
FINITE GROUPS WHICH CONTAIN A SELF-
CENTRALIZING SUBGROUP OF ORDER 3

WALTER FEIT and JOHN G. THOMPSON1*

Dedicated to RICHARD BRAUER on his sixtieth birthday

§1. Introduction

The polyhedral group (/, in, n) is defined in [33 by the presentation

(/, m, n) = <x, y, z\x1 = ym = zn = xyz = 1>.

It is known ([3] page 68) that (/, m, n) is finite if and only if

1 + JL + J L > L

I m n

The groups (2, 2, n) and (1, n, n) are respectively the dihedral group of order

In and the cyclic group of order n. Using the above mentioned criterion it

can be shown that the list of finite polyhedral groups is completed by including

9(4 = (2, 3, 3), ©4 = (2, 3, 4) and % = (2, 3, 5).

Let G be a finite group. If Ci, C2, C3 are three conjugate classes of G

which contain elements of order /, m, n respectively and if Ku K2, Kz are the

corresponding class sums in the group ring of G, a moment's reflection reveals

that in order to compute the multiplicity of Kz in KιK2 by group theoretic

methods as distinct from character theoretic methods it is necessary to deal

with factor groups of (/, m, n). R. Brauer and K. A. Fowler [1] first realized the

importance of this idea for studying finite groups. They were only concerned

with the groups (2, 2, n) but these were sufficient to prove some powerful

results about groups of even order. Using the groups (2, 2, n) this idea has

been used by many authors in recent years and has proved very fruitful for
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186 WALTER FEIT AND JOHN G. THOMPSON

the study of groups of even order. It is unlikely that knowledge about the

other polythedral groups can be utilized as widely as that for the groups (2,

2, ?ι). However, the other polyhedral groups can surely play a role in group

theory which is not totally eclipsed by the groups (2, 2, n).

The purpose of this paper is to illusjtrate how the above mentioned method

can be used with the group (3, 3, 3). By the result referred to above the group

(3, 3, 3) is infinite. However, it is manageable since, as is shown in section 2,

it has an abelian commutator subgroup.

The following result will be proved in this paper.

THEOREM. Let G be a finite group which contains a self'Centralizing sub-

group of order 3. Then one of the following statements is true.

(I) G contains a nilpotent normal subgroup N such that G/N is isomorphic

to either 9ί3 or @3.

(//) G contains a normal subgroup N which is a 2-group such that G/N is

isomorphic to 5X5.

(///) G is isomorphic to PSL (2, 7).

As an immediate consequence of this theorem we get

COROLLARY. Let G be a non-cyclic simple group which contains a self-

centralizing subgroup of order 3. Then G is isomorphic to % or PSL (2, 7).

If A is a subset of the group G then C(A)f N(A)9 <A>, \A\ will denote

respectively the centralizer of A, normalizer of A, group generated by A and

the number of elements in A. H<\G means that H is a normal subgroup of

G. If p is a prime then a Sp subgroup of G is a Sylow ^-subgroup of G.

Elements of order two are called involutions. For any subgroup H of G, 1H

denotes the principal character of H. If a is a class function of H then α*

denotes the class function of G induced by <x.

§2. The Group (3, 3, 3).

THEOREM 1. The group (3, 3, 3) possesses a normal abelian subgroup of

index 3.

Proof. Let

(3, 3,3) = <*, J ; | * 3 = / = U J 0 3 = = 1 > .

The relation (xy)* = l can be rewritten as
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Since y~2 =y and x~2 = x this implies that

Hence xy'1 and y~ιx commute. Conjugating this relation by x and x2 yields

y~ιx x~ιyΓιx~ι = x~ιy~ιx~ι y"xx

x^y^x"1 xy"1 = ry"1 x^y^x"1.

Thus i/ = <#/~\ y~1x, x~1y~1x~1>> is abelian. Since x permutes the three elements

xy~1> y'1x> ΛΓ1/"1*""1 cyclically x normalizes H. Hence y also normalizes H as

xy~ι<=ΞH. Thus H is a normal subgroup of (3, 3, 3). Since (3, 3, 3) can be

mapped homomorphically onto a non abelian group of order 27, H i s a proper

subgroup. As xy~x<E:H and x$Ht H has index 3 as required.

§3. Proof of the Theorem

Throughout this section let G be a counter-example of minimum order to

the theorem stated in section 1. Let x be an element of G such that #3 = 1 and

C(x) =<#>. It is easily seen that <*> is a S3 subgroup of G. We will even-

tually derive a contradiction from the assumed existence of G, This will be

done in a series of Lemmas.

LEMMA 1. G is a non-cyclic simple group.

Proof. Suppose this is not the case and let H be a minimal normal sub-

group of G. Suppose that 3 divides \H\. Then the Sylow theorems imply that

G = N«x»H. Thus LG:Eβ = 2 and M < * » ΠH = <#>. Hence by Burnside's

transfer theorem H contains a normal 3-complement HQ. Thus Ho <\G and

the minimality of H implies that Ho = l. Consequently G is isomorphic to (&a

contrary to assumption.

Assume now that 3 divides [G : Hi. Then <x> H is a Frobenius group.

Thus H is nilpotent ([2], page 91). It is easily seen that G/H satisfies the

hypotheses of the theorem stated in section 1. Thus by induction G/H satisfies

condition (I), (II), or (III). Therefore G contains a normal subgroup N such

that GIN is isomorphic to 9i3, S3, 9ί5 or PSL(2, 7). In any case <*>iV is a

Frobenius group and N is nilpotent ([2], page 91). If G/N is isomorphic to %i

or ©3 nothing remains to be proved.
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Let p be a prime dividing |jV|. We will show that p = 2 if G/N is iso-

morphic to 9ί5 while |iV| = 1 if G/N is isomorphic to PSL(2, 7). By induction

it may be assumed that N is an elementary abelian ^-group. Suppose that A

is a subgroup of G such that A Π JV= 1, A =*= A\ LA : A'] = 3 and p does not

divide |Λ|. Then A is a Frobenius group acting on N. Since x has no fixed

points on N we get that A1 acts trivially on N. Thus N<zC(N). Since

C(ΛO<]G and%3le. PSL(2y7) are simple, this yields that C(N) = G. Thus

N^C(x) or iV= 1. As both 2U and PSL(2, 7) contain a subgroup A which is

isomorphic to ΪU this implies that p = 2. As PSL{2,7) contains a nonabelian

subgroup of order 21 we get that iV=-l in this case. The proof is complete in

all cases.

LEMMA 2. G contains only one conjugate class of elements of order three,

and \G\ is even.

Proof. Lemma 1 and Burnside's transfer theorem imply that iV( <#»#<#>.

Thus | M < # » | = 6 . The result is immediate.

LEMMA 3. There exist exactly two non principal irreducible characters θ, X

of G which do not vanish on x. They can be chosen so that θ{x)•'= 1, %(x) = - 1

and 1 -f- θ(y) - X(y) = 0 for y not conjugate to x.

Proof. Let j b e a nonprincipal irreducible character of <*>. Let a be the

generalized character of iV(<#>) induced by l<t> ~.l Then it is easily seen

that lk*l!2 = 3 and

(1) * * ( * ) = * ( * ) = 3

a*(y) =0 for y not conjugate to x.

Consequently tf* = lG-f0-Z, where Z, d are distinct nonprincipal irreducible

characters of G. Furthermore 1-f diy) - YΛy) = 0 for y non conjugate to x.

Furthermore by (1)

1 = (θy a*) = —^{θix-1) + θ(x)} = θ(x)
Ό

Thus by (1) 7Λx) = - 1 . Consequently

Hence the orthogonality relations imply that every irreducible character of G,
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distinct from 1G, '/ and 0 vanishes on x. The proof is complete.

The next lemma is due to R. Brauer and M. Suzuki. We are indebted to

them for informing us of the result.

LEMMA 4. G contains exactly one class of involutions.

Proof. Any two involutions which normalize a subgroup of G of order 3

are conjugate. Suppose that G contains two classes of involutions then there

is one class containing involutions such that uv is not conjugate to x for any

u, υ in that class. Let C be the group algebra sum of this class of involutions

and let K be the group algebra sum of the elements of order 3. Thus the

coefficient of K in C2 is zero. Hence by a well-known formula ([2], page 316)

\G\ \ ^i(u)2M*± i 0

where C, ranges over all the irreducible characters of G. In view of Lemma 3

this implies that

. ,θ(u)2 __{0ίu)±l} 2 _

Therefore

//(l)2-f 0(l) + 0U)0U)2-f Θ(u)2-θ{l)θ{u)2-2θ(l)θ(u) -0(1) =υ,

or equivalently

Thus {0(l)-0(w)}2 = O and 0 ( 1 ) = 0 ( M ) . This implies that u lies in a proper

normal subgroup of G contrary to Lemma 1. The proof is complete.

Throughout the rest of this paper the following notation will be used.

K is the group algebra sum of all elements of order 3 in G.

C is the group algebra sum of all involutions in G.

u is a fixed involution in G.

M\, . . . , Ms+m is a complete set of representatives of the conjugate classes

of maximal solvable subgroups of G whose order is divisible by 3. By induction

each Mi contains a normal nilpotent subgroup Ni. The notation is chosen so

that

Mi/Ni is isomorphic to ?ί3 for l<i<k
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is isomorphic to ββ for k<i<s+m

where \Ni\ is odd for k + l<i<>s and \Ni\ is even for s + l < * ^ s + ra

Let Ni-HiXTit where |H;| is odd and T, is a 2-group. Define

fo = | #, |, fc = | Ti I for

LEMMA 5. Hi is a Hall subgroup of G for l<i<.s + m and {hi, hj) =1 for

l<i<j<s+ m. Ni is a Hall subgroup of G for \<i<.k and (I Ml, \Nj\) =1 for

Proof. Let P be a Sp subgroup of Ni for some prime p. Lemma 1 and the

maximality of Mi imply by induction that N(P) —Mi \t p>2 or if l<i<>k.

Thus in these cases P is a Sp subgroup of G. Hence Hi, Ni are Hall subgroups

for l < t ^ s - f m , l<i<k respectively. If one of the other statements of the

Lemma is false it may be assumed by taking conjugates that for some Sp sub-

group P of G, P<^Hiΐ\Hj,i*j, or PΩNiΠNj and l<i<j<k. Hence in

either case <M, , Mj>QN(P). By the first part of the lemma this implies that

Mi = Mj contrary to the definition of the groups Mi.

Lemma 5 yields that

(2) ^=|G|=3*2Voeil^, (*b.6) = l
t' = l

Furthermore U # 1 for at most one value of i with l<i<k. Choose the

notation so that

ίi = l o r ί,=2Λ

(3) ί. = l for 2<i<k

U*l for s + l < ι < s - f m.

(4) hs+i> hi for s + 1 < i< s -f w.

LEMMA 6.

Proof. The first inequality is trivial. By Lemma 3 the second term in (5)

is the multiplicity of K in K2. Thus the second term in (5) is the number of

ordered pairs (>>, z) with yz = x and y> z of order 3. Since <̂ > 2> is* a homo-

morphic image of (3, 3, 3) it is solvable by Theorem 1. Thus for every such

pair, <v, z> is contained in a conjugate of some Mi, l<i<s+tn.
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Suppose that # e Mi 0 w~ιMiW for some w&G. Then wxw'1 e Mi. There

exists tOi^Mi such that t̂̂ ι<#>wΓ1 = uKxyw~ι. Hence it may be assumed that

w&N\<x». This implies that x is contained in exactly one conjugate of Mi

for k-\Ί<i<s-\Ίn and x is contained in exactly two conjugates of Mi for

l<i<>k. The number of ordered pairs (jy, z) with jy2=#, y, z of order 3 and

y, z^Mi is easily seen to be hit,-. If the pair (x2, x2) is counted just once the

second inequality in (5) follows.

LEMMA 7. Let a be the multiplicity of C in K*. Then

Proof. Let (y, z) be an ordered pair of elements of order 3 such that yz = u

Then <y, 2> is isomorphic to (3,'3,2) =5l4.

Suppose that <jy, z> is contained in two distinct subgroups which are re-

spectively conjugate to Mi and Mj with s + l<i < j<s + m. By changing

notation it may be assumed that <y, z> £ Mi Γ\Mj, where M/ίlM, is maximal

among all such intersections. Let D = NtΌiVy, then N{<y>)QN(D). Since

[<3>, 2> : <χz>0 = 3 it follows that <y, z>' e D. Define

Li = N(D)nNif Lj = N{D)f)Nj.

Then <L;, Lp^NiD). Thus by Lemma 1 <L;, Lj>*G. Furthermore

SMi,-) Π

Let M be a maximal solvable subgroup of G which contains NiKy^XLi, Lj>

and let N be the maximal normal nilpotent subgroup of M. By induction M/N

is isomorphic to <e3. Since JV(<:y>) ΠZ^ = <1> this implies that Li^N. Since

Ni$β'Nj we have that D*Ni. Thus ίλ#£f 'as iVί is nilpotent. Therefore

Mi Π My c Λfί Π M A similar argument shows that Mi Π My c Mj Π M. As Mcannot

be conjugate to both M, and My one of these inclusions contradicts the maximal

nature of Mi Π Mj. Thus ζy, z> is not contained in two subgroups which are

conjugate Mi, Mj respectively with s + l < / < i ^ s - | - w .

If <y, z> c i l ί Ow^Mttυ for M; e G then iV«jy>) £ M, Π tί;"1^'w. This implies

that Mi = w"ιMiW. Let w lie in exactly mt subgroups conjugate to iVi. Since Mi-

contains at least hiU ordered pairs (y, z) with y?> = z3 = 1, jyz = w, this implies that

https://doi.org/10.1017/S0027763000023825 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000023825


192 WALTER FEIT AND JOHN G. THOMPSON

Clearly nn > ίC(u) : C(u) Π Afc] > J | ^ 7 L The lemma follows.

LEMMA 8.

2ht' *i

Proof. Let a be the multiplicity of C in ϋC2. Then by Lemma 3

α 9 I + 0(1) Z(D' 3 '

The result now follows from Lemma 7.

LEMMA 9. |C(ι#)| = 2"ft with ft#l.

Proof. By Lemma 4, w is in the center of a S>-subgroup of G. Suppose that

ft = l. Then ([4], p. 870, [5], Theorem 3) G is isomorphic to PSL(2, 9), PSL

(3, 4) or PSL(2, q) for q a prime or a power of 2. Since 9 does not divide g

the first two possibilities cannot occur. If q is odd PSZ,(2, #) contains cyclic

subgroups of order -<~— and —«---- Thus one of ί, ^-o , --ΐ— equals 3.

Hence p = 3, 5, 7. Since PSZΛ2, 3), PSL(2, 5) are respectively isomorphic to 3ί4,

5ί5 these possibilities cannot occur. If q is a power of 2, then # ± 1 = 3 and so

q = 2 or 4. As PS(2, 2) is not simple and PSL(2, 4) is isomorphic to 9ί5 we get

that ft * 1.

The proof of the main Theorem is now divided into three cases.

Case I.

Case II.

Case III.

In cases I and II hi = 1 for i>s +1. In case II hi = 1. Thus in cases I and

II Lemmas 6, 7 and 8 and equation (2) yield that

5 + Wl

2n#> Π hi k 1 s+m χ

Since (ft, 6) = 1 and ft =̂ 1 by Lemma 9 we get that ft>5. Thus in cases I or

II we get

2 gv TL hi i / -1 -j \ *+>«
(6) j ' ^ <; \ (f- jtp' goΠ fe
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Hence in Case I we get

s+in

(7) _ . _ - _ £ - 1 - f l . - l ) 2 " g 0 Πhi<1fl l) Πhi< Σ

Since isvi<.2n~1 we get in case II that

hi h + λfe+j < 2n -f 2""1* <2M/*.

Thus in case II

s + m

2 gb ϊlhi
(8) _ ^ L _ ^ -

In case III let fe0 be the minimum value of hjhiίox s + l<,i<.s + m. Hence

ho > 5. Thus

2ng0'πhi * 2"goSJJ h;
L { g M

or in case III

2 ^o Π λί " I / I
(9) -iv ^ ί (

I / I 1 \ s + r» fc

For convenience the following notation is now introduced.

Case I # = £-fl, z = h

{xu - . . , XQ) is the set {Λi, . . . , A*, A2M}

in ascending order, and

1 *
y= ί,-go Π A, .

C a s e II q = k, z~h

{xu . . . , xα} is the set {fe>, . . . , hk, h2n)

in ascending order, and

y^lgo II fc.
M i-Jc-hl

Case III ζf = k, z = Jι0

{*i, . . . , xq} is the set {Mi, h2> . . . , ft*}
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194 WALTER FEIT AND JOHN G. THOMPSON

in ascending order, and

si-m

y = g&n Π h if fc = l

= g,Snhi iff, =2*.

In all cases we get that xlt . . . , xQf y, z are integers such that

(10)

(11)

(12)

for

(3, y) = (Xi9y) = l ίoτl<i<q

If Xi^l (mod 3) then Xi = h2n in cases I or II. Thus *, >4ft>20.

Therefore

(13) ΛΓ ΞΞI (mod 3) or #/>20 for l<i<q.

The inequalities (7), (8) and (9) become

(14)
1 1 Xi / 1 i \ 3 3

LEMMA 10. q < 2. If q = 2 then y = l.

Proof. If * i>4 then by (13) #i>7. Hence (14) yields that

Thus 7*7"1 < 15 q and so # < 2 in this case. If xx < 4 then Λ I = 4 and

Thus 4ί7"1^15<7 and q<3. Hence <z = 3 and by (14)

4x2X3 < 15(Xi -h X2 •+• Xz) <45 ΛΓ3.

Hence *2<12. Thus by (11) and (12) #2 = 7 and so 28*3<15(4 4- 7 + *s) or

13 #3 < 165. Hence * 3<13 contrary to 7<# 3, (ID and (12). Thus q<2.

Suppose that q = 2. Then (14) yields that yxιX2< 15(Λ:I -HΛ:2). If y>5 this

implies that *i# 2< 3(^ι Λ x i) <6ΛΓ2. Thus ΛΓi = 4 and 4# 2< 12 + 3#2.. Hence

ΛΓ2 = 7. Therefore 28^<15(11) = 165 and y<6. Therefore y = 5 and by (10)

g = 3 4 5 7 = 420. This is impossible since there is no simple group of order
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420. Thus y < 5. If y # 1, then y = 2 or jy = 4. If jy = 2, then XιX2 is odd and by

(10) 4 does not divide g contrary to the simplicity of G. Thus y = 4. Hence

*i*ί is odd and so #i>7. If #i>7 then #i>13 and 52#2^4#i#2<15(#i-{-tf2)<30#2

which is not the case. If #i = 7 then 28 #2 <15(7-f #2) or 13#2<15.7. Hence

#2<13 which is not the case. The lemma is proved in all cases.

LEMMA 11. In case I or case II

Proof. Hs+i admits <33 as a group of automorphisms, thus Hs+i is not cyclic.

Hence z = ft = Ift+i |>25 and the result follows from (14K

LEMMA 12. tf = 2, y = 1.

Proof. Suppose that #= 1. Assume first that we have case I or II. Then

Lemma 11 implies that y<7. Furthermore \C{u)\~Xχ and LG : C(u)l = 3y.

Thus jy^l and so by (12) jy = 5. Hence in case I (6) becomes

2̂
or - ^ < 1 which is not the case. In case II \N(Hι) I =3#i and so [G : N(Hι)l

= 5, thus G is isomorphic to a subgroup of ©5. Hence G is isomorphic to 9ί5

contrary to assumption.

Assume now that q = 1 and we are in case III. Then (14) implies that

y< 15. Since G is simple 4 |# Thus by (10) and (12) either y is odd or 4|j>.

Hence jy = 4, 8, 5, 7, 11 or 13 and g-Sx^y. If Xι is even then ΛάjlCίw)! and

Xi*\C(u)\. Since in this case v̂ = 5, 7, 11 or 13, it is a prime. Hence \C(u)\

— %\y and [G: C(w)D = 3 which is impossible. If X\ is odd then X\ = 1 (mod 3),

v = 4 or 8 and \_G: N^HdΛ =^. Thus jy = 8 and G is isomorphic to subgroup of

©8. As H\ is nilpotent the Sylow theorems imply that the only prime dividing

Xι is 7. As 49 does not divide 8! this implies that #i = 7. Hence £ = 3 7 8

and G is isomorphic to PSL(2, 7) contrary to assumption.

Hence q = 2 and by Lemma 10 y = 1.

The proof of the main Theorem will now be completed.

By Lemma 12 £ = 3#i#2. In case I or II Hsu is not cyclic. Thus z = h~

|ffs+i|>25. By (14) we get that
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Hence #i<14. Thus Xi is odd and xx = 1 (mod 3). This implies that #i = 7 or

*i = 13. If ΛΓI = 13 then -~^-x?.<.13 +X2 or 25<h<x2< -^ 13 which is not

the case. Suppose that #i = 7. In case I (7) implies that

2nh<^~7 -2nh<7 + 2n~1h.

Hence 25<2n~1h<7 which is not the case. In case II (6) implies that 2nh<

^-7-2nh<2n + 7 + hts+1<.2n + 7 + 2n-ίh. Hence 25<2^%<2 n + 7. So that

2 n >7 and 2""1- 25<2n'1h<2n+1 which is not the case.

Assume now that we have Case III. Then Xi s x2 = 1 (mod 3), and by (14)

^ # < # i - f #2<2*2. Hence *i<30. If Xi is even then *i = 0 (mod 4). If Xi is

a prime then \C(u)\=XiX2 and [G:C(w)] = 3 which is not the case. Thus

*i = 4, 16, 25, 28. [G: Mϋ*)] = #1, thus ^ # 4 . If #i = 28 then (14) yields that
00 00 . iκ

~~*2 ^ 28 + xλ or ΛΓ2< ̂ 3 ^ <33. Hence *2 = 31 is a prime. Thus \C(u)\ =

2S
and [G: C(w)] = 3 which is not the case. If xx = 25 then -^-*2 <25 + Xz or &<

|-25<38. Since Λ^ΞO (mod 4), #2 = 28. The Sylow theorems now imply that

some divisor d of 25 satisfies d==l (mod 7) which is not the case. Assume

finally that Xi = 16. If P is a Sylow subgroup of H2 for some prime p then

IMP) I =3#2 as N(H2) is a maximal solvable subgroup of G. Thus 16 = 1 (mod

p). Hence p = 5. Since #2 Ξ 1 (mod 3), #2 = 52a for some integer «. By (14)

- j | - Λ:2 <, 16 + ΛΓ2 or #2 ̂  240. Thus Λ̂  = 25 and g = 3 16 25 = 1200. There is no

simple group of order 1200.

This final contradiction establishes the main theorem of the paper.
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