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SUMMARY

Methods of statistical analysis are presented for one or more dilution series
experiments where the quantity of interest is the number of virus particles re-
quired to infect a cell. These methods are illustrated on several data sets drawn
from the literature. Data from seven series, which have been used to support a
two-particle model in the literature, are here shown to reject such a model de-
cisively, whereas fifteen other experiments are found to be in excellent agreement
with a one-particle model.

INTRODUCTION

A fundamental question that has been of interest in virology for some time is
the number of virus particles required to infect a cell. A straight line relationship
between concentration of virus innoculated and number of plaques observed is
usually taken to be evidence for a single particle (Dulbecco, 1952; Dulbecco &
Vogt, 1954; Khera & Maurin, 1958; Kjellen, 1961; Cooper, 1961; Boeye, Melnick
& Rapp, 1966). If two particles are required, the relationship between plaque
count and dose is quadratic. In general, if h particles are required to form a
plaque, the number of plaques is proportional to the kth power of the concen-
tration (Dulbecco & Vogt, 1954; Cooper, 1961; Boeye et al. 1965). Where evidence
concerning linearity or non-linearity has been presented, it appears to have been
assessed by examining visually graphs of concentration versus observed plaque
count, or by presenting estimates of h. No quantitative or statistical assessment
of the strength of the evidence in this regard appears to have been made.

The effort and expense involved in a thorough statistical analysis will usually
be negligible in comparison with that required to obtain reliable data. It therefore
seems only reasonable that, when observations have been carefully made, a
complete analysis should be undertaken in order to extract the maximum amount
of information from them.

It is the purpose of this paper to present appropriate methods of statistical
analysis. The necessity of a statistical analysis is demonstrated on data which
have been taken to support a two-particle model in the literature but which are
here shown to reject such a model decisively. Hence these methods can sometimes
detect departures from the predicted relationship that are not apparent from
visual inspection alone.
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THE MATHEMATICAL MODEL
Suppose that there are 1c successive dilutions of an initial viral concentration by

a dilution factor d, giving k+1 concentrations in proportion to \:d~x:d~2:... :d~k.
The assumptions usually made are that it requires h particles to infect a cell;
that the initial concentration of virus particles is not too great; and that the virus
particles are randomly distributed among the cells on the plate. It can then be
shown that the theoretical or expected plaque count at dilution level j (concen-
tration d~>) will be

v(d~i)h = vd>,

where v is the expected number of plaques arising from the undiluted suspension,
and 0 = d~h (Dulbecco & Vogt, 1954; Cooper, 1961; Boeye et al. 1966). Further-
more, it follows from the same assumptions that the actual plaque count, which is
subject to random fluctuations about this expected value, will follow a Poisson
distribution (Reid, Crawley & Rhodes, 1949; Kjellen, 1961; Cooper, 1961; Boeye
et al. 1966; Fisher, 1970, 54-63). The probability of observing yt plaques at level
j is then

{vdifi exp ( - vd>)[yj!.

This model was used by Ailing (1971). If there are n}- separate flasks or plates at
dilution level j , then «/3- will be used to denote the total number of plaques on all
7ij plates, and vdj will be replaced by rijVdK

The statistical analysis presented in the following sections flows from the above
model. The quantity of interest is h, the number of particles required to form a
plaque. The quantity v is not usually of interest, and is eliminated from the
analysis by the technical device of conditioning on the total plaque count over all
dilutions. The analysis is then based on the fact that the maximum likelihood
estimate of h has approximately a normal distribution. For justification and
mathematical details see Kalbfleisch & Sprott (1974).

STATISTICAL ANALYSIS OF A SINGLE SERIES

Define yp rip d, h, and 6 = d~h as above, and let log d denote the natural
logarithm of d. The following quantities enter into the analysis:

(1)

(2)

(3)

(4)

B = no + n1d + n.i6
2+...+n,.6k;

A = n1d + 2n2d
2+...+1cn,.dk;

D = 7^6 + 22n2d
2 +...+ lchih.d

k\ ]

I = X(DB-A2) (logdfjB*.
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Table 1. Analysis of plaque counts from Boeyi et al. (1966)

29

late

1
2
3
4
5
6
7

0

122
176
170
266
264
306
186

Dilution level

1

10
10
19
40
38
42
22

2

2
4
2
5
4
3
2

h

2-0280
2-1085
1-9116
1-6755
1-7303
1-8076
1-8889

/

19-63
25-18
32-34
70-54
64-88
67-63
36-58

(h = 2)

0124
0-544

-0-503
-2-725
-2172
-1-582
-0-672

(h = 1-8199)

0-922
1-448
0-521

-1-213
-0-722
-0-101
0-417

The first step in the analysis is the computation of h, the maximum likelihood
estimate (M.L.E.) of h. This is the value of h which is best supported by the data
in the sense that, when h = %, the probability of the observed plaque counts is
as great as it possibly can be under the model. The estimate % may be obtained
by solving the equation 8 — 0 using the procedure described in the Appendix.
For discussions of maximum likelihood estimation, see Finney (1964, p. 80) and
Kempthorne (1969, p. 167).

If X, the total plaque count over all dilutions, is not too small, then the maxi-
mum likelihood estimate % will have approximately a normal distribution with
mean h and variance 2"1, where / is the value of / computed from (4) using
h = h. Hence the quantity u defined by

u = (5)

will have approximately a standardized normal distribution (a normal distribution
with mean 0 and variance 1), for which tables are readily available. In order to
determine whether a proposed value of h is consistent with the data, the corres-
ponding w-value is computed from (5) and is compared with the tables. An
improbably large or small (negative) value of u provides evidence against the
proposed value of h. An approximate 95 % confidence interval for h is given by
% ± 1-96/̂ /2, this being the set of A-values for which u lies within the central 95 %
of the standardized normal distribution.

Example. Columns 2, 3 and 4 of Table 1 give plaque counts from Boeye et al.
(1966, Table 4), which were taken as supporting a two-particle model (h = 2).
There are three dilution levels (k = 2), the dilution factor d is ^/lO, and each plaque
count is the total over w3- = 2 plates. The fifth column gives h for each isolate,
computed as in the Appendix. Column 6 gives 1, which is computed from (4)
with h = %. Column 7 gives the value of u for each isolate as computed from (5)
with h = 2. Isolates 1, 2, 3, 6, and 7 are now seen to be consistent with h = 2
because the corresponding values of u are reasonable ones (within the central
95% of a standardized normal distribution). However, isolates 4 and 5 yield u-
values which differ from zero by more than 1-96, and therefore contradict the
assumption that h is 2.

The last column of Table 1 gives the value of u for each isolate as computed
from (5) using h = 1-8199. These values will be used in the next section.
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COMBINATION OF DATA FROM SEVERAL SERIES

Given the results of r dilution series experiments, such as the seven isolates of
Table 1, two questions will be of interest. First, one will wish to know whether the
data are homogeneous; that is, whether there exists a single value of h which is
compatible with the data from all r experiments. Secondly, assuming a common
value of h, one will wish to combine the data from the r experiments to give a
single estimate of h, or to test some theoretical value such as h = 2 in the preceding
example.

Combination of the data

The overall maximum likelihood estimate of the common value of h in r experi-
ments can be obtained easily on an electronic computer. However, the following
analysis is computationally much simpler, and will give almost identical results
provided that the total plaque count X is fairly large in each experiment.

Let the M.L.E. of h in the ith experiment be denoted by ht, with approximate
variance If1 as calculated in the last section. An overall estimate of h may be
obtained as a weighted average of the individual estimates:

f (6)

(7)

This has approximately a normal distribution with mean h and variance
Hence the quantity

z = (K-K)42lt

has approximately a standardized normal distribution, and may be used to assess
an hypothesized value of h on the basis of the combined data from all of the
experiments.

Heterogeneity of the data

To test for heterogeneity in the data, compute

X2 = StiJ, where ut = (%t-h) <Jlt. (8)

Under the assumption of homogeneity, %2 has approximately a chi-square dis-
tribution with r — 1 degrees of freedom, and this distribution is extensively
tabulated. An improbably large value of x2 would show that there was no single
value of h which was compatible with the data from all r experiments.

Example (continued). The values from Columns 5 and 6 of Table 1 may be
substituted in (6) to give the weighted average h = 1-8199, with variance

1 = (316-77)-1.

The values uv u2, ...,u1, computed from (5) with h = 1-8199, are given in the
last column of Table 1, and their sum of squares is x2 = 5-395. The value of x2

is a very probable one, lying close to the 50 % point of a chi-square distribution
with 6 degrees of freedom, and hence there is no evidence of heterogeneity among
the seven isolates.

To determine whether the combined data of all seven isolates are consistent
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with the two-particle model, set h equal to the theoretical value 2. Then (7)
gives z = —3-205. The chance of obtaining a value so far from zero in a stan-
dardized normal distribution is less than 0-003, and hence the combined data from
all seven isolates are incompatible with the two-particle model.

It is perhaps not obvious from a visual inspection of the estimates of A in
Table 1 that the combined experiment provides such strong evidence against the
theoretical value h = 2. In fact, it has been concluded elsewhere in the literature
that these data support the two-particle theory. This example shows the need for
quantitative methods, without which the strength of the evidence cannot ade-
quately be assessed.

Further analysis may be undertaken in an attempt to determine the reason for
the departures from the two-particle model. The assumption of a Poisson dis-
tribution can be checked statistically and appears to be satisfactory. The possi-
bility of a one-particle model is easily ruled out because h = 1 is even more
decisively rejected by the data than h = 2. Indeed, no integer value of h is
compatible with the data. A possible explanation is that generally two particles
are required to form a plaque, but there is a small probability that one particle
will suffice.

DATA CONFORMING TO A ONE-PARTICLE MODEL

In the preceding example, the dilution factors and numbers of dilution levels
were the same in all seven isolates. For a more complex example, data from
r = 15 dilution series experiments were taken from the following four easily
accessible sources:

(1) Dulbecco (1952); (2) Dulbecco & Vogt (1954);

(3) Khera & Maurin (1958); (4) De Maeyer (1960).

The plaque frequencies and dilution factors for these 15 experiments are recorded
in Table 2 according to their source. The numbers of plates used are given in
parentheses. For instance, in experiment (2d) the dilution factor d was 3, and
there were three dilution levels (k = 2). At dilution level 0 there were 2 plates
with a total of 46 plaques; at level 1 there were 6 plates with a total of 61 plaques;
and at level 2 there were 10 plates with a total of 36 plaques. The remaining
dilution levels 3, 4, 5, and 6 were not used in experiment (2d).

The second column of Table 3 gives h for each of the 15 experiments computed
as in the Appendix. The calculations may be performed by desk calculator in a
few hours, or by electronic computer in a few seconds. For the latter, all that is
required is a routine to evaluate S and / as denned by (3) and (4). The calculations
outlined in the Appendix can then be carried out by repeatedly applying this
programme.

The third column of Table 3 gives the value of / when h = % for each of the
fifteen experiments, and column four gives the value of u for each experiment,
computed from (5) using the theoretical value h = 1. All fifteen values of u lie
within the central 95 % of a standardized normal distribution. Hence each indi-
vidual experiment is compatible with a one-particle model, and this agrees with
the conclusions reached in the literature.
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Table 2. Plaque counts and numbers of plates used in fifteen experiments

Experiment

(1) a
b
c
d
e

(2) a
b
c
d
e

(3) a
6
c

(4) a
6

Dilution level

0 1 2 3 4 5 6

297 (2) 152 (2) — — — — —
112 (2) 124 (7) — — — — —
79 (1) 23 (1) — — — — —
50(1) — 12(1) 2 (1) — — —
26 (1) 10 (1) — — — — —

305 (3) 238 (4) — — — — —
47 (1) 46 (2) — — — — —
82 (2) 84 (6) — — — — —
46 (2) 61 (6) 36 (10) — — — —

102 (4) 99 (8) 92 (16) — — — —

66 (2) 44 (2) 27 (2) 17 (2) 11 (2) 4 (2) 4 (2)
178 (2) 63 (2) — 6 (2) 0 (2) — —
180 (4) 27 (2) 6 (2) 2 (2) — — —

264 (2) 25 (2) — — — — —
476 (2) 39 (2) — — — — —

Dilution
factor d

2
3
3
2
3

2
2
3
3
2

yio

10
10

Table 3. Analysis of plaque counts from Table 2

Experiment

(1)

(2)

(3)

(4)

a
b
c
d
e

a
b
c
d
e

a
b
c

a
b

0-9664
1-0477
1-1232
1-2372
0-8697
0-7729
10310
0-9781
0-8390
10739

1-0435
1-0083
1-1113

10237
1-0865

48-31
7103
21-50
27-68

8-72

64-23
11-17
50-08

102-74
93-73

89-11
144-68
81-20

121-08
191-12

u
(h = 1)

-0-234
0-402
0-571
1-248

-0-385

-1-820
0104

-0-155
-1-632
0-715

0-411
0100
1-003

0-261
1196

u
(h = 1-0164)

-0-348
0-264
0-495
1162

-0-433

-1-951
0049

-0-271
-1-798

0-557

0-256
-0-097

0-855

0-080
0-969

It is still possible that the combined data from all fifteen experiments might
contradict the one-particle model, and hence further analysis is desirable. The
values from columns 2 and 3 of Table 3 may be substituted into (6) to give the
weighted average h = 1-0164, with variance (1126-35)-1. The values u^, u2, ..., ulb,
computed from (5) with h = 1-0164, are given in the last column of Table 3,
and their sum of squares is 11-15. The 50 % point of a chi-square distribution with
14 degrees of freedom is 13-34, so that the value obtained is not an unusually
large one. Hence there is no evidence of heterogeneity among the fifteen experi-
ments.

If h is set equal to the theoretical value 1, then (7) gives z = 0-550. From tables
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of the standardized normal distribution, the chance of a more extreme value is
greater than 50%. Hence the one-particle model is in accord with the combined
data from all fifteen experiments.

The preceding example shows that a statistical analysis applied to diverse
experiments performed over a wide period of time and in different places can
exhibit a convincing compatibility with the hypothesis in question (h — 1).
The results of such an analysis would seem to be more compelling than solely
examining point estimates h or graphs of plaque count vs. dose.

We should like to thank Dr W. S. Rickert and Dr W. F. Forbes for helpful
suggestions.

APPENDIX

Computation of h for a single series

Let yi and yt be the two largest plaque totals, and define

If the series has only two dilution levels (k = 1), then h = h. However if k > 1,
% gives only a first approximation to h, and additional calculations are required.
Let hx denote some initial guess at the value h. (For instance, one might choose
the proposed theoretical value, or else take hx = K). Putting h = h^, one com-
putes 6, B, A, D, 8, and / using the formulas (1) to (4). A closer approximation
to h will then be given by h2 = hx + A, where A = S/I. This procedure may now
be repeated with h2 as the new initial value to obtain yet a better approximation,
h3 = A2 + A. One continues in this fashion until the correction factor A becomes
sufficiently small.

For example, consider the data of isolate one in Table 1. Here

d = VlO, k = 2 = n0 = nx = n2, X = 134, and T = 14.

For an initial guess at h one may select the theoretical value, hx = 2, and the
following results are then obtained:

(9 = 0-1 B = 2-22 A = 0-24 D = 0-28

8 = 0-5601 / = 20-23 A = 0-02755

Hence a closer approximation to % is

h2 = ^-f-A = 2-02755.

The calculations are now repeated using h = 2-02755 to give

6 = 0-096878, B = 2-21253, A = 0-231297 D = 0-268839

8 = 0-009563, / = 19-64, A = 0-00049

An even better approximation to h is then given by

h3 = A2 + A = 2-02804,

which is correct to at least three decimal places.
3 HYG 73
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