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ORTHOGONALLY COMPLETE RINGS 

BY 

R. RAPHAEL AND W. STEPHENSON 

Introduction. In this note we continue the study of Abian's order for 
reduced rings initiated in papers such as [1], [5], [3], [4]. A simple proof is 
given of Abian's result that taking suprema commutes with ring multiplication. 
The properties of orthogonally complete rings and of rings satisfying chain 
conditions with respect to Abian's order are investigated. Finally those rings JR 
for which R[x] and JR[[x]] are orthogonally complete are characterized. These 
results provide interesting examples and counterexamples in the study of 
Abian's order relation. 

Terminology. A ring R is said to be reduced if it contains no non-zero 
nilpotent elements. Throughout this note we consider only reduced rings with a 
1, unless otherwise stated. We recall some elementary facts about such rings. If 
a,beR and ab = 0, then ba = 0. Hence the left and right annihilators of any 
subset S ç R form a two-sided ideal which we denote by Ann(S). In particular 
for any aeR, Ann(a)fl JRa = 0. For other standard terminology the reader is 
referred to [7]. 

§1. Any reduced ring can be written as a subdirect product of integral 
domains (not necessarily commutative). Since any integral domain can be 
ordered by decreeing that c ^ 0 for any c, this induces an ordering on JR given 
by a ^ b if a2 = ab (see [1] and [5] for details). With respect to this ordering we 
can discuss upper and lower bounds, suprema and infima of subsets of JR in the 
usual manner. 

1.1. PROPOSITION. Let X be a subset of a ring R. Then the following are 
equivalent for any ceR. 

(i) c = sup(X). 
(ii) c is an upper bound for X and Ann(X)ç Ann(c). 
In fact Ann(X) = Ann(c). 

Proof. (ii)=£> (i). Let d be an upper bound for X. Then for all x e X, x < c and 
x<d and so xc = x2 = xd. Thus c-deAnn(X)ç Ann(c) and so (c -d)c = 0. 
Hence c^d and c = sup(X). 

(i)=>(ii). Suppose that c = sup(X). Then c is an upper bound for X. Let 
deAnn(X) . Then for all x e X , x 2=xc = x(c + d), and so c4-d is an upper 
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bound for X. Therefore c<(c + d) and c2 = c(c + d). Thus cd = dc = Q and 
Ann(X)<=: Ann(c). 

If c is an upper bound for X, then x2 = xc for all xeX. Hence Ann(c) c 
Ann(x2) = Ann(x) for all JCGX, and so Ann(c)ç Ann(X), giving Ann(X) = 
Ann(c). 

As a corollary we give a simple proof of a result of Abian (see Lemma 8 

of [1]). 

1.2. COROLLARY. Suppose that X is a subset of a ring R such that sup(X) 
exists. Then for every aeR, sup(aX) exists and equals a sup(X). 

Proof, Let b = sup(X). It is easily seen that ab is an upper bound for aX. By 
1.1. Ann(X)g Ann(b), and so Ann(aX)c Ann(ab). By 1.1. sup(aX) exists and 
sup(aX) = ab = a sup(X). 

REMARK. If X is a subset of .R containing elements c and d such that cd = 0, 
then X has an infimum, namely 0. For let b be a lower bound for X Then 
b2 = bc = bd and b2d = bcd = 0. Hence bd = Q and 62 = 0. Therefore 6 = 0 
and inf(X) = 0. For such a set X, it is clear that for any aeR, inf(aX) = 
ainf(X) = 0. 

However, in general 1.2 is not true if 'sup' is replaced by 'inf. Let 
R = {(a, b)eZxZ:a = bmod2}. Let X = {xl9x2}, where *i = ( l , 1) and x2 = 
(1, 3). It is easily seen that inf(X) = (0, 0). If a = (2, 0), then aX = {(2, 0)} and 
inf(aX) = (2,0) * (0, 0) = a inf(X). 

§2. It is easy to see that for a ring R, R is bounded above if and only if .R is 
a Boolean ring. Thus to obtain interesting completeness results for (JR, <) we 
have to consider weaker forms of completeness. 

A set X of non-zero elements of a ring R is said to be orthogonal if xy = 0 
for all x, y e X such that x^y. We note that if X is orthogonal, then Y^xexRx is 
a direct sum. A ring i* is said to be orthogonally complete if every orthogonal 
set in R has a supremum. The reader is referred to [5], [3], [4], [8] for details 
about such rings. We note that the remark following 1.2 shows that any 
orthogonal set always has an infimum. 

2.1. LEMMA. Let I be a non-zero left ideal of a ring R. If {aa}A is a maximal 
orthogonal set of elements of I then Ann(J) = Ann({a<JA). 

Proof. Clearly Ann(I )ç Ann({a<JA). Suppose that 0 ^ c e / D Ann({aa}A). 
Then {aa}AU{c} is orthogonal, contradicting the choice of {aa}A. Thus IC\ 
Ann({aa}A) = 0 and Ann({aa}A) ç Ann(J), giving the result. 

Our next result gives some necessary conditions for a ring to be orthogonally 
complete. The general problem raised in [3] of giving an "element-wise" 
characterization of such rings remains open. 
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2.2. PROPOSITION. Let R be orthogonally complete 
(i) For every non-empty set XgJR, there exists aeR such that Ann(X) = 

Ann(a). Moreover, if Ann(X) c Ann(fe) for some beR, then a can be chosen so 
that b < a. 

(ii) For every beR, there exists a regular element ceR, that is Ann(c) = 0, 
such that b < c. 

Proof, (i) If Ann(X) c Ann(è), then Rb c Ann Ann(è) c Ann Ann(X). 
Without loss of generality we may assume that bï 0 and by Zorn's lemma we 
can choose a maximal orthogonal set {aa}A of elements of AnnAnn(X) 
containing b. Let a = sup({aa}A) and note that b < a. By 1.1 and 2.1, Ann(a) = 
Ann({aa}A) = Ann Ann Ann(X) = Ann(X). 

(ii) Let X=R in (i). 

REMARK. In any ring R, regular elements are always maximal in (R, <). 
2.2(H) shows that in an orthogonally complete ring the regular elements are the 
only maximal elements and moreover that every element of JR is always less 
than or equal to such an element. 

EXAMPLE. Any strongly regular Baer ring JR satisfies the conditions of 2.2 
but is orthogonally complete if and only if R is a self-injective ring. The 
example given in [9] (see Example 3) shows that this is not necessarily the case 
and so that the conditions in 2.2 are not sufficient to ensure that JR is 
orthogonally complete. 

Our next result extends Proposition 8 of [3]. 

2.3. The following are equivalent for a ring R. 
(i) (R, <) satisfies the ascending chain condition. 
(ii) (JR, <) satisfies the descending chain condition and R is orthogonally 

complete. 
(iii) Any orthogonal set in R is finite, 
(iv) R satisfies the ascending (descending) chain condition on annihilators. 

Proof. The equivalences (i) <̂> (ii) <£> (iii) are immediate from the following 
observations: 

(a) if {aj is a strictly ascending or descending chain, then {at - ai+i} is an 
orthogonal set, 

(b) if {a*} is a finite orthogonal set, then supf^} exists and equals 1] a*, 
(c) if {aj is an orthogonal set, then {sup{ai:l^i^/}} is a strictly ascending 

chain and {supja,:/^ /}} is a strictly descending chain (provided that suprema 
exist). 

The equivalence (iii) <=> (iv) follows from the following observations: 
(d) since annihilators are two-sided ideals the descending and ascending chain 

conditions on these ideals are equivalent, 
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(e) if {a,} is an orthogonal set, then { A n n i ^ , . . . , a,}} is a strictly descending 
chain of annihilators, 

(f) if {JJ is a strictly ascending chain of annihilators, then Ii+i H Ann(Ii) ^ (0) 
and if 0^ aieIi+1r\Ann(Ii), then {a,} is an orthogonal set. 

EXAMPLE. It is possible for (JR, ^) to have the descending chain condition 
without having the ascending chain condition. For let K be a field. Define R to 
be K[xl9 x2, x 3 , . . . ] with the relations x̂ x, = 0 for iV /. R is a subdirect product 
of the polynomial rings K[xt] and so is reduced. Using this subdirect product 
representation it is not difficult to show that for any geR there are only a 
finite number of feR such that / ^ g . 

Thus (JR, <) has the descending chain condition. On the other hand the set 
{xt}i is orthogonal and so, by 2.3, (R, <) does not have the ascending chain 
condition. 

§3. In this section we consider when the polynomial and power series rings 
R[x] and i?[[x]] are orthogonally complete. First we need the following result. 

3.1. LEMMA. Let f = Yo ^x\ & - I o btx
l belong to R[[x]]. Then /g = 0 // and 

only if ciibj = 0 for all i > 0 and j > 0. 

Proof. See Armendariz [2]. 

3.2. PROPOSITION. The following are equivalent for a ring R. 
(i) JR[JC] is orthogonally complete. 
(ii) R[x] satisfies (i)-(iv) of 2.3. 
(iii) JR satisfies (i)-(iv) of 2.3. 

Proof, (ii) ^ (i) is clear. 
(i)^> (iii). Suppose that {au a 2 , . . . } is an infinite orthogonal set in R. Then 

the infinite orthogonal set {axx, a2x
2,...} has no supremum in JR[x], con

tradicting (i). 
( i i i )^ (ii). Suppose that {/«}A is an infinite orthogonal set in JR[JC]. By 3.1, 

the set {aa}A of leading coefficients of the /«'s is an infinite orthogonal set of i*, 
contradicting (iii). 

REMARK. It can easily be shown that 3.2 holds for any polynomial ring over 
any number of commuting indeterminates finite or infinite. 

3.3. PROPOSITION. The following are equivalent for a ring R. 
(i) i?[[x]] is orthogonally complete. 
(ii) R is orthogonally complete. 

Proof, (i) => (ii). Suppose that {aa}A is an orthogonal set in R. By hypothesis, 
/ = sup({aa}A) exists in JR[[X]]. If / = U btx\ we have a\ = a J for all a G A and 
so aabi = 0, for all a and / > 0 . By 1.1, Ann({aa}A)gAnn(/) and so &i/=0 for 
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all i > 0. Hence b\ = 0 and bx = 0 for all i > 0 and so / = sup({aa}) is in JR and JR 
is orthogonally complete. 

(ii)=>(i). Suppose that {/«}A is an orthogonal set in JR[[x]], where /a = 
Zf=o ûaiX1. By 3.1 aaiaPi = 0 for all i, j if a9e j8. Hence for each /, {aai}A is an 
orthogonal set in R. Let bi = sup({a«j}A), which exists by (ii), and define 
/ = I o M i . The coefficient of xk in faf is !«+/-* fl^fc/. By 1.2 a f̂y = 
û«i sup({aft}A) = sup({aaIa3/}A) = aaiaa/. Thus the coefficients of xk in /„/ and fa 

are equal and /« = /«/. 
Now suppose that g/a = 0 for all a where g = £o dx\ By 3.1, Cjaaj = 0 for all 

a, i, and /. Now Cibj = cisup({aaj}A) = sup({ciaai}A) = 0. Thus g / = 0 and / = 
sup({/a}A) by 1.1. 

REMARK. 3.3 can be shown to hold for power series rings in any finite 
number of indeterminates. For an infinite number of indeterminates 3.3 may or 
may not hold depending on which definition of the power series is adopted. 
(For possible definitions see, for example, [6].) 
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