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Abstract. Time ephemeris is the location-independent part of the transformation formula relat-
ing two time coordinates such as TCB and TCG (Fukushima 1995). It is computed from the cor-
responding (space) ephemerides providing the relative motion of two spatial coordinate origins
such as the motion of geocenter relative to the solar system barycenter. The time ephemerides
are inevitably needed in conducting precise four dimensional coordinate transformations among
various spacetime coordinate systems such as the GCRS and BCRS (Soffel et al. 2003). Also,
by means of the time average operation, they are used in determining the information on scale
conversion between the pair of coordinate systems, especially the difference of the general rela-
tivistic scale factor from unity such as LC . In 1995, we presented the first numerically-integrated
time ephemeris, TE245, from JPL’s planetary ephemeris DE245 (Fukushima 1995). It gave an
estimate of LC as 1.4808268457(10)× 10−8 , which was incorrect by around 2× 10−16 . This was
caused by taking the wrong sign of the post-Newtonian contribution in the final summation.
Four years later, we updated TE245 to TE405 associated with DE405 (Irwin and Fukushima
1999). This time the renewed vale of LC is 1.48082686741(200)× 10−8 Another four years later,
by using a precise technique of time average, we improved the estimate of Newtonian part of LC

for TE405 as 1.4808268559(6) × 10−8 (Harada and Fukushima 2003). This leads to the value of
LC as LC = 1.48082686732(110)×10−8 . If we combine this with the constant defining the mean
rate of TCG-TT, LG = 6.969290134 × 10−10 (IAU 2001), we estimate the numerical value of
another general relativistic scale factor LB = 1.55051976763(110)×10−8 , which has the meaning
of the mean rate of TCB-TT. The main reasons of the uncertainties are the truncation effect in
time average and the uncertainty of asteroids’ perturbation. The former is a natural limitation
caused by the finite length of numerical planetary ephemerides and the latter is due to the un-
certainty of masses of some heavy asteroids. As a compact realization of the time ephemeris, we
prepared HF2002, a Fortran routine to compute approximate harmonic series of TE405 with the
RMS error of 0.446 ns for the period 1600 to 2200 (Harada and Fukushima 2003). It is included
in the IERS Convention 2003 (McCarthy and Petit 2003) and available from the IERS web site;
http://tai.bipm.org/iers/conv2003/conv2003 c10.html.
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1. Concept of Time Ephemeris
Consider a four dimensional spacetime coordinate transformation, xμ = fμ (Xα ),

where xμ is the four dimensional coordinates of an event in a certain four dimensional
coordinate system, which we call the background coordinate system, while Xα is the
four dimensional coordinates of the same event in another four dimensional coordinate
system, which we call the target coordinate system. If we expand the above coordinate
transformation around the space coordinate origin of the target coordinate system, its
time part is written as

t = f(T ) + fk (T )Xk + · · · (1.1)
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where t and T are the time coordinates of the background and target coordinate systems,
respectively. Then, we define the time ephemeris as a function expressed (Fukushima
1995) as

Δτ(t) ≡ t − f−1(t). (1.2)

In case of the Earth, the BCRS is the background coordinate system, the GCRS is the
target coordinate system, TCB is t, and TCG is T (IAU 1992, Seidelmann and Fukushima
1992, IAU 2001). Namely the above time-time relation is rewritten (Fukushima 1995) as

TCB − TCG = ΔτE (TCB) +
vE · X

c
+ · · · (1.3)

where c is the speed of light in vacuum.

2. General Relativistic Scale Factor
The time average of the time ephemerides has an important meaning in the unit

conversion between different coordinate systems (Fukushima et al. 1986). To make the
description more understandable, hereafter, we deal with the case of the Earth only.

Assume that the background and target coordinate systems use different unit systems
in length and in time as [mB , sB ] for the BCRS and [mG, sG ] for the GCRS. Adopt a
convention such that the numerical values of c are the same in both coordinate systems
as

c = 299792458 mB /sB = 299792458 mG/sG. (2.1)

then the ratios of the length units and time units must be the same as
mG

mB
=

sG

sB
. (2.2)

The latter quantity is nothing but the time average of the differential ratio of the time
scales, which is rewritten (Fukushima et al. 1986) as

sG

sB
=

< dTCG >

< dTCB >
= 1 − LC , (2.3)

where

LC =
〈

dΔτE

dt

〉
, (2.4)

is the general relativistic scale factor of the Earth. Once this factor is obtained, the
numerical values of all the physical quantities measured in each coordinate system have
the proportional relations as

MG

MB
=

RG

RB
=

PG

PB
= 1 − LC , (2.5)

where M , R, and P denote the mass, the radius, and the period of any kind.

3. Computation of Time Ephemeris
The relation between the two time scales are computed by assuming that the space

coordinate origin of the target coordinate system, the geocenter in the case of the Earth,
follows a geodesic in the background coordinate system, the solar system barycentric
coordinate system in the case of the Earth. Adopt Einstein’s general theory of relativity
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as the general relativistic theory to be based. Then, the time development equation of
Δτ is obtained from the equation of geodesic, or that of proper time more specifically, as

dΔτE

dt
=

v2
E + UE

2c2 +
v4

E + 12v2
E UE − 4U 2

E − 32vE · wE − 4WE

8c4 + · · · (3.1)

where �vE is the velocity of the geocenter, UE is the Newtonian gravitational potential
acting on the Earth (and excluding the self-gravitational potential of the Earth itself),
and �wE and WE represent the post-Newtonian contributions in general (Soffel et al.
2003). In the EIH metric, they are expressed (Fukushima 1995) as

UE ≡
∑
J �=E

UEJ , wE ≡
∑
J �=E

UEJ vJ ,

WE ≡
∑
J �=E

UEJ

⎡
⎣4v2

J −
(

rEJ · vJ

rEJ

)2

+
∑
K �=J

UJ K

(
2 +

rEJ · rJ K

r2
J K

)⎤
⎦ , (3.2)

where

UJ K ≡ GMK

rJ K
, rJ K ≡ xJ − xK , rJ K ≡ |rJ K | . (3.3)

The right hand side of Equation (3.1) is independent on ΔτE itself. Thus, it is a pure
function of t if the motion of major celestial bodies in the solar system is known, i.e.
if the planetary/lunar ephemerides is provided. In this sense, we may obtain the time
ephemeris simply by the quadrature of the right hand side of the above equation.

4. Realizations of Time Ephemeris
There have been several analytical time ephemerides. Moyer’s pioneer works (Moyer

1981a, Moyer 1981b) are based on the Keplerian approximation of planetary/lunar orbits.
All of the later computations (Hirayama et al. 1987, Fairhead et al. 1988, Fairhead and
Bretagnon 1990) are based on the analytical planetary ephemeris, VSOP82 (Bretagnon
1982) and the analytical lunar ephemeris, ELP2000 (Chapront-Touze and Chapront
1982). Since the ephemerides are expressed as Fourier series, it is easily to conduct the
quadrature.

On the other hand, numerical time ephemerides are obtained twice (Fukushima 1995,
Irwin and Fukushima 1999), all of which are based on the JPL numerical ephemerides,
DE102, DE200, DE245, and DE405 (Newhall 1989, Standish et al. 1992, Standish 1998a,
Standish 1998b). In this case, the quadrature was executed by the Romberg method
(Press et al. 2007). Taking the same number of DE ephemerides used, we named the
time ephemerides as TE102, TE200, TE245, and TE405, respectively.

The numerical representation of time ephemerides are, as the same as in case of numer-
ical lunar/planetary ephemerides, usually the resulting numerical tables themselves or
their Chebyshev polynomial representation. These are appropriate for fast computation.
However, the periodic features are difficult to find out. Also, the full implementation
requires an expertise on its installation and some disk storages.

In order to complement these weak points, we presented the harmonic decomposition
of TE405, the latest time ephemeris of the Earth (Harada and Fukushima 2003). The
used approach is a nonlinear method of harmonic analysis (Harada 2003), an excerpt of
which is reported in Appendix B of our analysis of the planetary precession derived from
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Table 1. Main Terms of Fourier Series Expression of TE405

S (ns) C (ns) Period (days)

+505079.2018 −1551857.1407 365.2652622182
+21856.7326 −23134.7679 365.22102337
+20733.1083 −8526.5271 398.88401884
−11108.6620 −8369.7220 182.62982594
−3405.2830 −3354.5797 4333.21415

Note. Listed are the largest five Fourier terms of the harmonic decomposition of TE405 (Harada
and Fukushima 2003).

DE405 (Harada and Fukushima 2004). The expression is in the form

ΔτE ≈
2∑

j=0

Pjξ
j+

J∑
j=1

[Sj sin (ωjξj ) + Cj cos (ωjξj )]+
K∑

j=1

ξj

[
S′

j sin (ωjξj ) + C ′
j cos (ωjξj )

]
,

(4.1)
where

ξ ≡ JD − 2414949.0
54749.25

, (4.2)

and Pj , Sj , Cj , ωj , S′
j , and C ′

j are certain constants. For the full period of TE405, i.e.
from 1600 until 2200, the RMS of the residual of the approximation is 0.446 ns and the
absolute maximum difference is 2.95 ns. For the shorter period from 1960 to 2020, the
maximum difference reduces to 1.58 ns and most of the differences are less than 1 ns.

Table 1 shows the main Fourier terms. The full result contains a quadratic polynomial,
463 Fourier terms, and 36 mixed secular terms. Namely J = 473 and K = 36 in the above
expression. The published article (Harada and Fukushima 2003) contains only the full
coefficients of S′

j and C ′
j , some of Pj , and the first five coefficients of Fourier terms.

For the full expression, refer the Fortran routine HF2002 and its parameter file included
in the IERS Convention 2003 (McCarthy and Petit 2003). They are available from the
IERS web site;
http://tai.bipm.org/iers/conv2003/conv2003 c10.html

5. Determination of General Relativistic Scale Factor
Let us return to the issue of scale factor. The factor LC is split into the sum of three

parts;

LC = LN
C + LP N

C + LA
C , (5.1)

where the superscripts N and PN denote the Newtonian and the post-Newtonian contri-
bution by the Earth’s velocity in the BCRS and by the Newtonian gravitational potential
of the Sun and major planets, while the superscript A does the Newtonian effect by as-
teroids (Fukushima 1995). Table 2 shows the dilated contribution of the first two parts
for the case of TE245. Note that the asteroid part is too small to be listed.

The numerical value of LN
C significantly differ ephemeris by ephemeris. See Table 3. The

uncertainties shown here are basically caused by the finiteness of the effective period of
the lunar/planetary ephemeris used. In fact, all the practical ephemerides whether being
numerical or analytical are limited. Let us explain this situation more plainly.
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Table 2. Contribution to General Relativistic Scale Factor, LC

Source Contribution (10−17 )

Sun 987062583
velocity 493530342
Jupiter 182856
Saturn 29647
Moon 14191
Venus 2877
Uranus 2250
Neptune 1741
Mars 240
Mercury 171
post-Newtonian 11

Note. Listed are the contribution of each source to the value of LC for the case of TE245
(Fukushima 1995). Note that all the contributions including the post-Newtonian one are positive.
The asteroids’ contribution, which is dropped from the list, is 0.45 in the unit of table.

Table 3. Estimated Values of Main Newtonian Parts of General Relativistic Scale Factor, LN
C

LN
C (10−17 ) Time Ephemeris Reference

1480826869.80±0.5 TE102 Fukushima 1995
57.13±0.5 TE200 Fukushima 1995
56.21±0.5 TE245 Fukushima 1995
55.94±1.0 TE405 Irwin and Fukushima 1999
55.90±0.6 TE405 Harada and Fukushima 2003

Assume that the ephemeris contain a very long period term of the frequency Ω. The
associated Fourier terms are expanded as

cos Ωt ≈ 1 − (Ωt)2

2
+ · · · , sin Ωt ≈ Ωt − (Ωt)3

6
+ · · · , (5.2)

Therefore, for the finite time period such as |t| < T , we cannot discriminate the cosine and
sine terms of the frequency Ω with a constant offset, 1, and a linear trend, Ωt, if the leading
residual terms, (ΩT )2/2 or (ΩT )3/6, are sufficiently small. See the detailed discussion in
our reports (Fukushima 1995, Irwin and Fukushima 1999, Harada and Fukushima 2003).

On the other hand, the values of the last two parts do not differ significantly so that
we may fix them by the value of TE245 (Fukushima 1995) as

LP N
C = (10.97 ± 0.01) × 10−17 , LA

C = (0.45 ± 0.50) × 10−17 . (5.3)

The uncertainty of the post-Newtonian term comes from that of the PPN parameters,
β and γ. Meanwhile, the large uncertainty of the asteroid effect is due to their mass
uncertainty.

At any rate, let us calculate the final value. Table 4 shows the summed value of LC for
TE405 based on the latest determination of LN

C (Harada and Fukushima 2003). Using
this, we calculate another scale factor, LB , as

LB ≡ LC + LG − LC LG = (1550519767.63 ± 1.1) × 10−17 , (5.4)

which determines the mean rate of TCB-TT and becomes a key factor to convert the
numerical values of physical quantities obtained from the astronomical observations in the
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Table 4. General Relativistic Scale Factors

Constant Meaning Value (10−17 ) σ (10−17 )

LN
C Main Newtonian Part of LC 1480826855.90 0.60

LP N
C post-Newtonian Part of LC 10.97 0.01

LA
C Asteroid Part of LC 0.45 0.50

LC Mean Rate of TCB-TCG 1480826867.32 1.1
LG Mean Rate of TCG-TT 69692901.34
LB Mean Rate of TCB-TT 1550519767.63 1.1

solar system and those determined from the experimental measurements at laboratories
on the Earth. Here

LG ≡ 69692901.34 × 10−17 , (5.5)
is a defining constant to specify the mean rate of TCG-TT (McCarthy and Petit 2003).
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