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CHARACTER DEGREES AND CLT-GROUPS
R. BRANDL AND P.A. LINNELL

Let G be a finite group and let k be a field. We determine the smallest possible rank of a
free kG-module that contains submodules of every possible dimension. As an application,
we obtain various criteria for the wreath product of two finite groups to be a CLT-group.

1. RESULTS

A CLT-group is a finite group G of order n, say, having the property that for
each divisor d of n, there exists a subgroup of index d in G. Note that it is sufficient
to have this condition for all prime powers d dividing n.

Clearly, a C LT-group has Hall p'-subgroups for all primes p, and hence it is soluble.
Conversely, if one is interested in proving that a soluble group is a CLT-group, then
one has to consider F,G-modules M and try to find “many” submodules of M which
yield “enough” subgroups of p-power index (in the split extension of M by G, say).

Let k be a field and let M be a kG-module. Call M a CLT-module (for G) if for
all integers d satisfying 0 < d < dim; M, there exists a kG-submodule U of M with
dimy U = d. The property of being a CLT-module clearly depends on the dimensions
of its irreducible constituents and on its Loewy structure. For example, if G is perfect
and z denotes the smallest dimension of a nontrivial irreducible kG-module, then the
direct sum of less than £ —1 copies of kG does not contain any submodule of dimension
z — 1. For applications to CLT-groups, we shall be interested in the case when char k
is prime to |G|, and then the above example is, in some sense, worst possible in view

of the following.

THEOREM A. Let G be a finite group and let k be a field with char k prime to
IG|. If = denotes the smallest dimension of a G-faithful kG-module, then the direct
sum of ¢ — 1 copies of kG is a C LT-module.

We will apply the above result to a local version of CLT-groups introduced in
[4]. Indeed, G is called a p-CLT-group if for all powers p* dividing |G|, there is a
subgroup of index p®. Most natural examples are transitive groups of degree p. Note
that a p-CLT-group has a Hall p'-subgroup.

Our next result provides a method of constructing p-C LT-groups from given ones.
Note that the hypothesis on G in the following holds for transitive groups of prime
degree p.
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THEOREM B. Let G be a p-CLT-group and assume that Op(G) =1. If P is a
p-group, then the wreath product P| G is a p-CLT-group.

Our methods also yield some more detailed information on the class R (see p.185
of [1]) of all groups G with the property that for every nilpotent group N, the wreath
product N | G is a CLT-group. Recall that G is called rational if all its irreducible
complex characters are rational valued (see [3]).

THEOREM C. Let G be a rational CLT-group. Then G € R.

Our final result gives some information on the structural properties of groups in
R. It improves on Theorems 3(a) and 4(c) of [1].

‘

THEOREM D. Every soluble group G can be embedded as a subgroup of some
group H in R. Furthermore if 7(G)N {2, 3} # 0, then we can take n(H) = #(G).
Conversely if L € R and L # 1, then n(L)N {2, 3} £0.

Notation and terminology. All groups will be finite and all modules will be finitely
generated. We shall use the notation |G| for the order of a group G, n(G) for the set
of primes dividing |G|, and N for the non-negative integers {0,1,2,...}. i p is a
prime, then F, will denote the field with p elements, and if n € N, the direct sum of
n copies of a module M will be denoted by M™. When r is a positive integer, Z, will
indicate the cyclic group of order r.

2. Proors

For Theorem A, we need some information concerning the distribution of the ir-
reducible character degrees of our group G. The first result shows that they cannot
increase too quickly.

LEMMA 1. Let G be a group and let k be a field. Let ¢ be the dimension of some
G -faithful kG-module and let dy < d; < ... < d, be the dimensions of the irreducible
kG-modules. Then d;4, < zd; for all i.

PROOF: Let Vi, Vo, ..., V. be the distinct irreducible kG-modules with
din, V; = d; (1<i<7),let a € N with 1 <a <r-1, and let U be a faithful
kG-module of dimension z. For n € N, let U®" denote the tensor product of U with
itself n-times with G acting diagonally. By [6, Theorem 1} or {2, Theorem I11.2.16},
there exist s,t € N with ¢ > a such that V; is not a composition factor of U®* if { > a,
but V; is a composition factor of U®*t1, Thus U®*t! has a series whose factors are
kG-modules of the form V; @ U with j < a, and it follows that V; is a composition
factor of V; @ U for some j < a. Therefore d; < zd;, hence day;1 < zd, and Lemma 1
is proved. |
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PROOF OF THEOREM A: Let Vi, V;,..., V. be the distinct irreducible kG-
modules, let d; = dim;V;, and let §; be the number of times V; occurs in
kG (1 <1< r). Assume that d; < diy; (1 < i <7 —1). Wenow establish the following
claim: if 1 < a <7 and 0 < y < dg, then there ezist e; EN with e; <z-1(1<i<a)
such that

a—1

y= Z e,'d,-.

=1
We prove this by induction on a; clearly the result is true if a = 1, so we assume that
a> 1. Note that d; —d,_; < (z —1)d,_; by Lemma 1, hence
Y~ (daoy — 1) < (z — 1)da_s.

Choose e,_; € N minimal such that y—(da—3y — 1) S eq_1dg_1 (500K €,_1 < z— 1).
Then
0< Y- €a—1dg_1 < da—] -1

(the left inequality holds because of the minimality of eq—;). By induction on a, we

may write
a—-2
Yy - ea—lda—l = Z eidi
=1
with 0 € ¢; € z — 1, and the claim is established.
We now show that if 0 <! < (z —1)|G|, then kG*~! has a submodule of dimen-

sion I. This is clear if | = (z — 1) |G|, so we assume that ! < (z — 1) |G|. Now choose
b € N such that

o0gli— Z (z—l)&;d;—mdb<d5
i=b+1

for some m € N with m < (¢ — 1) . By the claim, there exist e; € N with ¢; < z -1

such that
r b-1
- Z (:c - l)&idi —mdy = Z e;d;.
i=b+1 i=1

KV = e b“V(z ~16% g Vim @ @221 VS, then V is a submodule of kG=~! with
dimension !, as required. 1

Remark. Similar arguments show

THEOREM A'. Let G be a perfect group and let k be any field. If = denotes the
smallest dimension of a G-faithful kG-module, then kG*~! is a C LT -module.
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LEMMA 2. Let p be a prime, let G be a p-CLT-group and let H be a Hall p'-
subgroup of G. If F,G is a CLT-module for H, then W = P G is a p-CLT-group
for all p-groups P. Moreover, if G is a CLT-group, then sois W .

PRrooF: Following [1, p.188], let B(P) denote the base group of P{ G and let
L(G, p) denote the class of all p-groups having the property that B(P) contains H-
invariant subgroups of every possible order. Then Z, € L(G, p) because F,G is a
CLT-module for H. Since P has a normal series with factors isomorphic to Z,, an
obvious generalisation of Theorem 1(b) of [1] shows that P € L(G, p), and hence P G
is a p-C LT-group. The final sentence of the Lemma is now clear. ]

PROOF OoF THEOREM B: Write |G| = p®m where p is prime to m, and let H
be a Hall p'-subgroup of G. From O,(G) =1, we infer that G acts faithfully on the
cosets of H, hence there exists a faithful F, H-module of dimension p®. Furthermore
F,G, viewed as an F,H-module, splits into a direct sum of p* copies of F,H. Now
Theorem A implies that F,G is a C'LT-module for H and the result follows from
Lemma 2. [ ]

Note that none of the hypotheses of Theorem B can be dispensed with. First,
231 Zs5 is not a 2-CLT-group, so Op(G) = 1 is necessary. For the other hypothesis,
let p=2 and G = PSL(2, 7). Then a Hall 2'-subgroup H of G is isomorphic to the
Frobenius group of order 21, and F,G is a CLT-module for H. But Z; ! G is not a
2-C LT-group because it does not contain any subgroup of index four.

For the proof of Theorem C, we need the following generalisation of [4, Proposi-
tion 7 | to arbitrary fields.

THEOREM E. Let G be a soluble group and let k be a splitting field for G. Then
kG is a CLT-module for G.

First we require a preparatory lemma (see Itd’s result; Satz 17.10 on p.570 of [5]).

LEMMA 3. Let A be an abelian normal subgroup of the group G. If k is a splitting
field for G and V is an irreducible kG-module, then dim; V < |G/A|.

PROOF: By enlarging k if necessary, we may assume that & is also a splitting field

for A. If
0=Uy<U;<...<U,=kA

is a kA-composition series for kA, then dimy U;41/U; = 1 for all i because k is a
splitting field for 4, and

0="Uy ®a kG <U; ®a kG < ... < U, @14 kG = kG

is a kG-series for kG. Thus V is a composition factor of U;y1 ®ra kG/U; @14 kG for
some 1, hence dimg V < |G/A}. 1
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PROOF OF THEOREM E: Let p = char k. We use induction on |G|, the result
certainly being true if |G| = 1. Let A be a minimal normal subgroup of G, so A is
an elementary abelian g-group for some prime ¢. Let a denote the augmentation ideal
of kA;thus {a —1]|a € A\ 1} is a k-basis for a. We have two cases to consider.

Case (i). ¢ =p. Then for all r € N,

a"kG/a™H kG = a”/a™! @4 kG = (k[G/A])°

where s = dim, a”/a"™t?. But a” = 0 if r is large enough, hence kG has a filtration
with modules isomorphic to k[G/A]. Since the result is true for G/A, it is also true
for G.

Case (ii). ¢ # p. Since |4| is invertible in k, we may write

kG = akG @ k[G/A]

as kG-modules. We now use the sandwich technique as described in [1, p.186]. Sup-
pose 0 < XA € |G|. By Lemma 3, there exists a kG-submodule S; of akG such
that 0 < A — dim; S, < |G/A|. Using induction, there exists a kG-submodule $; of
k[G/A] with dimy Sy = A —dim; S,. Then S, ® S, is a kG-submodule of kG and
dimg (S1® S2) = A, as required. ]

PROOF OF THEOREM C: Let p be a prime and let H be a Hall p'-subgroup of G.
Since G is rational, F}, is a splitting field for G [3, Lemma 2]. Moreover, G is soluble
and so Theorem E implies that F,G is a CLT-module for G. Therefore F,G is a
CLT-module for H and the result follows from Lemma 2. ]

In the proof of Theorem D, we need a method for producing groups G with the
property that kG is a CLT-module for G. The following lemma does what is required.

LEMMA 4. Let A and G be groups, and let k be a field. If |A| > |G| and kA is
a CLT-module for A, then k[A x G] is a CLT-module for A x G.

PROOF: Let char k = p (where p is a prime or 0), let H = A x G and let
n = |H|. First suppose G is a p-group (G =1if p =0). Then kG has a series with
each factor isomorphic to the trivial module &k, hence kH has a series of kH-modules
with each factor isomorphic to kA (trivial G-action). Since kA contains submodules
of all dimensions between 0 and |A|, the result follows in this case.

Now suppose G is not a p-group (G #1ifp=0). If 0 < d < n, we need to
prove that kH has a submodule of dimension d. Note that if N is a submodule
of kH, then Homy(kH/N, k) (the dual kH-module of kH/N) is a submodule of
kH with dimension n — dimg NV, so we may assume that d < n/2. Let P be the
indecomposable projective kG-module with simple quotient k, and write kG = P Q.

https://doi.org/10.1017/50004972700002720 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002720

254 R. Brandl and P.A. Linnell 6]

Then kH = kA ®: P ® kA ®, Q. Since k is a kG-submodule of P and kA has
kA-submodules of all dimensions between 0 and |A]|, it follows that kA ®; P has
kH-submodules of all dimensions between 0 and |A|. In particular, kA ®; P has
kH-submodules of all dimensions between 0 and |G|, because |G| < |A|. Now G is
not a p-group, thus it contains a p’-subgroup B # 1, so we can write kB =k ® U as
kB-modules where U # 0. Then

kG =k Q1 kG ® U Qxp kG

and P is a direct summand of k Qg kG, hence dim; @ = |G|/2. Thus d <
dimg kA @) Q because d < n/2, so there is a kH-submodule M; of kA ®; Q with the
property that d—|G| < dimy M; < d since dimy @ < |G|. Now choose a kH-submodule
My of kA® P of dimension d —dimy My . Then M, & M, is a kH-submodule of kH

of dimension d, as required. 1

ProOF OoF THEOREM D: We wish to embed the soluble group G as a subgroup
of some H € R, with the property that w(H) = n(G) if 7(G)N{2,3} #0. In view
of {5, p.663], we may assume that G is a CLT-group. Let A be either a 2-group or
a noncyclic 3-group, let H = A x G, and assume that |A| > |G|. By the proof of
Theorem 3(b) and 3(c) of [1], F,A is a CLT-module for A for all primes p, hence
F,H is a CLT-module for H by Lemma 4. It now follows from Lemma 2 that H € R,
and so it remains to prove the last sentence of Theorem D.

Suppose |L| is odd. Since Z, | L is a CLT-group, we see that Fy,L must be a
CLT-module for L, so let V be a submodule of dimension two. Now F;L contains
exactly one submodule of dimension one, hence V is not centralised by L and it follows
that three divides |L|, as required.
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