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ABSTRACT. The Altels hanging glacier in Switzerland broke off on 11 September 1895. The ice volume
of this catastrophic rupture was estimated as 4××106 m3, the largest icefall event ever observed in the
Alps. However, the causes of this collapse are not entirely clear. Based on previous studies, we reanalyzed
this break-off event, with the help of a new numerical model, initially developed by Faillettaz and others
(2010) for gravity-driven instabilities. The simulations indicate that a break-off event is only possible
when the basal friction at the bedrock is reduced in a restricted area, possibly induced by the storage
of infiltrated water within the glacier. Further, our simulations reveal a two-step behavior: (1) a first
quiescent phase, without visible changes, with a duration depending on the rate of change in basal
friction; (2) an active phase with a rapid increase of basal motion over a few days. The general lesson
obtained from the comparison between the simulations and available observations is that detectable
precursors (crevasse formation and velocity increase) of the destabilization process of a hanging glacier,
resulting from a progressive warming of the ice/bed interface towards a temperate regime, will appear
only a few days prior to the break-off.

1. INTRODUCTION
Icefalls pose a considerable risk to humans, settlements and
infrastructures. Their destructive power is usually greater in
winter, as they can drag snow and ice in their wake. In the
Alps one of the most tragic icefall events occurred in 1965 in
Switzerland, when a major part of Allalingletscher broke off
and killed 88 employees of the Mattmark dam construction
site (Röthlisberger, 1981; Raymond and others, 2003).
Following this event, interest in the instability of hanging
glaciers grew within the alpine glaciological community. In
1973, the first successful icefall prediction was performed
by Flotron (1977) and Röthlisberger (1981) at the Weisshorn
hanging glacier, which regularly poses a threat to the village
of Randa, in Valais, Switzerland. Due to climatic variations,
some hanging glaciers undergo rapid changes, leading
either to isolated catastrophic events or to new situations
with no historical precedent. It is difficult to perform
direct measurements on these steep, heavily crevassed and
avalanche-endangered glaciers. Measurements are often
sparse and fragmentary, and therefore difficult to interpret.
They have always been performed after clear signs of destabi-
lization, so the conditions prevailing before an unstable state
are unknown. The factors responsible for the destabilization
of large ice masses are the strength of the ice and the stresses
in the zone of fracture. However, the physics of the ice
fracture and the feedback mechanisms between crevassing,
ice deformation and load distribution are complex and
mostly unknown. Lack of theory and sparse measurements
make an accurate stability assessment difficult.
To cope with these difficulties, we developed a numerical

model describing the progressive maturation of a mass
towards a gravity-driven instability, which combines basal

sliding and cracking (described by Faillettaz and others,
2010). Our primary hypothesis was that gravity-driven
ruptures in natural heterogeneous material are characterized
by a common triggering mechanism resulting from the
competition between frictional sliding and tension cracking.
The present paper is devoted to the application of this

general numerical model to a particular gravity-driven
instability: the breaking-off of hanging glaciers. The gigantic
breaking-off of the Altels hanging glacier is an interesting
case for several reasons:

It is the largest break-off recorded in the Alps.

It was well documented by Forel (1895), Heim (1895) and
Du Pasquier (1896), within the limits of their knowledge
– their observations relate to the rupture of the glacier
and include photographs of the glacier before and after
the collapse.

The causes of this glacier instability are not entirely
understood, despite the reanalysis of Röthlisberger (1981)
using data collected by Forel (1895), Heim (1895) and
Du Pasquier (1896). However, it is suspected that hot
summers prior to the event triggered the break-off.

It is the only well-documented break-off of a cold
hanging glacier where progressive warming of the ice/bed
interface towards temperate conditions has likely driven
the phenomenon.

Any break-off of this size is of interest in the context of
global climate change.

Our study should improve the understanding of the pro-
cesses leading to this catastrophic phenomenon. Moreover,
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Altels (3629 m a.s.l.)

Fig. 1. Overview of Altelsgletscher, 25 November 1894, 10 months
before the glacier broke off. (Photograph: P. Montandon from
Englistliggrat, 2665ma.s.l.)

it should give new insights into the probable causes of this
particular gravity-driven instability and reveal precursors of
this event. Section 2 describes the study site and gives a
qualitative description of the rupture. Section 3 describes
how the model is implemented, and the main qualitative
and quantitative results are presented in section 4.

2. STUDY SITE: ALTELS
2.1. Generality and description of the event
The Altels (Berner Oberland, Switzerland) summit is
3629ma.s.l. and has a pyramidal shape. The northwestern
flank is 1500m high with a 35–40◦ slope (Fig. 1). It consists
of relatively smooth malm limestone (see Fig. 3). In the
mid-19th century, this face was largely covered with an
unbalanced ramp glacier (i.e. the snow accumulation is
mostly compensated by break-off; Pralong and Funk, 2006),
located between 3629 and 3000ma.s.l. In the early morning
of 11 September 1895, a large part of the glacier broke
off and tumbled down. This icefall lasted ∼1min and
the accompanying thunder could be heard in Kandersteg

a b

Fig. 3. (a) Side glacier remaining in 1979. Bedrock consists of
malm limestone. (Photograph: H. Röthlisberger.) (b) Side view of
the bedrock after the 1895 break-off (Heim, 1895).

(∼10 km away). Many people thought it was an earthquake.
This catastrophic break-off was carefully described and
reported by Forel (1895), Heim (1895) and Du Pasquier
(1896) and, later, by Röthlisberger (1981).
The volume of the break-off was estimated as 4× 106 m3,

which is the largest known glacial fall in the Alps. The
resulting ice avalanche ravaged the high mountain pasture
situated underneath (the Spittelmatte) and killed six people
and 170 cattle. Due to its high velocity (430 kmh−1 (Heim,
1895; Röthlisberger, 1981)), the avalanche piled up to 300m
on the opposite slope, towards the Üschinengrat (Fig. 2). An
area of ∼1 km2 of the pasture was buried under an ice layer
3–5m thick. As Forel (1895) reported, a similar event had
occurred at the same place in 1782, killing four people and
hundreds of domestic animals (Raymond and others, 2003).
Forel (1895) pointed out that the 1895 summer was warmer
than usual. The event is unlikely to occur again, because
Altelsgletscher has almost disappeared (a tongue remains on
its left side, which will melt away in the near future; Fig. 3a).

2.2. Rupture and probable causes
The crown crack was a huge regular parabolic-like arch with
a width of ∼580m (Figs 3b and 4b). The ice thickness was
∼40m at the crown crack and 20m at the glacier terminus
(Fig. 3b). The final rupture took place and propagated along
the bedrock.
Forel (1895) analyzed the causes of the rupture. He

suggested the extremely hot previous summers may have

Fig. 2. General overview of the event (after Heim, 1895).
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Fig. 4. Altelsgletscher (a) before and (b) after its break-off.
(Photograph: P. Montandon, 25 November 1894 and 15 September
1895; Archiv des Alpinen Museums Bern.) Black arrows in (a)
indicate opened crevasses on the side glacier.

been linked to this event. This could explain why the glacier
was no longer mostly frozen at the bed and lost adhesion,
due to a thin film of water between the bedrock and the ice.
Röthlisberger (1981) reanalyzed the documented field

observations of Forel (1895), Heim (1895) and Du Pasquier
(1896) to infer the thermal conditions of Altelsgletscher
before its break-off (Fig. 5). On the basis of Figures 3b and
4b, Röthlisberger (1981) concluded that: (1) The central part
of the glacier was temperate, as the bedrock was completely
ice-free in this area after the break-off. This is an indication
that the glacier could slip off in this area. Therefore the
glacier was not frozen to the bedrock there. (2) Above the
bergschrund, the glacier was frozen to its bedrock, as well
as at the margins near the terminus, where some remaining
ice (likely still frozen to the bedrock) can be recognized
(white spots). He argued that the glacier geometry is likely to
explain such thermal conditions at the bedrock. In the central
part, a large snow-covered zone can be recognized. In this
moderately steep area, surface meltwater could percolate
into the cold glacier and refreeze. The release of latent
energy leads to an increase in englacial temperatures. If this
process is strong enough, it could explain why the glacier
bed became temperate in this part. The margins (above the
bergschrund and near the terminus) are much steeper and
mostly snow-free, so meltwater can hardly penetrate into the
glacier and there is no warming by release of latent energy.
Röthlisberger (1981) analyzed the retaining forces of the

hanging glacier and the possible causes of the break-off. He
found:

Adhesion to the bedrock: Given the dimensions of the
unstable ice slab compared to its thickness, the basal
properties should be crucial to the stability. The existence
of temperate conditions at the bedrock/glacier interface is
a destabilizing process that favors sliding of the glacier on
its bed. When the glacier slides over bumps or bedrock
asperities, cavities form above the bedrock, leading to a
loss of adhesion between the glacier and the bedrock.
Moreover, surface melting and high water pressure at
the interface favor and accelerate the enlargement of the
cavities. This could lead to destabilization of the glacier
in a very short time (from 1day to 1week). Precursors of
such a destabilization process are hardly detectable, as
the presence of such cavities cannot be easily determined
from the surface.

Southern support of the side glacier: The side glacier
could also be important to the global stability of the
hanging glacier. In Figure 4a it is possible to distinguish
opened crevasses on the side glacier prolongated into
Altelsgletscher 10 months before the rupture. These

Fig. 5. Schema of the supposed thermal conditions at the bedrock
and in the glacier before its break-off (after Röthlisberger, 1981).

crevasses could have formed because of sliding of the side
glacier, which acts as a support for the whole glacier. Such
a sliding phenomenon was observed in 1895 and again
in 1927/28, when the sliding speed was 25–30ma−1

(Röthlisberger, 1981).

Support of the frozen margins: It is possible that the lateral
support of the frozen margins played a considerable part
in the stability of the glacier, especially because of the
significant surface melting of the glacier 2 years before the
rupture (from a photograph by Du Pasquier, 1896). Heim
(1895) and Du Pasquier (1896) analyzed air temperature
data from different locations in Switzerland and found
that the 1895 summer was exceptionally warm. With the
prevailing climate conditions, sufficient meltwater could
have been produced to weaken the basal frozen support.

Traction at the crown crack (cohesion): The crown crack
was already open, to a limited depth, 10months before
the rupture (Fig. 4a), indicating large tensile stresses.

2.3. Temperature and precipitation before 1895
As Forel (1895), Heim (1895) and Röthlisberger (1981)
pointed out, very warm summers (generating much more
meltwater than usual) are suspected to have favored the
instability, so we investigated the evolution of climatic
conditions at Altelsgletscher before its 1895 break-off. A
database with homogenized continuous daily time series of
temperature and precipitation since 1865 is available at the
Federal Office of Meteorology and Climatology MeteoSwiss.
The time series are corrected for systematic biases (e.g.
due to the relocation of weather stations or changing
measurement techniques (Begert and others, 2005)). A total
of 12 MeteoSwiss stations are available; we used the two
closest stations, one located in Sion (35 km southwest) and
the other in Bern (60 km north).
Air temperature is known to be relatively well correlated

over large distances (Begert and others, 2005) and can
therefore be extrapolated with confidence. We evaluated
the temperature at 3000ma.s.l. by applying a temperature
gradient of−6◦Ckm−1 per 1000m on the daily mean values
from the two meteorological stations. The extrapolation
of solid precipitation is more problematic. As a first
approximation, we computed the mean precipitation from
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Fig. 6. Three-year running mean of positive degree-days (solid black
curve) and solid precipitation (dashed curve) between 1870 and
1895 at 3000ma.s.l. at the location of the 1895 Altels break-off.
Annual values are also indicated (circles for PDD and crosses for
solid precipitation).

the two stations and considered it to be solid when the
extrapolated temperature at 3000m was <0◦C.
Daily snow and ice melt rates can be assumed proportional

to the positive degree-day (PDD) (Hock, 2003). Because the
albedo of ice is lower than that of snow, the melting rate will
be higher after the annual snow cover has disappeared. Total
solid precipitation and the sum of the PDDs are indications
of the annual mass balance of the glacier, i.e. low annual
solid precipitation rates will lead to an earlier disappearance
of the snow cover and therefore to higher melt rates, because
of a longer time with low albedo.
Time series of PDDs since 1870 (Fig. 6) indicate higher

values in the 1870s and an increasing trend over the 5 years
before 1895. Moreover, solid precipitation decreased during
this period, indicating less snow accumulation. Five years
before the break-off, the glacier experienced smaller annual
mass balances (decrease of solid precipitation combined
with a larger PDD). These results are compatible with the
descriptions of Heim (1895) and Röthlisberger (1981).

3. NUMERICAL MODELING
The aim of the present work is to reanalyze this event by
applying a new numerical model designed for describing
natural gravity-driven instabilities (Faillettaz and others,
2010). This model allows us to test the different hypotheses
proposed to explain the break-off of Altelsgletscher.

3.1. Model description
We use a model describing the progressive maturation of
a mass towards a gravity-driven instability, which combines
basal sliding and cracking. Our hypothesis is that gravity-
driven ruptures in natural heterogeneous materials are
characterized by a common triggering mechanism, resulting
from the competition between frictional sliding and tension
cracking. Heterogeneity of material properties and dynami-
cal interaction of damage and cracks along the sliding layer
seem to have a significant influence on the global behavior.
This numerical model is based on the discretization of

the natural medium in terms of blocks and springs forming

Fig. 7. Illustration of the model consisting of springs and blocks
resting on an inclined plane. The blocks lie on an inclined curved
surface and gravity is the driving force. Only a small subset of the
spring–block system is shown here.

a two-dimensional network sliding on an inclined plane.
Each block, which can slide, is connected to its four
neighbors by springs that can fail, depending on the history
of displacement and damage. We develop physically realistic
models describing the frictional sliding of the blocks on
the supporting surface, and the tensile failure of the springs
between blocks acts as a proxy for crack opening. Frictional
sliding is modeled with a state- and velocity-weakening
friction law with a threshold. This means that solid friction
is not used as a parameter but as a process evolving
with the concentration of deformation and properties of
sliding interfaces. Crack formation is modeled with a time-
dependent cumulative-damage law with thermal activation,
including stress corrosion. In order to reproduce cracking
and dynamical effects, all equations of motion (including
inertia) for each block are solved simultaneously.
This model improves the multi-block model of Andersen

and others (1997) and Leung and Andersen (1997) in
two ways. First, we use the state- and velocity-weakening
friction law instead of a constant (or just state- or velocity-
weakening) solid friction coefficient. Second, rather than a
static threshold for spring failures, we model the progressive
damage accumulation via stress corrosion and other ther-
mally activated processes aided by stress. Both improvements
make the numerical simulations significantly longer, but
have the advantage of embodying, rather well, the known
empirical phenomenology of sliding and damage processes.
Adding the state- and velocity-dependent friction law and
time-dependent damage processes allows us to model the
interplay between sliding and cracking between blocks and
the overall self-organizing of the system of blocks (Faillettaz
and others, 2010).
The geometry of the system of blocks interacting via springs

and with a basal surface is shown in Figure 7. In summary,
the model includes the following characteristics:

Frictional sliding on the ground.

Heterogeneity of basal properties.

Possible tension rupture by accumulation of damage.

Dynamical interactions between cracks or damage along
the sliding layer.

Geometry and boundary conditions.

Interplay between frictional sliding and cracking.
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Fig. 8. Flow-chart of the modified spring–block model.

The steps describing how the development of the instabil-
ity is modeled are shown in Figure 8. As explained above,
two phases have to be distinguished:

A quasi-static (quiescent) phase corresponding to the
nucleation of block sliding and bond rupture.

A dynamical (active) phase corresponding to the sliding
phase of the blocks and the failure of the bonds.

3.2. Geometric parameters
We first have to consider the geometric input parameters for
modeling the Altelsgletscher. The glacier is discretized into a
system of regular cubic blocks. The application of this model
to the time evolution of an unstable glacier implies that
snow accumulation at the surface of the glacier is neglected,
corresponding to a timescale of 1–2 years. This assumption
seems to be justified for Altelsgletscher, as its northwestern
face has a steep slope (35–40◦) and is subjected to strong
winds, drifting snow away. In addition, typical snow and
ice accumulation rates are low compared with the overall
thickness (∼30m) of the glacier.
In order to obtain a realistic description of the damage

and fragmentation process that may develop in the ice mass,
we need a sufficient number of blocks. As a compromise
between reasonable sampling and numerical speed, we use
a model composed of 70× 70 blocks for this example. It is
possible to evaluate the size of the unstable part from analysis
of Figure 4 and from direct observations. Accordingly, the
glacier surface area was chosen to be ∼4 km2, with a mean
ice depth of 30m. As we consider a model composed of
70 × 70 blocks, each block corresponds to a discrete mesh
30m thick, 30m long and 30m wide. The weight of each
block is ∼24.75× 106 kg (density 917 kgm−3).
The slope of the bedrock, φ, ranges from 35◦ (lower part)

to 40◦ (upper part) (Fig. 9). To account for the curvature of
the bedrock slope, we used a digital elevation model (DEM)
supporting the blocks described above (Fig. 10).
We now describe the two key processes in the model,

the friction and damage laws, applied to blocks and bonds,
respectively.
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Fig. 9. Distribution of the slope of the bedrock at the position of the
blocks.

3.3. Friction law between the discrete blocks and the
basal surface
Figure 3 and the discussion in section 2.2 suggest that the
central part of the glacier was temperate at the time of
its destabilization. The rupture developed and propagated
within the ice (on the margin) as well as above the bedrock
(central part). These two zones need to be considered here,
depending on where the modeled discrete ice blocks lie
(either on ice or on the bedrock). The friction law between
the discrete blocks and the basal surface should also capture
both cases, ice/ice friction and ice/bedrock friction. Guided
by the rate and state friction character of rock (Dieterich,
1994) and ice (Fortt and Schulson, 2009; Lishman and others,
2011), a rate- and state-dependent friction law seems to be
adequate to describe both ice/ice friction and ice/bedrock
friction. The version of the rate/state-variable constitutive law,
currently most accepted as being in reasonable agreement
with experimental data on solid friction, is known as the
Dieterich–Ruina law (Dieterich, 1994):

μ
(
δ̇, θ

)
= μ0 + A ln

δ̇

δ̇0
+ B ln

θ

θ0
, (1)

where the state variable, θ, is usually interpreted as
proportional to the surface of contact between asperities of

Fig. 10. DEM of the Altels.
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the two surfaces. The constant μ0 is the friction coefficient
for a sliding velocity δ̇0 and a state variable θ0. A and B are
coefficients that depend on material properties.
The time evolution of the state variable, θ, is described by

dθ
dt
= 1− θδ̇

Dc
, (2)

where Dc is a characteristic slip distance, usually interpreted
as the typical size of asperities. The friction law, Equation (1),
with Equation (2), accounts for the fundamental properties
of a broad range of surfaces in contact, namely that they
strengthen (age) logarithmically when ageing at rest, and tend
to weaken (rejuvenate) when sliding.
The primary parameter that determines stability, A − B, is

a material property. Physically, A−B indicates the sensitivity
of the friction coefficient to velocity change: a negative value
indicates velocity-weakening leading to an unstable slip; a
positive value indicates velocity-strengthening leading to a
stable slip. Faillettaz and others (2010) showed that the case
A = B is of special interest because it retrieves the main
qualitative features of the two classes, and also because,
empirically, A is very close to B. AssumingA = B is therefore
reasonable and ensures more robust results. The critical
time, tf , signaling the transition from subcritical sliding to
dynamical inertial sliding is given in this case (Faillettaz and
others, 2010) by

tf =
θ0

exp
(
μ−μ0
A

)− 1 , (3)

for μ > μ0. (Details of how this equation is obtained are
given in the Appendix.) Note that tf → ∞ for μ ≤ μ0, where
tf is the time when the block starts sliding, μ0 is a constant
friction coefficient, A is a constant parameter depending on
material properties and θ0 is the state parameter at steady
state. The parameter μ is evaluated for each block with
the definition of the solid friction, μ = T/N, where T is
the tangential force determined from the positions of its
connected neighbors and N is the normal component of the
weight of the block. The state parameter, θ0 in Equation (3),
is given by (see Appendix)

θ0 =
Dc
δ̇0
, (4)

where δ̇0 is generally interpreted as the initial low velocity
of a sliding mass, before it starts to accelerate towards its
dynamical instability and where Dc can be interpreted as
a characteristic slip distance over which different asperities
come in contact.
Three parameters have to be correctly evaluated to model

the frictional processes within the glacier: μ0, A and θ0.
An increasing friction coefficient with increasing sliding
velocity (velocity-strengthening) at low velocities has been
observed for polished ice-on-ice (Kennedy and others, 2000;
Montagnat and Schulson, 2003), ice-on-granite (Barnes
and others, 1971) and ice-on-ice along a Coulombic fault
(Fortt and Schulson, 2009). A decreasing friction coefficient
with increasing sliding velocity (velocity-weakening) at high
velocities has also been observed (Barnes and others, 1971;
Kennedy and others, 2000). The transition between these
two regimes occurs at a velocity of 10−5 m s−1 (Fortt and
Schulson, 2009). These two different behaviors are generally
explained by two physical mechanisms, depending on the
sliding velocity regimes:

The first mechanism is the water-lubrication mechanism
(produced by frictional heat at the sliding surface)
working at sliding velocities above ∼0.01m s−1. The
water-lubrication mechanism is characterized by the low
viscous resistance of a water film produced by frictional
heat at the sliding interface (Barnes and others, 1971;
Kennedy and others, 2000; Montagnat and Schulson,
2003; Maeno and Arakawa, 2004).

The second mechanism is the adhesion and plastic
deformation of ice at the friction interface, which is
present at velocities below ∼0.01m s−1 (Kennedy and
others, 2000;Montagnat and Schulson, 2003;Maeno and
Arakawa, 2004).

By analogy with rock physics, a rate- and state-dependent
friction model for fresh and sea ice was proposed recently
(Fortt and Schulson, 2009; Lishman and others, 2011). Such
a model enables us to explain the change in the friction
coefficient when varying sliding velocity along Coulombic
shear faults or slip histories. The experiments performed
by Fortt and Schulson (2009) at −10◦C on sliding along
Coulombic shear faults in ice suggest that the ice/ice friction
coefficient is velocity-dependent and varies between 0.6 and
1.4, depending on the applied sliding velocity along the fault.
As these last results are the closest to our case, we used a
mean value of μice/ice0 = 1 in our calculation.
Once the block slides, the dynamics is controlled by a

kinetic friction coefficient, which is in general smaller than
the static coefficient, μice/ice0 . At low temperatures, Kennedy
and others (2000) and Fortt and Schulson (2009) found a
relatively constant friction coefficient around 0.6 for sliding
velocities less than 10−4 m s−1, and rapidly decreasing
values down to 0.1 at velocities more than 10−4 m s−1. As
velocities more than 10−4 m s−1 are not expected in our
model describing the nucleation phase of the catastrophic
rupture, we assume a kinetic friction coefficient, μd = 0.6.
Next, we turn to the evaluation of coefficient A (and B,

since we have made the simplifying assumption that B = A)
in the rate- and state-dependent friction law (Equation (1)).
Laboratory experiments suggest that A is smaller than μ0 by
typically one and sometimes up to two orders of magnitude
for rock (Scholz, 1998, 2002; Ohmura and Kawamura,
2007), ranging from 0.01 to 0.2. A recent experiment on
saline ice suggests that A could be significantly higher for
ice (A ≈ 0.3; Lishman and others, 2011). As we do not
have access to strong experimental constraints and since the
friction law should be valid for both ice/ice and ice/bedrock
friction, we choose A ≈ 0.1, corresponding to one-tenth of
the static friction coefficient, which is the upper limit given by
Ohmura and Kawamura (2007) for rock. This choice seems
reasonable for both cases.
The last parameter to be determined is θ0 in Equation (4).

In the case of a glacier, the sliding velocity is typically of
the order of centimeters per day. Therefore a roughly correct
estimate is δ̇0 ≈ 1 cmd−1. Dc can be interpreted as a
characteristic slip distance over which different asperities
come in contact. It is difficult to decide this value. Recent
seismological literature reports that Dc lies in the range of
tens of centimeters to meters for earthquakes (Mikumo and
others, 2003; Zhang and others, 2003). We arbitrarily choose
Dc � 1m. Inserting this value in Equation (4), we obtain
θ0 = 100days.
To account for the heterogeneity and roughness of the

sliding surface, the state variable θi is reset to a new random
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value once the dynamical sliding stops. This random value
should not be chosen too low, so a block which just stopped
sliding does not switch immediately into a new dynamical
phase (i.e. tf = 0). Thus, we assign θi = νθ0, with ν uniformly
distributed between 0.5 and 1.5.
Finally, the possible water lubrication of the bedrock

leading to a progressive decrease of the ice/rock frictional
resistance is modeled using a progressive decrease of the
friction coefficient, μ0, at the interface between the simulated
ice block and the basal surface. In this way, we account
for the progressive onset of the temperate central zone by
changing only one parameter.

3.4. Creep law
As discussed in section 3.1, bonds are modeled as linear
springs in parallel with an Eyring dashpot. The springs
transmit the forces associated with the relative displacements
of the blocks. The spring stiffness has also to be evaluated in
order to reflect the elastic property of the bulk ice mass. In
continuous elasticity, Hooke’s law of elasticity relates stress,
σ, and strain, ε, via Young’s modulus, E : σ = Eε. This
leads to the expression: σbulk = Eice(δL/L). This stress is
applied to a side surface of the block, S = HL (where H
is the height and L the length of the surface), leading to an
equivalent force in the bulk, Fbulk = Eice(δL/L)S. A linear
spring is subjected to forces given by Fbond = Kbond δL. In
order to find an equivalent behavior, these two forces have
to be of the same order, leading to a spring stiffness given
by Kbond = EiceH. Usually values for Eice are reported to
be 9GPa (Petrenko and Whitworth, 1999; Petrovich, 2003).
However, there is a disagreement of an order of magnitude
between measurements of E in the laboratory (9GPa) and
field observations (∼1GPa), as argued by Vaughan (1995).
Depending on the applied stress, ice has either linear

viscous or nonlinear viscous behavior. In glaciers, ice creep
is usually described by a nonlinear viscous rheology, called
Glen’s flow law (Hutter, 1983, and references therein). This
law relates strain rate and stress in the secondary creep
regime under steady-state conditions. It is thus not possible
to use this law to describe tertiary creep and the rupture
of a bond. However, Hutter (1983) states that the so-called
Prandtl–Eyring flow model shows behavior compatible with
Glen’s flow law at low stresses. Nonlinear viscous behavior
is introduced in our model with an Eyring dashpot in parallel
with a linear spring of stiffness, Kbond (which is analogous to
the Prandtl–Eyring flowmodel), following Nechad and others
(2005). Its deformation, e, is governed by the Eyring dashpot
dynamics:

de
dt
= K sinh

(
βsdashpot

)
, (5)

where the stress in the dashpot, sdashpot, is given by

sdashpot =
s

1− P (e) − Ee . (6)

Here s is the total stress applied to the bond and P (e)
is the damage accumulated within the bond during its
history leading to a cumulative deformation, e. P (e) can
be equivalently interpreted as the fraction of representative
elements within the bond which have broken, so the applied
stress, s, is supported by the fraction, 1− P (e), of unbroken
elements. Following Nechad and others (2005), we postulate
the following dependence of the damage, P (e), on the

deformation, e:

P (e) = 1−
(

e01
e + e02

)ξ

, (7)

where e01, e02 and ξ are constitutive properties of the bond
material.
Finally, by combining the previous equations, Faillettaz

and others (2010) found a creep model that computes the
critical time (i.e. failure of the bond) as a function of the
stress experienced by the bond, s, given by:

tc =
{

1
K exp(−γs) if s > s�

→ ∞ if s ≤ s�
(8)

where

γ =
βeξ02
eξ01

(9)

and

s� = E
(
e01
μ

)μ (
μ− 1
e02

)μ−1
. (10)

Creep properties are defined by the parameters K , β, e01, e02
and ξ, that we need to fix for our simulations.
We need to find the most appropriate parameters to

describe the creep behavior of ice. The ice of natural
glaciers has a complex polycrystalline structure composed
of crystals of different sizes. From Equation (7), a fraction,
1 − (e01/e02)

ξ, of all the representative elements present
undergo abrupt failure immediately after the stress is applied.
Since ice does not show significant damage immediately
after being loaded, a reasonable assumption is e01 = e02.
The relative heterogeneity of the material is introduced with
the parameter ξ. Despite its complex structure, ice is a
fairly homogeneous material compared to a fiber matrix
composite. The more homogeneous a material, the greater
ξ. In the following, we set ξ = 10 which means that ice is
not very heterogeneous; e.g. Nechad and others (2005) used
ξ ≈ 2 for a fiber matrix composite. Moreover, as e01 = e02,
it is ξ that influences parameter s�, i.e. the critical stress
above which damage starts. The change in s� values is small
compared with that of ξ (e.g. ξ = 2 ⇒ s� = 7.5 × 10−4E ,
ξ = 5⇒ s� = 2.4× 10−4E , ξ = 10⇒ s� = 1.4× 10−4E ).
The other parameters describing the deformation of the

Eyring dashpot under an applied stress are β for the nonlinear
term and K for the linear term. It is difficult to infer such
parameters for ice. Nechad and others (2005) used β = 50 ×
10−9 Pa−1 and K = 105 s−1 for a fiber matrix composite.
As ice is significantly weaker, we arbitrarily choose β =
10−7 Pa−1 and K = 10−3 s−1. With a tensile strength of ice
of 1MPa, we obtain, from Equation (5), de/dt = 10−4 s−1,
which is coherent with the behavior of polycrystalline ice
(Schulson and Duval, 2009).

4. NUMERICAL RESULTS
The aim of the numerical simulations is to test the different
causes of the rupture summarized by Röthlisberger (1981)
and described in section 2.2. In particular, we intend to
provide answers to the following:

What is the influence of glacier geometry on the
instability?

Can such a rupture occur without changes of the basal
properties?
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a b

c d

e f

t = 19.00 dayst = 19.00 days t = 19.25 days

t = 24.75 dayst = 22.00 days

t = 29.75 days t = 40.50 days

Fig. 11. Six snapshots describing the rupture progression and sliding instability in the block lattice with a constant friction coefficient, μ0,
for all blocks, due to an increase of the weight of the blocks (simulating a positive mass balance). The blocks are presented as points at the
nodes of the square lattice. The color of each bond indicates the time remaining to rupture: red (close to rupture) to blue (far from rupture).
Bonds in compression are drawn as thick black lines. Bonds without unstable tertiary creep damage are represented as thin black lines.
Similar results are obtained by progressively decreasing the friction coefficient for all blocks.

How rapidly does the instability develop?

Can we expect some precursors?

4.1. Description of the simulation
Blocks are distributed in a regular mesh on the inclined
plane, so bonds are initially stress-free. At each time-step
we evaluate, for each block, the local bed slope from the
DEM of the Altels area (Fig. 10). This aims to mimic the real
topography of Altelsgletscher. To determine the causes of the
glacier collapse, we test the different contributions described
by Röthlisberger (1981) (section 2.2).
Table 1 summarizes the parameters used in our simula-

tions.

4.2. Qualitative results
Is the 1895 Altels collapse solely due to glacier
thickening?
To answer this question, we tested the case of a constant
friction coefficient in the presence of a progressive increase
of block weight. This means that mass is added at a constant
rate on each block. In all the simulations performed, results
show that an instability starts from the upper part of the
glacier, in contradiction to the observations (Fig. 11). This
could be explained by the bedrock topography; the slope is
indeed steeper in the upper part, inducing an initial sliding of
the upper blocks. Then this instability propagates downwards
and the whole glacier collapses.
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Table 1. Parameters used for the simulation. n is the linear dimension
of the lattice of blocks, which has a total of n × n blocks

Parameter Value

Geometric parameters
n 70
mblock 24.75× 106 kg
φ 30–45◦

Friction parameters
A 0.1
θ0 100days
μ0 1
δ̇0 10−3 md−1

Creep parameters
E 109 Pa
β 10−7 Pa−1
C ∼ 1/K 103 s
ξ 10
e01 0.003
e02 0.003

The progressive thickening is therefore not the cause of the
1895 Altels break-off event.

Is the 1895 Altels break-off due to uniform warming
conditions at the bedrock?
At such altitudes the glacier is expected to be cold,
i.e. frozen onto its bedrock. But we saw above that it
experienced successive extremely hot summers, which could
have initiated the break-off. Warming conditions could
lead to a lubrication at the bedrock, due to penetration
of meltwater and the consequent increase in basal water
pressure. This can cause decoupling of the glacier from
its bedrock and a decrease in friction between ice and
bedrock. There are two ways to model uniform warming
conditions in our model: (1) uniformly decreasing the
friction coefficient under each block and (2) decreasing the
tangential component of the weight of each block. We tested
both approaches, and found very similar qualitative results.
Again, as expected, the whole glacier collapses, starting from
its upper part (Fig. 11), for the same topographical reasons
as explained above.
Differential evolution of the basal properties likely affects

the stability of this glacier.

Is the 1895 Altels collapse due to a local decrease in
the friction coefficient?
We now show that the most likely scenario to reproduce the
geometry of the observed rupture is to progressively modify
the basal properties in a restricted zone, corresponding to the
likely temperate area at the bedrock (Röthlisberger, 1981).
In the following, the friction coefficient is decreased

at different rates, δμ/δt , on three different surface areas
(Fig. 12), corresponding to the assumed temperate bedrock
zone. This simulates water penetrating the glacier and
lubricating the ice/bedrock interface.
Figure 13 shows the evolution of the set of blocks in the

regime where the instability develops. Different phases can
be distinguished during this simulation:
In the following, the value of μ0 is set larger than

arctan(max(φ)), where φ is the slope evaluated from the DEM
of the glacier bed. In this way, the glacier is assumed to be

c

a

b

Fig. 12. Zones where the basal friction coefficient is decreased. Their
extension was determined according to Röthlisberger (1981) (see
Fig. 5).

stable when the simulation starts. At each numerical time-
step, the friction coefficient, μ0, is decreased by δμ/δt .

1. Initially, blocks situated in the zone where the friction
coefficient is decreased start sliding where the bedrock
slope is largest. Sliding of these blocks leads to a change
in stress experienced by the bonds. This internal bond
deformation propagates upstream (Fig. 13a).

2. Then the glacier starts accommodating its new stress state,
resulting in a quiet phase. The number of sliding blocks
progressively increases, leading to stronger interactions
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aa b

c d

e f

t = 194.50 days

t = 198.25 dayst = 197.00 days

t = 200.75 days t = 215.50 days

t = 195.75 days

Fig. 13. Six snapshots showing the rupture progression and sliding instability in the block lattice for the largest zone where the basal friction
coefficient was progressively reduced. The blocks are presented as points at the nodes of the square lattice. The color of each bond encodes
the time remaining to rupture: red (close to rupture) to blue (far from rupture). Bonds in compression are drawn as thick black lines. Bonds
without unstable tertiary creep damage are represented as thin black lines.

and to synchronization of the sliding blocks (Fig. 13d
and e).

3. After a certain time (depending on δμ/δt ) the lattice starts
fracturing. A large crack appears perpendicular to the
main slope around the middle of the lattice (Fig. 13b and
c). This corresponds to the opening of the crevasse just
below the bergschrund (Fig. 4b).

4. The final instability develops. The blocks located below
the upper crevasse start to accelerate and a fracture of side
bonds propagates in the bedrock slope direction, forming
an unstable slab, which finally slides off (Fig. 13f).

Initiation of the instability
For each of the three process zones (i.e. the area where the
friction coefficient is decreased) and for different rates of
decrease of the friction coefficient (RDFCs), δ(μ)/δ(t ), we
show the number of sliding blocks at each time-step in
Figure 14. It appears that, in all cases, the instability evolves
rapidly, typically within 1–2 days. Two different regimes can
be distinguished: a first quiescent one, in which isolated
blocks slide, and a second active one, in which blocks start
to slide in clusters, leading to the final collapse.
The number of sliding blocks after the onset of the

instability depends on the RDFC. The greater the RDFC, the
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Fig. 14. Fraction of sliding blocks within the glacier for different
δμ/δt as a function of time, for the three different process zones
(minimum, medium and maximum corresponding to Figure 12a, b
and c, respectively).

larger the number of sliding blocks. When the RDFC is small,
the glacier has time to adapt to changes in basal conditions.
In this case, the size of the initial unstable cluster is strictly
given by the size of the process zone.
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Fig. 15. Fraction of the surviving bonds within the glacier for
different RDFCs, δμ/δt , as a function of time, for the three different
process zones (minimum, medium and maximum corresponding to
Figure. 12a, b and c, respectively).

Damage evolution within the glacier
In order to measure the damage evolution within the glacier,
we count the number of surviving bonds during each
simulation. Figure 15 shows the number of surviving bonds
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Fig. 16. Evolution of the energy stored in the bonds, Eb, of the kinetic
energy, Ek, and of the radiated energy, δEr, during the destabilization
process.

within the lattice at each time-step for different process zones
and different RDFCs. A rapid increase in the damage a few
days after the initiation of the instability can be observed
for all simulations. Moreover, this increase does not seem to
depend on the RDFC. Results show that, once the behavior
enters the active regime, bonds start to fail, leading to the
opening of the crown crevasse. That the crevasse opens very
rapidly, typically within a few days, was observed by Heim
(1895).

Energy analysis
In order to detect precursors to the rupture, we investigated
the evolution of the energy stored in the bonds, the kinetic
energy (corresponding to the flow velocity) and the radiated
energy (i.e. energy released by the rupture of bonds) during
the destabilization process (Fig. 16).
Six phases can be distinguished. (1) The glacier remains in

a stable phase. (2) Initiation of the instability. (3) The number
of sliding blocks drastically increases. (4) The number of
sliding blocks reaches a maximum and the energy stored
in the bonds increases. Note that the increase of kinetic
and radiated energies starts to be visible. (5) The energy
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s)

Fig. 17. Time of rupture, ti, as a function of the RDFC, δμ/δt ,
for the medium process zone. The dotted line plots the equation:
ti ∼ (δμ/δt )−0.82.

stored in the bonds drops because the crown crevasse opens.
The number of sliding blocks remains unchanged and the
instability is now established. Both the kinetic and radiated
energies increase. (6) After an increase of the energy stored
in the bonds, clusters of bonds fail.
These results show that no precursor to the instability

can be inferred from the time evolution for the energies
considered earlier than a few days before the break-off.

4.3. Quantitative results
The results obtained with the spring–block model are
summarized in the following.

Occurrence of the instability as a function of δ(μ)/δ(t )
To assess whether the RDFC, δ(μ)/δ(t )), influences the
final time of rupture, we performed independent runs with
different rates and evaluated their respective rupture times.
The results show that the rupture occurs earlier for greater
RDFC, which is not surprising (Fig. 17). However, the time
of rupture does not depend linearly on RDFC but follows a
power law with an exponent, b, of−0.82. The exponent was
estimated using the maximum-likelihood fitting method with
goodness-of-fit tests based on the Smirnov test (e.g. Clauset
and others, 2009). This means that for small RDFC the glacier
has time to adapt to these changes and the final instability
arises later than in the case of large RDFC.
The influence of the surface area of the process zone, S, on

the time of rupture, ti, was tested and we found an inverse
effect compared with the RDFC. Specifically, a glacier for
which a large RDFC acts on a small process zone becomes
unstable after the same time as a glacier subjected to a
small RDFC applied to a large process zone. This can be
summarized by plotting the reduced variable tiS

0.78 as a
function of (δμ/δt )−0.82, as shown in Figure 18.
The determination of these two parameters is not yet

possible, especially for the area of the process zone. The
collapse of three power laws shown in Figure 18 can be
rewritten as ti ∼ [S(δμ/δt )]−ν , where ν ≈ 0.8. This
law expresses a combined ‘size’ effect (through the term
S) and a rate-dependence effect (through the term δμ/δt ).
Similar behavior is found in most heterogeneous mechanical
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systems going to failure (Collins, 1993; Carpinteri, 1996).
Interestingly, the combined dependence of the failure time,
ti, on the unstable area, S, and on the rate, δμ/δt , is
through their product, suggesting that the driving mechanism
for the failure time is the total shear force applied to the
unstable area.

5. CONCLUSIONS
The Altelsgletcher fall of 1895 is the largest known icefall
in the Alps. The mechanisms leading to this event are
not fully understood. With a new model, developed by
Faillettaz and others (2010), of the progressive maturation
of a heterogeneous mass towards a gravity-driven instability,
characterized by the competition between frictional sliding
and tension cracking, we have contributed to a better
understanding of this event. We used an array of sliding
blocks on an inclined (and curved) basal topography, which
interact via elastic–brittle springs. A realistic state- and
rate-dependent friction law was used for the block/bed
interaction. We modeled the material properties of the mass
and its progressive damage eventually leading to failure, by
means of a laboratory-based stress corrosion law governing
rupture of the springs.
Our simulations show that the only way to reproduce the

particular arch shape of the crown crevasse was to reduce
the basal friction coefficient in a limited area. Such a break-
off arises because of the onset of a weak zone at the interface
between the glacier and its bedrock, probably due to
infiltration of meltwater trapped within the glacier. Climatic
observations indicate that the air temperature increased
during summers in the 3 years before the event, supporting
this assumption.
A two-step behavior can be seen from our simulations:

(1) a quiescent phase without visible changes with a duration
depending on the RDFC, followed by (2) an active regime
with a rapid increase of basal motion within a few days
before the break-off. As a consequence of the increased
basal motion, a crown crevasse opens (as was observed)
and the final rupture occurs. This means the destabilization
process of a hanging glacier due to progressive warming of
the ice/bed interface towards a temperate regime is expected
to occur without any visible sign, until a few days prior to
the collapse.
The area of the process zone and the RDFC have an

equivalent relative influence on the time of onset of the
instability. A small process zone area with a large RDFC will
lead to the same behavior as a large process zone area with
a small RDFC. From a practical point of view, knowledge of
both parameters is needed to predict the onset of such an
instability. Unfortunately, the a priori determination of these
parameters is far from possible, particularly the area of the
process zone.
Faillettaz and others (2008, 2011) showed that seismic

measurements could help to predict the approaching
mechanical instability of cold hanging glaciers with some
seismic precursors (e.g. by using changes in the statistical
behavior of icequakes). Unfortunately, we could not infer any
seismic precursors prior to the instability of Altelsgletscher
from our modeling results.
In a more general context, climate change may affect the

stability of cold hanging glaciers. Moreover, as the rupture
process takes some time to develop and external precursors
are only visible a few days prior to the break-off, some cold
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Fig. 18. Time of rupture, ti, as a function of δμ/δt . The dotted line
plots the equation: tiS0.78 ∼ 116(δμ/δt )−0.82.

hanging glaciers could already be in the unstable phase
where the instability is developing. Early warning of such
events is still far from being possible.
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APPENDIX
Initiation of sliding for a single block
In section 3.3 we described the subcritical sliding process of
a given block interacting via state- and velocity-dependent
solid friction with its inclined basal surface. When the
subcritical sliding velocity, dδ/dt , diverges (we refer to the
time when this occurs as the ‘critical time’, tf , for the
frictional sliding instability), this indicates a change towards
a dynamical sliding regime where inertia (the block mass and
its acceleration) has to be taken into account.
In this appendix we explicitly calculate how the critical

time, tf , is obtained and define its dependence on the
parameters and boundary conditions. Let us call T ≡
‖∑ �Fbond − Tweight�x‖ (or N ≡ Nweight) the total shear (or

normal) force exerted on a given block, where �Fbond is the
force exerted by a neighboring spring bond, and Nweight and
Tweight are the normal and tangential forces due to the weight
of the block. We then have

μ =
T
N
= tanφ, (A1)

where φ is the angle of the basal surface supporting the block.
Therefore,

μ0 + A ln
δ̇

δ̇0
+ B ln

θ

θ0
= tanφ . (A2)

As mentioned in section 3.3, A− B is usually very small for
a natural material: A−B ≈ ±0.02. For the sake of simplicity,
we assume A = B. As discussed in section 3.3, this choice
is not restrictive as it recovers the two important regimes
(Helmstetter and others, 2004). This leads to

ln
δ̇

δ̇0

θ

θ0
=
tanφ− μ0

A
, (A3)

whose solution is

δ̇θ = δ̇0θ0 exp
(
tanφ− μ0

A

)
. (A4)

Combining Equations (2) and (A4), we obtain

θ̇ = 1− θδ̇

Dc
= 1− δ̇0θ0

Dc
exp

(
tanφ− μ0

A

)
. (A5)

Integrating

θ = θ0 +

⎡
⎣1− δ̇0 θ0 exp

(
tanφ−μ0

A

)
Dc

⎤
⎦ t , (A6)

and, using Equation (A4), we obtain

δ̇ =
δ̇0 θ0 exp

(
tanφ−μ0

A

)

θ0 +
[
1− δ̇0θ0

Dc
exp

(
tanφ−μ0

A

)]
t
. (A7)

This expression exhibits the usual regimes: a finite time

singularity is obtained for δ̇0θ0 exp
(
tanφ−μ0

A

)
> Dc. In this

case, Equation (A7) can be rewritten as

δ̇ =
Dcδ̇0θ0 exp

(
tanφ−μ0

A

)

Dc − δ̇0θ0 exp
(
tanφ−μ0

A

) 1
tf − t

(A8)

with

tf =
Dcθ0

Dc − δ̇0θ0 exp
(
tanφ−μ0

A

) . (A9)
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We can simplify Equation (A8) using the condition that, for
μ = tanφ = μ0, we should have tf → ∞. But, when μ = μ0
then exp

[
(μ− μ0) /A

]
= 1 and thus, for the condition

tf → ∞ to hold, we need

δ̇0θ0
Dc

= 1. (A10)

The final expression for the critical time, tf , signaling the
transition from subcritical sliding to dynamical inertial sliding
is, for μ > μ0,

tf =
θ0

exp
(
μs−μ0
A

)− 1 , (A11)

while tf → ∞ for μ ≤ μ0. Note that the dependence on δ̇0
has disappeared due to the relation of Equation (A10).
To summarize, a given configuration of blocks and spring

tensions determines the value of T ≡ ‖∑ �Fbond − Tweight�x‖
and N ≡ Nweight, and therefore of μ through Equation (A1).
Knowing μ and given the other material parameters, θ0,μ0
and A, we determine the time, tf , for the transition to the
dynamical regime for that block via Equation (A11).

General algorithm
The simulation of the frictional process for each block
proceeds as follows:

1. A given configuration of blocks and spring tensions
determines the value of T ≡ ‖∑�Fbond − Tweight�x‖
and N ≡ Nweight for each block and therefore their solid
friction coefficient, μ, corresponds to the ratio T/N.

2. Knowing μ for a given block together with other material
parameters (θ0,μ0 and A) for that block, the time for the
transition to the dynamical sliding regime, tf , is calculated
using Equation (3). The value of tf is the waiting time until
the next block starts to slide.

3. When the block undergoes a transition into the dynamical
sliding regime at time tf , its subsequent dynamics should
obey Newton’s law.

4. The dynamical slide of the block goes on as long as the
velocity of the block remains positive. When its velocity
reaches zero, we assume that the block is no longer
sliding. To account for the heterogeneity and roughness
of the sliding surface, we assume that the state variable,
θ0, is reset to a new random value after dynamical
sliding stops. This random value is taken to reflect the
characteristics of new asperities constituting the fresh
surface of contact.

5. After a dynamical slide, the forces exerted by the springs
that connect the block to its neighbors are updated, as
is the new gravitational force (if the basal surface has
a curvature), the new value of μ is obtained, the time
counter for frictional creep is reset to zero, and a new
process of slow frictional creep develops over the new
waiting time, tf , that is, in general, different from the
previous one.

In summary, simulation of the damage process leading to
bond rupture between blocks proceeds as follows:

1. Given an initial configuration of all the blocks within the
network, the elastic forces exerted by all bonds can be
calculated from their extension/compression.

2. For each bond i subjected to an initial stress s0(i), we
calculate the corresponding critical time, tc,0(i) at which
it would rupture if neither of the two blocks connected
to it moved in the meantime. For those bonds where
s0(i) ≤ s∗, defined in Equation (8), tc,0(i) is infinite.

3. Some bonds will eventually fail, modifying the force
balance on their blocks and accelerating the transition to
the sliding regime, after which the stresses in the bonds
connected to the same blocks are modified.
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