!,Y]. Let k{X, Y, Z} be the non-commutative free
algebra on three variables. Then k{X, Y, Z} has a bialgebra structure determined by

AX)=X®X, e(X)=1,
AY)=1®Y+Y®X, §(Y) =0,
MZ)=2Z®Z, §Z)=1.

See [10, p. 89] or [8, p. 4543]. Now let 0 # g € k, then the two-sided ideal generated by XZ — 1,
ZX —1, YX — gXY, is a bi-ideal, and we have Z = X! in the quotient bialgebra, denote by
kq[X, X~', Y] the quotient bialgebra. k,[X, X~', Y] has an antipode determined by

SxX)y=x1' SxhHh=x SY)=-Yx'
For convenience, we write Hy, for k,[X, X~', Y.

LEMMA 2.1.
(1) Hy has a k-basis {X"Y™, n € Z, m € N},

(2) A(X"Y™) = Z:’;O(r:1> XY@ XY™ neZ, meN, where ('7) denote the q-
q
binomial coefficients (cf.[7,p. 74]).

Proof. Easy.
THEOREM 2.2. Let C C A be an Hy—extension. Then A is Hy—~cleft if and only if there
exist elements x and y in A with x € U(A) such that
p)=x®X and p()=10Y+y®JX.

If this is the case, we have:
(1) The map ¢ : Hy, — A, ¢(X"Y™) = x"y"(n € Z, m € N), is a section. The inverse is
given by
¢—1(Xn Ym) — (_I)mqm(m—l)/Zymx—(n+m), ne Z, m e N.

(2) A is a free left C—module with a basis {x"y™, n € Z, m € N}.
3) (px —gxy)x2 e C.
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Proof. See [S, Theorem 3.2].

Let (4, ) be a cleft system for Hy, over C, x = ¢(X), y = ¢(Y). Then x and y have
properties described in Theorem 2.2. Set

ac) = xex7,8(e) =y, cJx' e e C, and y = (yx — gxy)x~2,

then we have the following result.

LEMMA 2.3.
(1) a: C — C is an algebra automorphism.
(2) 8: C — Cis a (l,«)-derivation, that is, a linear endomorphism such that

8(cc’) = 8(c)a(c) + ¢8(c"), ¢, c eC.
(3) 8a(c) — gad(c) = ye*(c) — e(c)y.

Proof. 1t is a straightforward verification. If (—, o) is the crossed system induced from
(A, ¢), then a(c) =X — ¢, 8(c) = ¥ = ¢, and y = (a(¥, X) — go(X, Y))o(X, X)~". See [5],
(8].

DEFINITION 2.4. Let a,8 =€ End (C), y € C. The 3-tuple (@, 8, y) is called an Hy—cleft

datum over C, if the three conditions in Lemma 2.3 are satisfied. We denote the set of all such
data by

D=D(Hy, C)
Now let d = (e, 8, y) be an Hy,—cleft datum over C. Define F,,, n € Z, as follows:

F0=0»Fn=}’+q0‘(Fn—l),n>0. (a)
F,=—¢"a"(F_;),n < 0.

LemMma 2.5.
(1) Fo=Foy + ¢ a1 (y),Vn e Z.
Q) Foym = Fo+ ¢"d"(F), Vo, m € Z.

Proof. (1) We first prove it for n > 0 by induction on n. It is clear that (1) holds for n =0
and 1. Now suppose that n > 1 and F,_| = F,—; + ¢""2a""%(y), then

Fp=y+qa(Fuct) = v + ga(Foz + ¢ 2" 2(y))
=y+qaFu2)+ ¢ '\ (y) = Fout +¢" " ().

Thus (1) holds for all n > 0.
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Next, let n < 0, then
Fp=—q"&"(F_p) = —¢""' o (qa(F_y))

=—¢" ' N Fou1 —¥) (by (@)
= _qn—lan—l(F_(n_l)) + qn—lan—l(y)
= Fas1 + 47"l (y) (by (a)).

(2) If m = 0, it is trivial. If m = 1, this is the case (1). Now let m > 1, and suppose that
Foim-1 = F, + ¢"a"(F,,—1) holds for all n € Z. Then

Fuim = Frgmo + 4" 2" (y) (by (1))
=F,+ ¢"&"(Fp_1) + ¢ o™ !(y) (by induction hypothesis)
=Fp+ " Fmo + "' (y)
=Fu+q"o"(Fm) (by (1)).
Next, let m < 0, then
Fy = Fuymi(-m)
=Fpm+q""""™(F_,)  (by the case m > 0)
= Foim — 4" (—=q"o"(F_m))
= Fpim — 4" (Fn) (by (a)).

Hence F,y,, = F, + ¢"a"(F,), and so (2) holds.

LEMMA 2.6.
sa'(c) = g"a"8(c) + Fpa™t(c) — o*(c)Fp,Vc € C,n € L.

Proof. One can prove it for n > 0 by induction on n. If n < 0, then

8a(c) = o"(a™"8(a"(0))) = ¢ (g "™ 3(e"()))
= ¢"a"(Sa"(a"(c)) — F-_no " (&"(c)) + @~ "(@"(c))F_n) (by the case of n> 0)
= ¢"a"8(c) — §"o" (F_n)a" " (c) + ¢ ()" (F-n)
= ¢"a"8(¢) + Fue™ (c) — & (O)F,. (by ()

Now we can form an H..—extension of C for the cleft datum d = («, 8, y) as follows.

(1) Let By be the skew Laurent polynomial algebra Cx, x~!, o] on one variable x, that is
By= {3 i cix'|mneZ,m<n,c; € C} with the multiplication determined by xc = a(c)x
forallce C.

(2) Define @ : B; — By, cx"— ¢q"x", ¢ € C,n € Z, then @ is an algebra automorphism.

(3) Define § : By — By, ex"+ (cF, + 8(c))x"*!, c € C,n € Z, then § is an @-derivation of
B, by the following Lemma 2.7.

~ (4) Define 4, to be the Ore extension B, [y, @, §] with one variable y attached to the data
(Bs, @, 8) (cf.[7, Theorem 1.7.1]), then Aq is a free left C-module with a basis {x"y",n € Z,
m e N}
(5) Define
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m
pd: Ag > Ai®Hy, cX'y" > Z(;")qcx"yi @ X™y"i ceCneZ,meN,
=0
g Ho = Ag, X'Y">X"y" neZ,meN.

LEMMA 2.7. Let By, @, 8 be as above. Then § is an @-derivation of B,.

Proof. Note that By = @,c7Cx" as a k-vector space, hence § is well-defined. Now for
anyc,d e C,nmelZ,

8((ex™)(c'x™) = 8(ca"(c)x"+™)

= (c@"(¢) Fym + 8(ca™(c)))x+m+! (by Definition of §)
= (ca"(¢")Fpym + c8"(c') + 8(c)a™ ! ()" (by Definition 2.4)
= (ca(c'V(Fy + ¢"&"(Fp)) + cda"(c)

+ 8(c)a" () xHmH] (by Lemma 2.5(2))

= (¢q"a(¢'F) + (8" () + o"(¢')F,)
+ 8(c)a I (¢ )) !
= ¢q"xX"¢ Fpx™ + c(q"a"8(¢) + Fua™(c))x" ! ‘
+ 8(c)a™H ()t (by Lemma 2.6)
= ¢q"(X"¢' Fru + &"8(c')x")x"*!
+ (cFy + 8(c))a™ ! ()t
= ¢q"X"(c'Fo + 8(c)X™H + (cF, + 8(c))x™H e x™
= @(cx3(c'x™) + 8(cx")(c'x™).

THEOREM 2.8. Let Ay, p4, $a be as before. Then
(1) pg makes Ay into an H,—extension over C.
(2) ¢a is a section, the inverse is given by

¢;l(Xn Ym) — (_l)mqm(m—l)/Zymx—(n+m), ne Z, me N,
consequently, (Ag, da) is a cleft system for Hy, over C.
Proof. (1) Set

p:Bi—> Ag @ Hy,cxX">exX"® X", ce C,neZ,

then p is well-defined. One can easily check that p is an algebra map, p(c) = ¢ ® 1, p(@(cx")) =
a(cx")@X" and p(3(cx")) = 8(cx") @ X"t forallc € C,n € Z. Leté=1® Y+ y®X € Ay® Ho,
then
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Eo(cxX) =10 Y+y @ X)(cex" ® X7)
=cx" Q@ YX" + yex" @ X!
=cx" @ ¢"X"Y + @(cx)y + 8(cx")) ® X!
=a(ex) @ XY + a(cx")y ® X" +3(cx") ® X!
— @)@ X1 ® Y+ y® X) + 3(cx") ® X!
= p(@(cx™))€ + p(8(cx")).

Thus by the following Lemma 2.9, there is a unique algebra map p: Ay = B[y, w8 —
Ay ® Hy, such that p(y) = 1 ® Y + y ® X and the restriction of p on By is equal to p. In this
case,
plex"y™) = plexp(y™) = plex")p(y)™
=(x"@XNIRY+yX)"
= Z(;”)qcx"y" QX"HY"  ceC,neZ,meN,
i=0

hence p = pg, and so py is an algebra map.

Next, it is clear that (id®e¢)ps=id. So as to prove the equation (pg® id)py =
(id ® A)pg, note that each side of it is an algebra map from 4, to 4; ® Hy ® Hy, and that
Ag is generated by C,x,x”' and y as an algebra. Therefore it suffices to prove
(pa ® id)pg(a) = (id® A)pg(a) for a=x,a=x"",a=y and for all a € C, but it is an easy
verification. Finally, it is clear that the coinvariant subalgebra of Agqis C.

(2) It follows immediately from Theorem 2.2 since

pi(x)=x®X and p,()=1®Y+y®X.

LEMMA 2.9. Let R, E be algebras, f: R— E an algebra map, «,8 € End(R), & € E.
Assume that « is an algebra map, § is an a—derivation. If the 4—tuple (f, a, 8, §) satisfies:

§/(r) = f(a(r)E +f(8(r)), Vr € R,

then there exists a unique algebra map f: R[t,a, 8] — E such that f(t) = & and the restriction of
fon R is f, where R[t, a,é] is the Ore extension attached to the data (R, a, ).

Proof. Let B, be the linear endomorphism of R defined as the sum of all (%) possible
compositions of m copies of « and of n — m copies of §, then

f'r = Zﬁ,,,,,,(r)t’", n>0,reR.

m=0

See [7, Corollary 1.7.4(7.9)]. Similarly, one can prove by induction on » that the relation

EL0) =Y fBum(r)E"

m=0
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holds for all r € R, n > 0. Set

FRLa s> B rdes 3 0,

i=0

then]is a well-defined linear map. Now forany r, ¥ € R, n,n' > 0,

FCOE TN =F (3 meorBam@H™ )
=3 o S B NE
=3 n o S BumNE"E"
= fES (N =TT,

hence f is an algebra map. It is clear that f(#) = £ and f(r) = f(r) for all r € R. The uniqueness
is trivial.

By Lemma 2.3, for any cleft system (4, ¢), there is a corresponding cleft datum (e, §, y)
defined as before Lemma 2.3. In particular, for a given cleft datum d = (e, §, ) one can
easily prove that the cleft datum induced from the cleft system (44, ¢4) is exactly the given
cleft datum 4. B

THEOREM 2.10. Let (A, ¢) be a cleft system, d = («, 8, v) the corresponding cleft datum.
Then A = A4 as Hy.~extensions over C.

Proof. Let x;=¢(X ), yi=¢(Y), then a(c) =x1ex7!, 8(c) =[y1, c]x7!, y=(ix1 —gxiy)x?
and xj, y; have properties described in Theorem 2.2.
Note that the Larent polynomial algebra k[X, X~!] is a Hopf subalgebra of Hy. Set

B=p"'(4Q@k[X, X']),

where p is the structure map of the comodule algebra 4, then B is a subalgebra of 4 and
p(B) C B®k[X, X~!]. It follows that B is a Z-graded algebra and B, = {b € B|p(b) =
b X"} ={a€ Alp(a) =a® X"},n € Z. One can easily check that B, = Cx, n € Z. Since
a(c) = xjexy!, x1¢ = a(c)x) in B, hence the linear map

Bg—-> B, cox"mcex{,ceCnel,
is an algebra isomorphism which induces an algebra injection from B, to A by the com-
position

f:By— B—A.

Now one can prove in A4 that (cf.[8, Lemma 2.11])
X =q¢'xXy+ Fxitnek,
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where F, is defined as in (a) by «, y. Hence in 4 we have

i f(ex®) = yrext =D, elx] + epix]
= 8(e)x{t + c(g" Xy + Fuxt)
= cq"¥iy1 + (cFu + 8(c))x}*!
= f(cq" X"y + f((cFy + 8(c))X™)
= f@(cx")y +f(@(cx"), ce C,n e Z,

it follows from Lemma 2.9 that f can be uniquely extended to A4, that is,
fiAg— A cx">cx, yoy,ceConel,

is an algebra map. Clearly, f is a morphism of H.—extension over C, and is bijective by
Lemma 1.1 or Theorem 2.2(2).

THEOREM 2.11. Let A be an algebra containing C as a subalgebra. Then C C A is an
H~cleft extension if and only if there exists a cleft datum d such that A/C = Ay4/C, that is,
there is an algebra isomorphism f: A — Ay with f(c) = c for all c € C.

Proof. It follows from Theorem 2.8 and 2.10.

THEOREM 2.12. Let d= (v, 8,y) and d' = (¢, 8, y]) be Hy— cleft data over C. Then
Ag = Ay as Hy,— extensions over C if and only if there exist a € U(C) and b € C such that

(1) o(c) = aa(c)a™',
(2) §(c) = (8(c) + ba(c) — cbya™!, (b)
(3) v =(ay+bo(a) + 8(a) — gac(b))(aa(a) .

Proof. Assume that f: 43 — Ag is an isomorphism of H,—extensions over C. Set
a=f)x" b=(f0) -y,
then one can prove that a € U(C), b € C, and the conditions (1)-(3) hold.
Conversely, suppose that there exist a € U(C) and b € C such that the conditions (1)—(3)
hold. Set
fi1By =ClX, X dl— Ag, cx"—>c(ax)",ce C,n e Z,
one can easily prove that f'is an algebra map with f(c) = ¢, f(x') = ax, ¢ € C. We claim that

O +bx)f(r) = f@ (Y + bx) + fE () ©

holds for any r € By First, if the relation (c) holds for ry, r; € By then
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(y+bx)f(rir2) = (y + bx) f(r1) f(r2)
= (f((rO)y +bx) + f(&F(r) S (r2)
= (& (r))(y + bx) f(r2) + (& (r1)r2)
= f((r))f (@ (r))(y + bx) + (& (r2))) +f (5 (ri)r2)
= (' (r)&(r))(y + bx) + f(&(r)8'(r2) + &(r1)r2)
=f((rir))(y + bx) +f(&(rir2)),
that is, the relation (c) holds for ryr;. Next, a straightforward verification shows that the
relation (c) holds for r = X', r = x'~!, and for all r € C. Finally, since By is generated by
C,x',xX'~! as an algebra, the relation (c) holds for all r € By It follows from Lemma2.9
that there is a unique algebra map f: Ag — Ag4 such that f(c) = ¢, c € C, f(X') = ax, and

F(¥) =y +bx. One can easily check that f is a morphism of H-extensions over C. By
Lemma 1.1, f must be bijective.

LEMMA 2.13. Let d = (e, 8, y) be a cleft datum for Hy, over C,a € U(C), b € C. Define
o, 8,y by (b) in Theorem 2.12. The d' = (¢, &, y/) is also a cleft datum for Hy, over C.

Proof. Consider Aq, set x; = ax, y1 = y+ bx, then x| € U(4g4), y1 € Ag, and pg(x1) =
x1 ®X, pa(y1) = 1 ® Y +y1 ® X. Define

¢:Hoo—>A4,X"Y'"i—~>x']'y’l",neZ,meN,

then by Theorem 2.2, ¢ is also a section for A4. A straightforward computation shows that
o(c) = x1ex7!, 8'(c) = [yr, Jx7' and y’ = (y1x; — gx1y1)x72. Hence d’'=(¢/,8,y’) is
exactly the cleft datum induced from the left system (Ag4, ¢).

By the proof of Theorem2.12, we know that if f: Ay — A4 is an isomorphism of
H—~extensions over C, where d = (,8,y) and d’ = (¢/, 8, y') are cleft data, then there
exist @ € U(C) and b € C such that

f&)=ax, f()))=y+bx,

and d, d’, a and b satisfy the three relations in (b). Now let d” = (¢, 8", y”) be another cleft
datum, if g: Agn — Ay is also an isomorphism of H.—extensions determined by a pair
(s, 1) € U(C) x C, that is

gx"y=sx', gy =y +ux’,
then the composition fg : Ag» — A4 is determined by the pair (sa, ta + b), that is,

(fe)(x") = sax, (fe)(y")=y+(ta+b)x.

The group U(C) acts on the additive group C by the right multiplication. So we have the
group U(C) x C of semi-direct product with the multiplication (cf. [8, p. 4553])

(s x H)(ax b) = sax (ta+ b).
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Thus from the above discussion and Theorem 2.12 we have

COROLLARY 2.14.
(1) U(C) x C acts on the set D from the left with the action

d’ = (ax by

defined by (b).
(2) Suppose d,d’ € D. Then Ay = Ay, if and only if d and d’ are U(C)x C-equivalent.

THEOREM 2.15. d— Ay gives a I-1 correspondence between the set U(C)xC\ D(Hy, C)
of U(C)x C-orbits in D(Hy, C) and the set Cleft(Hy, C) of isomorphic classes of Ho—cleft
extensions over C.

Proof. It follows by Theorem 2.10 and corollary 2.14(2).

Note that for any y € C, (1, 0, y) is a cleft datum if and only if y € Z(C), the center of C.
Let o be an algebra automorphism of C,§ a (1, @)—derivation of C, then (a, 8,0) is a cleft
datum if and only if o = gaé.

Let d = (@, 8, y) € D, then ¢p4(Hs) C AS if and only if @ = 1 and § = 0; ¢, is an algebra
map if and only if y = 0. Thus by a method similar to [8, Prop. 2.24], we have

PROPOSITION 2.16. Let d = (a, 8, y) € D. Then
(1) Ay is twisted if and only if there exist a € U(C), b € C such that

a(c) = aca™', c)=1[b,cla”!, ceC.

(2) Aq is smashed, if and only if there exist a € U(C),b e C such that y = qa(b) +
(8(a) — ab)a(a)™".

3. Quotient Algebra of 44. In this section, we write 4(d, C) for 44, d € D(Hy, C).

Let s be a multiplicative set in C. Then s satisfies the right Ore condition cs()dC is
nonempty for all ¢ € C and d € s, while s is right reversible if dc =0,c € C,d € s implies
cd =0 for some & € s. A right Ore set is any multiplicative set satisfying the right Ore con-
dition, while a right denominator set is any right reversible right Ore set [6, p. 144].

Let s be a right Ore set in C, set

t:(C) = {c € C|ed =0 for some d € s},

then #,(C) is an ideal of C.
Let s be a right denominator set of C, then there exists a right quotient algebra Cs™! of C
with respect to s [6, Theorem 9.7], that is, there is an algebra map 6 : C — Cs~! such that:
(a) 8(d) is a unit of Cs~! for all d € s.
(b) Each element of Cs™! has the form 6(c)6(d)™" for some c € C,d € s.
(c) kerd = ,(C).
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If s consists of regular elements of C, then ker8 = #,(C) = 0. In this case, C is a sub-
algebra of Cs™! regarding 6 as embedding, and each element of Cs™! takes the form cd~! for
somec€ Candde€s.

Throughout the following, assume that s is a right denominator set in C, and that
6: C — Cs™!is a right quotient algebra of C with respect to s.

LeEMMA 3.1. Assume o : C — C is an algebra automorphism. If a(s) = s, then there exists a
unique algebra automorphism oy of Cs™' such that a8 = Bc.. Furthermore, if §: C — Cis a
(1, a)- derivation then there exists a unique (1, ag)— derivation 8y of Cs™! such that 8,6 = 68.

Proof. Assume « is an aégebra automorphism of C with a(s) = s. One can easily check
that the composition C % C % Cs~! also makes Cs™! into a right quotient algebra of C with
respect to s. It follows by [6, Corollary 9.5] that there exists a unique algebra isomorphism
ap : Cs™! — Cs7! such that apf = fa. Furthermore, assume 8 is a (1,a)— derivation of C. We
claim that ¢(C) is é-stable, i.e. §(t;(C)) C t;(C). In fact, let ¢ € ¢;(C) then cd = 0 for some
d € s. Therefore

0 = 8(cd) = 8(c)(d) + c8(d).

However ¢8(d) € t,(C) since #,(C) is an ideal of C, so c5(d)d’ = 0 for some d’ € s, and hence
8(c)a(d)d’ = 0. But a(d)d’ € s, so §(c) € 1;(C), and then it follows that ¢,(C) is 8- stable.
Now if 8 is a (1, ag)- derivation of Cs™! with 8,8 = 65, then for any ¢ € C,d € s, we have

0 = 8o(1) = 88 ™") = 86(8(d))to(8(d)™") + O(d)So(B(d) ™)
= 0(8(d))(oB(d)) ™" + B(d)So(8(d)™")
= 8(8(d))0((d)) ™" + 6(d)do(0() ™),

therefore, 80(6(d)™") = —6(d)™'6(8(d))0(c(d)) ™', and s0
80(6()6(d)™") = 80(B(c))exo(0(d)™") + 6(c)80(6() ™)
= 0(3(c)B(e(d) ™" — 6(c)8(d)™' O(3())B(e() ™"
It follows that 8 must be unique. As to existence, let us define 8, € End(Cs™!) by
80(6(c)0(d)™") = 6(8(c))B(edd))™" — B(c)O(d)™'6(8(d)B((d)~!, ceC,des.

A tedious and standard verification shows that &y is well defined, and is a (1, «g)—derivation
of C,. Clearly, 8,8 = 64.

LeMMA 3.2. Let d = (e, 8, ) € D(Hy, C) with a(s) = s, aq, 8 as in Lemma3.1, yy = 6(y)
in Cs~'. Then dy = (ao, 80, Vo) is a cleft datum for Ho, over Cs™! ie. dy € D(Hy, Cs7h).

Proof. By Definition2.4 and Lemma3.1, we only have to prove that the equation

Soo(p) — qodo(p) = ¥ (p) — ao(p)yo holds for any p € Cs™'. In fact, let p = 6(c)6(d)™",
ce C,des, then
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80cto(6()0(d) ") — qatodo(B(c)B(d) ™)
= 80(6((c))B(a(d)) ™) — q[8(e8(c))B(e(d)) ™" ~ B(ex(c))B(old)) ™" B(erd(d))B(er* ()™ ]
= 0(60(c))8(e*(d)) ™" — B(cx())B(ce(d))™' B(8cx(d))B(e(d)) ™!
— q[6(c3(c))B(e(d)) ™" — B(e(c))B(e(d)) ™' Blexd(d))P(eP () "]
= 0(8ac) — qad(e))0(e*(d) ™ — 8(e(c))0(ee(d)) ™" O(Be(d) — qrd())B(e* ()™~
= 0y (c) — a)V)O(* (@)~ — OB d) ™' 8(ye’ (d) — a(d)y)Be(d)) ™
= O ™") = ao(B(0)8(d) ™ Yo
THEOREM 3.3. Let d=(a,8,y) € D(Hy, C) with a(s)=sanddy

D(Hy, Cs™') asin Lemma 3.2. Then's is also a right denominator set ofA(d, 0),

= (Olo, 80, v0) €
n
is a right quotient algebra of A(d, C) with respect to s; i.e. A(dy, Cs™') = A (d, C)s~

(do, Cs")

Proof. Let F,(n € Z) be as in (a) for d over C, then

{ 6(Fo) =0, 6(F,) = yo + qao(6(Fp-1)),n > 0
0(F,) = —q"ag(6(F-p)), n < 0.

Thus by the structure of 4(d, C) and 4(dy, Cs™') as in §2, 6 can be uniquely extended to an
algebra map 8 from A(d,C) to A(ds, Cs~') such that 8(x) = x and 8(y) = y. Clearly,
6(d) = 6(d) 1s a unit of A(do, Cs™') for all d€s. Note that A(d,C) = Byly,@,8] and
B, =Clx,x!,a], A(d, C) is also a free right C-module with a basis {y’"x" n€Z,meN}
since o and @ are automorphisms. Similarly, A(dy, Cs™") is a free right Cs~'-module with a
basis {y x",n€Z,meN}. It follows that each element of A(dy, Cs~') has the form
8(r)6(d)”™! for some r € A(d, C) and d € s, and that ker = ,(4(d, C)) by [6, Lemma 9.2(a)}.
Hence A(do, Cs™') is a right quotient algebra of A4(d, C) with respect to s, and s is a right
denominator set of A(d, C). This completes the proof.

Note that the algebra map 6 : A(d, C) — A(do, Cs™ 1Y is also a right Hy—comodule map,
Le. pdoo = (6 ® id)pg. It can be easily seen that ¢y = ¢a, and ¢d = 6¢;". Thus using crossed
products, we can present Theorem 3.3 as follows.

THEOREM 3.4. Let (=, o) be a crossed system for Hy, over C. If X — 5 = s, then — can be
uniquely extended to a weak action — of Hy, on Cs™' determined by

X = 6(c)f(d)" = 6(X = )p(X = )",
Y = 908~ =6(Y = )b(X —~ d)~' = 8(c)o(d)”'6(Y =~ d)p(X —~ o),
and (—, 80) is a crossed system for Hy, over Cs™\. In this case,
6: CHsHo — Cs oo Hoo cith—0(c)#th, c€ C,h € Hy,

is a right Hy,~comodule algebra map, and  makes Cs™"#¢yHy, into a right quotient algebra of
C#,Hy with respect to s; that is,

Cs™ '"Hos Hoo = (CHoHoo)s ™.
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Recall that C is an integral domain if the product of nonzero elements is always nonzero.
An integral domain C is a right Ore domain if the set s of all nonzero elements of C satisfies
the right Ore condition. In this case, Cs~! exists, which is a division algebra, usually denote it
by Q(C). Thus as corollaries we have the following results.

COROLLARY 3.5. Let C#,H, be a crossed product. If C is a right Ore domain, then there

exists a unique crossed product Q(C)#,H, containing CH,H. as a subalgebra, and
Q(C)Y¥oHeo = (CHoHoo)s™!, where s = C\ {0}.

COROLLARY 3.6. Let A/C be an Hy—cleft extension. If C is a right Ore domain, then
s=C\ {0} is a right denominator set of A, and As™' is an Hu—cleft extension over

Q(C).
Note that the left versions of all above results still hold.

THEOREM 3.7. Let A/C be an H—cleft extension. Then

(1) If C is prime, then so is A.

(2) A is an integral domain if and only if C is an integral domain.

(3) A is right (respectively left) Noetherian if and only if C is right (respectively left)
Noetherian.

Proof. If A is an integral domain, it is clear that C is also an integral domain. By Theo-
rem 2.10, we can regard A = A(d, C) for some cleft datum d = (a, 8, y). If follows by the
structure of 4(d, C) or Theorem 2.2 that any element z of 4 can be uniquely expressed as a
finite sum z = ZneZ,meN CamX'y”, where ¢, , € C and almost all ¢, ,, =0, and that z € C if
and only if ¢,,, = 0 for all n # 0 or m # 0. Henceby, if I is a right ideal of C, then /4 is a
right ideal of 4 and 14 = ®uez menIx"y™. So IAN C = I. On the other hand, since @ and &
are algebra automorphisms, A4 is a free right C—-module with the basis {y"x",n € Z, m € N}.
Thus a similar argument shows that if I is a left ideal of C then A7 is a left ideal of 4 and
AI'N C = I. It follows that if A is right (left) Noetherian then C is also right (left) Noetherian.
The rest follows from [9, Theorem 1.2.9 and 1.4.5].
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