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Abstract. We describe here the parallels in astronomy and earth science datasets, their anal-
yses, and the opportunities for methodology transfer from astroinformatics to geoinformatics.
Using example of hydrology, we emphasize how meta-data and ontologies are crucial in such an
undertaking. Using the infrastructure being designed for EarthCube - the Virtual Observatory
for the earth sciences - we discuss essential steps for better transfer of tools and techniques in
the future e.g. domain adaptation. Finally we point out that it is never a one-way process and
there is enough for astroinformatics to learn from geoinformatics as well.
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1. Introduction
Datasets in all walks of life are getting bigger as well as more complex owing to increas-

ing number of overlapping non-homogeneous observables, and varied spatial, temporal
coverage at different resolutions. As computers become faster, it is the complexity more
than the data volume that proves to be a bigger challenge. Different fields like astroin-
formatics, bioinformatics, geoinformatics are all trying to develop - often with the help
of statisticians and mathematicians - tools and techniques to attack problems that are
superficially different, but at the core have many similarities. It behooves us to identify
such similarities by abstracting the datasets from the raw observations and domain knowl-
edge, and then applying a standardized set of techniques to extract the possible science
from the datasets thereby avoiding the reinvention of the proverbial wheel. That is the
basic premise behind methodology transfer. A useful side-effect is improved tractability
and reproducibility. In practice, the situation is more complex than the brief description
above.

In the following sections we describe the forays in transferring methodology from as-
tronomy and space science to earth science. We start by noting the parallels in these
fields (Secn. 2). We then take the specific case of hydrology, along with the use of on-
tologies, to illustrate the basic principles of going from data to knowledge (Secn. 3).
We then describe EarthCube, an equivalent of Astronomy’s Virtual Observatory for the
Earth (Secn. 4). Finally we describe domain adaptation as a specific technique that can
be applied to earth data in the same fashion as we are doing in astronomy (Secn. 5).
This will be followed by a broader discussion (Secn. 6).

17

https://doi.org/10.1017/S1743921317000060 Published online by Cambridge University Press

http://orcid.org/0000-0003-2242-0244
https://doi.org/10.1017/S1743921317000060


18 A. A. Mahabal et al.

2. Parallels in astroinformatics and geoinformatics
2.1. Astronomy

In the recent past astronomy has been moving from static pictures of small samples of the
sky to be analyzed later in the coziness of one’s office, to the frantic real-time analysis of
movie-like rapid observations of large parts of the sky in pursuit of variations in individual
celestial sources that require immediate follow-up. Since, in a given source, time-scales for
such a variation to occur would shame glaciers, one has to observe rather large statistically
significant populations of objects. Owing to variety in distances, physical conditions, and
time-scales involved, a corresponding variety of instruments capable of capturing data at
different resolutions, and speeds, is required. The data volumes, currently in tens of TB,
are rapidly approaching the PB scales.

To cite specific examples, we have surveys with large number of epochs, and with high-
precision, in tiny areas of the sky, like Kepler (Hall et al. 2010), looking for exoplanets,
and surveys like the Catalina Sky Survey (CSS)/Catalina Real-time Transient Survey
(CRTS) looking at well over half the sky hundreds of times but at a lower resolution of
∼2” and finding a rich variety of Galactic and extra-galactic variables, as well as asteroids
(Djorgovski et al. 2011, Mahabal et al. 2011, Drake et al. 2012 etc.).

As we get to know the universe better, we repeatedly find objects of types that we
already understand well. Identifying the rare and new phenomena from the complex data
is a challenge. Only after these are identified can one follow them up with specialized
modes like polarimetry, spectroscopy etc.

Science for a given mission/program is well-defined and carried out by the resident
team. But there is always a lot more that is possible. It is when diverse datasets can be
combined that these additional goals become reachable with some ease. The complexity
to watch for when using multiple datasets is in terms of:
• Spatial distribution (data archives at geographically diverse locations),
• Spatial and temporal resolution of datasets (e.g. Hubble Space Telescope (HST;

http://www.stsci.edu/hst/) has an angular resolution of 0′′.1/pixel, and Transiting Ex-
oplanet Survey satellite (TESS) (Ricker et al. 2015) is proposed to be 10′′/pixel),

• Number of time epochs and their irregularity (favoring faster or slower phenomena),
• Overlap in coverage (e.g. DLS (Becker et al. 2004) covered a small area whereas

Gaia (Brown et al. 2016) is all-sky).
In a typical science case scientists have copious data from one survey, and look for cross-

matched objects from other surveys, and these data tend to have different resolutions,
have been observed at other wavelengths, and may have shorter or longer exposures with
smaller or larger aperture telescopes. Good meta-data still allows the combining of such
point-wise observations in order to build models involving the variations with time and
wavelength.

2.2. Earth Science

The situation in earth science is analogous to that in astronomy. Many satellites scan
the earth at different wavelengths and cadence, resulting in maps that are at different
resolutions and with irregular gaps (example observables include moisture, condensation,
over- and under-ground water, snowfall etc.). Besides the satellite measurements there
are in-situ measurements (e.g. water levels in wells), models (both predictive, and compu-
tational). Much like in astronomy these can then be combined in associative or predictive
ways. Data volumes often exceed those in astronomy due mainly to the abundance of
photons.
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Figure 1. Perspective view of Pasadena, CA created by draping a Landsat satellite image (at
30m × 30m) over a Shuttle Radar Topography Mission (SRTM) elevation model. Topogra-
phy is exaggerated 1.5 times vertically. The Landsat image was provided by the United States
Geological Survey and the image is in the public domain.

High spatial resolution from satellites varies from about 30m × 30m for Landsat
(https://landsat.usgs.gov/) images (see Fig. 1 for an example) all the way to 4km × 4km
for Tropical Rainfall Measuring Mission (TRMM; https://pmm.nasa.gov/trmm) radar,
which operated for 17 years from 1997 to 2015. The precipitation model of TRMM can
be termed as medium resolution with 0o .25× 0o .25, whereas the 1o × 1o resolution of the
Atmospheric InfraRed Sounder (AIRS; http://airs.jpl.nasa.gov/) surface air temperature
measurements can be termed as low spatial resolution. The cadence too varies from under
one per day, to about two per day. Data latency variability is unique to space-based sen-
sors. It varies anywhere from once every three hours, to once every three months. This is
true for astronomical observatories too. TESS, for instance, will downlink once every 15
days. Space-based data tend to be sparser owing to slower links (Gaia downlinks only 1D
projections of images), and the computers too tend to be older because space-proofing
and extensive testing is required before launch.

2.3. Tools
Tools used in both astroinformatics and geoinformatics come in two types: the generic
ones include, for example, programming languages that are typically used, as well as li-
braries based on them. Standardization is more extensive today than years ago, and owing
to better connectivity and open source efforts, it is getting even better. Python, for in-
stance, is extensively used, and when advanced statistical methods are required, R is the
language of choice. However more established, but licensed, systems like MatLab and IDL
also get used (this is true in bioinformatics as well). Things differ when it comes to tools
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that are not as multi-purpose as languages, and such tools could either be proprietary
or open e.g. Geographic Information Software like ArcGIS (https://www.arcgis.com/),
Grid Analysis and Display System (GrADS; http://cola.gmu.edu/grads/), HydroDesk-
top (https://hydrodesktop.codeplex.com/), Google Earth Engine (https://earthengine.
google.com/) etc. for earth science. These typically get used for one or more datasets,
often voluminous. The difficulty in using them for more datasets is generally the non-
uniformity of data-formats. Thus, details at a lower-level get set in stone as the differences
get propagated. However, standards from organizations like Open Geospatial Consortium
(OGC; http://www.opengeospatial.org/) have gone a long way to help bring earth sci-
ence data together. Similarly, the Distributed Active Archive Centers (DAACs) have
contributed to the improvement of interoperability for earth science data. In astronomy
the Flexible Image Transport Format (FITS) (Pence et al. 2010 and references therein)
has been used for a long time and that standardization is built-in to almost all datasets,
with the flexible format evolving to include data tables, and multiple images, and the
standardization has hugely benefited the community.

The standardization effort was greatly boosted by the formation first of the National
Virtual Observatory (NVO) (Brunner et al. 2001, Djorgovski and Williams 2005) for as-
tronomy, followed by the Virtual Astronomical Observatory (VAO) (Hanisch 2010). Var-
ious tools were built including the Data Discovery tool† to discover available resources
on specific sources, the Cross-matching service‡ to cross-identify sources in catalogs at
different wavelengths, and with different resolutions, Iris, the Spectral Energy Distribu-
tion analysis tool (Laurino et al. 2013, Laurino et al. 2014) and the Time Series search
tool¶. Many times some subset standard VO functionality (e.g. basic cross-matching)
became so ingrained in the daily scientfic workflow that it often ceased to be recognized
as due to the Virtual Observatory. That is the hallmark of a good tool.

The workflow tools used in astroinformatics and geoinformatics are also inherently
exchangeable. This is because the progress from measurements, to products, to appli-
cations also parallels each other in the two fields. For example, a satellite does regular
measurements of the weather, models are then built indicating excess rainfall in a hilly
area, and a flash flood warning is issued. Or a telescope observes an area of the sky, new
measurements are compared with old observations, a much brighter object is found very
close to a galaxy, and a possible supernova is announced which can then be verified by
other teams.

To make the example more concrete, consider this example: Satellite Aqua using the
AIRS sensor measures 3D Atmospheric Temperature, Humidty, Clouds and does such
a prediction (ARSET -https://arset.gsfc.nasa.gov/ - has examples). On the other hand,
in astronomy, CRTS uses new CSS observations, compares them with its DR2 catalog,
cross-matches with a galaxy catalog, and finds the supernova.

The comparison stops there though. The data latency for earth observations tends to
be more than in astronomy. The various earth data centers are distributed and managed
by many different groups that also represent many different sponsors and funding sources.
As such, their level of interoperability it limited. These generally do not communicate
with one another in real-time. Being distributed is fine, but they should strive to provide
interoperability to establish a virtual data environment. The level of interoperability is
often the result of different access methods, data representations, and governance rules.

† http://www.usvao.org/index.html%3Fpage id=344.html
‡ http://www.usvao.org/index.html%3Fpage id=364.html
¶ http://www.usvao.org/index.html%3Fpage id=370.html
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Figure 2. Architecture for the Water Management stack. Accumulo as the DB, HDFS forming
the backup, mapreduce and Spark powering the computation, and GeoMesa/GeoTrellis provid-
ing the indexing; various webservices and Python/R providing the interfaces.

Figure 3. The workflow layers for WaterTrek. From raw observations of various forms of water
short and long term trends are derived. These are then visualized and fed to query based systems
to answer research questions.

The joint initiative on data science and technology established between JPL and Cal-
tech is focused on improving methodology transfer by leveraging existing work in astroin-
formatics and geoinformatics. There exist parallel efforts elsewhere towards this end (for
example, in Europe, it is under the aegis of the COST foundation - http://www.cost.eu/).
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2.4. Ontologies

Metadata are data about data and can be used to connect different datasets. An on-
tology is the methodical description of the semantic interrelationship between metadata
elements. To make the entire process of data fusion from diverse sources more standard-
ized, one needs good ontologies.

Earth science does have its own ontologies and related communities e.g. ONTOLOG
(http://ontologforum.org), OGC, Semantic Web for Earth and Environment Terminology
(SWEET) (Raskin and Pan 2003) etc. Too many distinct ontologies defeat the purpose
though - it is like having multiple standards that do not interface well (Uschold and
Gruninger 2004). Standardization in ontologies is thus a fundamental requirement. That
is possible by starting from a core ontology and extending it in areas that interface with
it, creating mappings, and gradually encompassing the entire discipline.

That is what is being done by using the framework for the Planetary Data System
(PDS) ontology (Hughes et al. 2016). Built into the PDS ontology is interoperability
at multiple levels: (1) Agency to agency - here it is important that the same standards
have been adopted by both the agencies. The common terminology and skeletal stan-
dards then allow bringing in additional agencies seamlessly, (2) Semantic level - this
is governed by commonality in concept definitions. Programmatic interoperability also
becomes possible through the use of such common namespaces, (3) Application level -
semantic support at the systems interaction level allows users to treat seemingly differ-
ent applications on par and use them transparently with each other. The resulting data
model, PDS4 (Hughes et al. 2009), captures the knowledge about the planetary science
digital repository at several levels of specificity and provides a means by which both
humans and machines can “communicate” about the digital content of the repository.
The interoperability is enabled by multi-level governance at the discipline, mission etc.
levels. A standard vocabulary then results.

The Zachman Framework of Enterprise Architecture (Zachman 1987) partitions ele-
ments into “why”, “how”, “what”, “who”, “where” and “when”. The PDS4 Information
Model encompasses the “what” element i.e. the data being processed or archived. By
being agnostic to the “how” element, it stays flexible to incorporate a variety of “what”s.
The VOEvent/Skyalert framework (Williams et al. 2012) used for astronomy transient
alerts use the same terminology, but also incorporate the “where” and “when” as the com-
munication is primarily about events, generally with real-time requirements. PDS4 thus
includes aspects of interoperability in its information model, and in the design and im-
plementation of the infrastructure supporting the archive holdings. The astronomy/PDS
ontology models are being applied to bioinformatics as well as geoinformatics.

3. Hydrology
Western States Water Mission (WSWM) has developed WaterTrek, an interactive web-

based analytics environment. It takes in data with multiple resolutions and provides
timely actionable information. This involves a close collaboration of hydrological model-
ing and data science expertise in a mission-style project architecture.

It is critical, in the big data era, that such a framework support different architectural
decisions that may change over time (Rutledge et al. 2014). Thus, a higher level concept
of data management and analysis needs to be built. The framework consists of a reusable
software stack with primary components like access, computation, workflow, storage, etc.
separated. Plug-in algorithms can then support data fusion, classification, and so on.

Earth data are typically in the form of vectors and areas. Analytics allow averaging over
time-periods as well as area/polygons. Data-fusion in this context allows (1) populating
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Figure 4. Correlations for a large number of statistical features for time-series from CRTS and
PTF datasets for a set of about 50000 variable sources. Top-left and bottom-right quadrants
are self-correlations for the two surveys. The other two quadrants compare the two surveys with
each other. It is clear that correlation between identical statistical abstractions from time-series
from two different surveys is almost non-existent. Fig. courtesy J. Li, S. Vaijanapurkar.

the datasets with metadata as needed, (2) ensuring compatibility of metadata through
ontology mapping, and (3) constructing interpolated surfaces and data-cubes using time-
series data from the suite of water storage observations. For diverse systems, metadata
homogenization is required as also query-mapping.

The geographic distribution of the large datasets involved imply that the entire datasets
can not be moved on demand for computation. Fig. 2 shows the architecture adopted
in such a scenario. Data are organized in a data store with indices to allow scalable
access. Measurements are stored in Apache Accumulo, a NoSQL DB, which combined
with geospatial indexing allows for the handling of feature and raster data by GeoMesa
(Fox et al. 2013) and GeoTrellis (http://geotrellis.io/) respectively. Raw data are backed
up using HDFS. Spark framework is appropriate for the scalable analytics required as
well as for analytic pipelines. Analytics include computing various short- and long-term
trends, in order to answer questions about inter-relationsships, and predicting at least
the near future (see Fig. 3).

4. EarthCube
EarthCube (https://www.earthcube.org/) is a NSF funded initiative to transform

Earthscience by developing cyberinfrastructure for sharing, visualizing, analysing Earth
data and resources. The funding started in 2011 and is expected to continue at least
until 2022 in the current round. It is a community driven effort to build interoperability
standards, better integration of existing and newer datasets. A side-effect will be the
democratizing of data which is in line with NSF requirements of data release and reuse.

Many projects - serving as building blocks - are being funded under EarthCube. Ex-
amples include (a) BCube (https://www.earthcube.org/group/bcube) to explore the use
of brokering technologies to make data discovery, sharing and access easier, (b) Scalable
Communiy-Driven Architecture (SC-DA - https://www.earthcube.org/group/scalable-
community-driven-architecture), (c) ECITE (https://www.earthcube.org/group/
earthcube-integration-testing-environment-ecite) an integration and test environment
creating a scalable, distributed computing facility for EarthCube as well as community
driven demonstrations. There are several other building blocks starting to provide niche
services. Joint Initiative on Data Science and Technology established between JPL and
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Figure 5. Using data from CRTS DR2, LINEAR, and PTF r-band surveys, classification per-
centages are shown when adding an increasing fraction of examples from the target domain to
the training set otherwise made from the source domain. The improving classification indicates
that one can start useful classification even before the sample from the target survey is large
enough to create its own training set. Fig. courtesy J. Li, S. Vaijanapurkar.

Caltech is involved in (b) and (c) above and drawing heavily on their experience from
astronomy, Planetary Data System, and Earth.

For example, for SC-DA (in which Element84 is also involved) we are developing a
conceptual architecture that aims to serve as the blueprint for the definition, construc-
tion, and deployment of both existing and new software components to ensure that they
can be unified and integrated into an evolutionary national geoinformatics infrastructure
for data that is part of EarthCube. It includes definition of process, technical, and in-
formation architectures based on a set of guiding architectural principles that examine
the lifecycle of data to ensure that different stakeholder needs are addressed. The ef-
fort will be to develop a scalable and extensible approach that can support both a data
and computationally intensive environment to enable scientific data management and
discovery.

Similarly, in ECITE we are actively engaging EarthCube and the wider geoinformatics
community in the definition of requirements, design, and testing of the seamless feder-
ated system consisting of scalable and location independent distributed computational
resources (nodes) across the US. The hybrid federated system will provide a robust set of
distributed resources utilizing public and private cloud capabilities. Resources from four
institutions viz. George Mason University (GMU), Amazon Web Services (AWS), Xtreme
Science and Engineering Data Environment (XSEDE), and the California Institute of
Technology (Caltech) have been integrated in the first steps for the DC2 deployment
(http://ecite.dc2.gmu.edu/dc2us2/).

5. Domain Adaptation
As an example of a novel methodology that may be useful in different scientific ar-

eas, we consider Domain Adaptation. We illustrate it with an example from astronomy,
but it can be easily generalized to other fields. Domain Adaptation allows us to com-
bine datasets with different resolutions, time-spans, time-spacing, as well as wavelength
ranges. It is thus an ideal tool for the kind of datasets described earlier. In general
when we obtain time-series data for a sample of objects using two such surveys, and

https://doi.org/10.1017/S1743921317000060 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921317000060


From Sky to Earth: Data Science Methodology Transfer 25

then a set of statistical abstractions from the time series, they do not correlate well due
to the differences mentioned above. Thus when we used data from CRTS, the Palomar
Transient Factory (PTF; http://www.ptf.caltech.edu/), and the Lincoln Near-Earth As-
teroid Research (LINEAR; http://neo.jpl.nasa.gov/programs/linear.html) survey data
the diagonals of the heatmap representing the cross-survey correlations confirmed that
(see Fig. 4 for the CRTS-PTF correlations, or the lack thereof). We used 50,000 variable
objects from CRTS in this comparison (Drake et al. 2014).

The lack of correlation due to differing properties does not mean that the datasets
can not be combined, but just that cleverer ways are required to make full use of them.
Domain Adaptation comes in multiple flavors. With the astronomy datasets we have had
success using CO-Domain Adaptation (CODA) where one adds different fractions of the
target sample set to the source sample set in order to improve classification for the target
set (see Fig. 5).

In exactly the same fashion we will be applying domain adaptation to earth science
datasets with varied resolutions, and temporal coverages to acquire a holistic overview
of a multitude of observables e.g. those related to water.

6. Discussion
Methodology transfer can almost never be unidirectional. Diverse fields grow by learn-

ing tricks employed by other disciplines. The important thing is to abstract data - de-
scribed by meaningful metadata - and the metadata in turn connected by a good ontology.
We have described here a few techniques from astroinformatics that are finding use in
geoinformatics. There would be many from earth science that space science would do
well to emulate. Even other disciplines like bioinformatics provide ample opportunities
for methodology transfer and collaboration. With growing data volumes, and more im-
portantly the increasing complexity, data science is our only refuge. Collaboration in
data science will be beneficial to all sciences.

We end this brief with a description of an Augmented Reality (AR) based outreach
tool created in the image of Pokémon GO. In Pokémon GO, the mobile-based AR game
that caught the world by storm a few months ago, as you traverse the surface of the
earth, magical creatures pop-up in the mobile-map of your surroundings. Such geolocation
techniques are used extensively by many other tools including various traffic apps, and
those locating different services around you. Sky maps, analogous to earth maps, exist
and in these can be placed rapidly fading transient sources found by surveys (e.g. CRTS
today and the Large Synoptic Survey Telescope (LSST; http://www.lsstcorp.org) in the
near future). Instead of being at a specific location, one just points the mobile device to
different parts of the visible sky to “catch” transients. That is an easy way to disseminate
information about such events to the public at large (outreach), but it can also be used as
a citizen science tool with contributions to classification of sources. We had developed a
tool to push CRTS events to mobile devices and now with undergrads at SUNY Oswego
we are working on an AR based system with gamification elements for astronomical
transient sources. Different people can choose to look for specific types of transients just as
one would subscribe to specific streams from a brokering service. Additional information
on each source is then retrievable, including light-curves, archival observations at various
wavelengths and times, positional and other ancillary information. This complex data
ensemble can trigger useful high-level connections in human neural networks that can be
fed back into the system for improved classification and iterative machine learning. Thus
methodology transfer doesn’t need to even be between sciences. There are opportunities
for many industries to learn from one another. Citizen science can certainly learn from
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other industries that are reaching massive groups of people through mobile technologies,
AR, and gaming. Here too, a clear ontology-aided workflow is important, a mantra worth
repeating.
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