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Abstract

An example is found of a nonreflexive Banach space X such that the union of {0} and the set X∗
\ NA(X)

of non-norm-attaining functionals on X contains no two-dimensional subspace.
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1. Preliminaries

The concept of lineability appeared in the early nineties as an algebraic measure of
the size of subsets of infinite-dimensional vector spaces (see [12]). When these vector
spaces are Banach spaces, we can also talk about spaceability and dense-lineability.

DEFINITION 1 [12]. A subset M of a Banach space is said to be:

(1) n-lineable if M ∪ {0} contains an n-dimensional vector subspace;
(2) lineable if M ∪ {0} contains an infinite-dimensional vector subspace;
(3) dense-lineable if M ∪ {0} contains an infinite-dimensional dense vector

subspace;
(4) spaceable if M ∪ {0} contains an infinite-dimensional closed vector subspace.

For a wider perspective of these new concepts, we refer the reader to [3–7, 11, 13],
where it is proved that several pathological properties occur more often than one might
expect in the sense described in the definitions above.

The paper [1] considers the problem of the lineability of the set NA(X) of norm-
attaining functionals on an infinite-dimensional Banach space X . Some positive results
are given in that paper. In this one, we shall consider the following two problems.

QUESTION 1 [3]. Let X be a nonreflexive Banach space. Is X∗
\ NA(X) always

lineable?
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QUESTION 2 [3]. Let X be a nonreflexive Banach space. Can X always be
equivalently renormed to make X∗

\ NA(X) lineable?

In the following sections, we shall give a negative answer to Question 1, and an
approach to a negative answer to Question 2. We shall now present some partial results
relative to the previous questions that appear in [1].

THEOREM 1.1 [1]. Let K be an infinite compact Hausdorff topological space. Then
C(K )∗ \ NA(C(K )) is lineable. If, in addition, K possesses a nontrivial convergent
sequence, then C(K )∗ \ NA(C(K )) is spaceable.

THEOREM 1.2 [1]. Let (�, 6, µ) be a σ -finite measure space with a countably-
infinite number of disjoint measurable sets of positive measure. Then
L1(µ)∗ \ NA(L1(µ)) is spaceable.

We refer the reader to [10], since in much of this paper we shall make use of
concepts and notations from the geometry of Banach spaces, such as exposed points
and smoothness.

2. Sufficient conditions

In this section, we shall find some sufficient conditions to assure that the set
X∗

\ NA(X) is lineable or spaceable. We shall base all the results in this section upon
the following remark.

REMARK 1. Let X be a smooth Banach space. If x∗
∈ NA(X) ∩ SX∗ , then x∗ is not

only an extreme point of BX∗ but an (ω∗-strongly) exposed point.

We present the next proposition as a consequence of the previous remark. Note that
exp(BX ) denotes the set of exposed points of the unit ball BX of a Banach space X .

PROPOSITION 2.1. Let X be a smooth Banach space. If Y is a vector subspace of X∗

such that Y ∩ exp(BX∗) = ∅, then Y ⊆ X∗
\ NA(X) ∪ {0}.

PROOF. Assume that there is 0 6= y∗
∈ Y ∩ NA(X). Then, by Remark 1,

y∗/‖y∗
‖ ∈ NA(X) ∩ SX∗ ⊆ exp(BX∗).

Therefore, y∗/‖y∗
‖ ∈ Y ∩ exp(BX∗), which is a contradiction. 2

For the moment, we shall focus our attention on spaces of continuous functions. We
shall begin by presenting the following result, which can be found in [8].

LEMMA 2.2 [8]. Let K be a compact Hausdorff topological space and X a rotund
Banach space. Then

ext(BC(K ,X)) = { f ∈ C(K , X) | ‖ f (t)‖ = 1 for all t ∈ K }.

In order for the the next theorem to make sense, we clarify that a nontrivial compact
Hausdorff topological space is a compact Hausdorff topological space with more than
one point.
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THEOREM 2.3. Let K be a nontrivial compact Hausdorff topological space and
X a nonzero rotund Banach space. If C(K , X) is infinite-dimensional, then
C(K , X) \ ext(BC(K ,X)) is spaceable.

PROOF. First of all, note that C(K , X) is infinite-dimensional only when K is infinite
or X is infinite-dimensional. Therefore, we must distinguish these two cases. Let us
fix an arbitrary s ∈ K , and consider the continuous linear operator

δs : C(K , X) −→ X,

f 7−→ δs( f ) = f (s).

Observe that it suffices to prove that ker(δs) is infinite-dimensional. Indeed, ker(δs)

is closed, and according to Lemma 2.2, ker(δs) ⊆ C(K , X) \ ext(BC(K ,X)). Finally,
in order to prove that ker(δs) is infinite-dimensional, we shall consider the two cases
mentioned above.

(1) Assume that K is infinite. Choose an infinite sequence (tn)n∈N ⊆ K \ {s}.
By Urysohn’s lemma, for every n ≥ 0 there exists fn ∈ C(K ) such that f (s)
= f (tn) = 0 and f (tn+1) = 1, where t0 = s. Now, choose any x ∈ X \ {0}. The
family { fnx | n ≥ 0} is linearly independent and contained in ker(δs).

(2) Assume that X is infinite-dimensional. Since K contains more than one point,
again by applying Urysohn’s lemma, we deduce the existence of a function
f ∈ C(K ) \ {0} such that f (s) = 0. Now, choose an infinite linearly-independent
family {xn | n ∈ N} ⊂ X . The family { f xn | n ∈ N} is linearly independent and
contained in ker(δs). 2

The previous theorem allows us to state and prove the following sufficient condition
to assure the spaceability of the set X∗

\ NA(X).

THEOREM 2.4. Let X be a smooth Banach space. Let K be a nontrivial compact
Hausdorff topological space and Y a nonzero rotund Banach space such that C(K , Y )

is infinite-dimensional. Assume that X∗ contains an isometric copy of C(K , Y ). Then
X∗

\ NA(X) is spaceable.

PROOF. In accordance with Theorem 2.3, C(K , Y ) \ ext(BC(K ,Y )) is spaceable.
So, let W be an infinite-dimensional closed vector space contained in
C(K , Y ) \ ext(BC(K ,Y )). Since exp(BC(K ,Y )) ⊆ ext(BC(K ,Y )) (see [10]), we deduce by
Proposition 2.1 that W ⊆ X∗

\ NA(X) ∪ {0}, and the result holds. 2

To finish this section, we shall focus on spaces of integrable functions. In order for
the previous theorem to make sense, we want to recall that a σ -finite measure space
(�, 6, µ) is said to be nontrivial if there exist at least two disjoint measurable sets of
positive measure.

THEOREM 2.5. Let (�, 6, µ) be a nontrivial σ -finite measure space and X a
nonzero Asplund Banach space. If L1(µ, X) is infinite-dimensional, then the set
L1(µ, X) \ exp(BL1(µ,X)) is lineable.
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PROOF. First of all, notice that L1(µ, X) is infinite-dimensional only when (�, 6, µ)

has a countably-infinite number of disjoint measurable sets of positive measure or X
is infinite-dimensional. Therefore, we shall have to distinguish these two cases.

(1) Assume that (�, 6, µ) has a countably-infinite number of disjoint measurable
sets of positive measure. Choose {An | n ∈ N} to be an infinite family of disjoint
measurable sets of positive measure. Let us fix an element x ∈ SX . We will
show that

span{(χA1 + χA2)x, (χA3 + χA4)x, . . . | n ∈ N} ⊆ L1(µ, X) \ exp(BL1(µ,X)).

Let λ1, . . . , λk ∈ K, not all zero, and set

g := λ1(χA1 + χA2)x + · · · + λk(χA2k−1 + χA2k )x ∈ exp(BL1(µ,X)).

Let f ∈ SL∞(µ,X∗) attain its norm only at g. Then

1 =

∫
�

f (t) (g(t)) dµ(t)

=

∫
�

f (t) (λ1χA1(t)x) dµ(t) +

∫
�

f (t) (λ1χA2(t)x) dµ(t)

+ · · · +

∫
�

f (t) (λkχA2k−1(t)x) dµ(t) +

∫
�

f (t) (λkχA2k (t)x) dµ(t)

≤ |λ1|µ(A1) + |λ1|µ(A2) + · · · + |λk |µ(A2k−1) + |λk |µ(A2k)

= ‖g‖1

= 1.

Therefore, for every i ∈ {1, . . . , k},∫
�

f (t) (λiχA2i−1(t)x) dµ(t) = |λi |µ(A2i−1),

and ∫
�

f (t) (λiχA2i (t)x) dµ(t) = |λi |µ(A2i ),

which means that f attains its norm at

λiχA2i−1 x

|λi |µ(A2i−1)
and

λiχA2i x

|λi |µ(A2i )
,

for those λi 6= 0. This is a contradiction.
(2) Assume that X is infinite-dimensional. Choose {xn | n ∈ N} ⊂ SX to be an

infinite family of linearly-independent elements. Since (�, 6, µ) is nontrivial,
there exist at least two disjoint measurable sets A and B of positive measure. We
will show that

span{(χA + χB)xn | n ∈ N} ⊆ L1(µ, X) \ exp(BL1(µ,X)).
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Let λ1, . . . , λk ∈ K, not all zero, and set

g := λ1(χA + χB)x1 + · · · + λk(χA + χB)xk ∈ exp(BL1(µ,X)).

Let f ∈ SL∞(µ,X∗) attain its norm only at g. Then

1 =

∫
�

f (t) (g(t)) dµ(t)

=

∫
�

f (t) (λ1χA(t)x1) dµ(t) +

∫
�

f (t) (λ1χB(t)x1) dµ(t)

+ · · · +

∫
�

f (t) (λkχA(t)xk) dµ(t) +

∫
�

f (t) (λkχB(t)xk) dµ(t)

≤ |λ1|µ(A) + |λ1|µ(B) + · · · + |λk |µ(A) + |λk |µ(B)

= ‖g‖1

= 1.

Therefore, for every i ∈ {1, . . . , k},∫
�

f (t) (λiχA(t)xi ) dµ(t) = |λi |µ(A),

and ∫
�

f (t) (λiχB(t)xi ) dµ(t) = |λi |µ(B),

which means that f attains its norm at

λiχAxi

|λi |µ(A)
and

λiχB xi

|λi |µ(B)
,

for those λi 6= 0. This is a contradiction. 2

The previous theorem allows us to state and prove a sufficient condition to assure
the lineability of the set X∗

\ NA(X).

THEOREM 2.6. Let X be a smooth Banach space. Let (�, 6, µ) be a nontrivial σ -
finite measure space and Y a nonzero Asplund Banach space such that L1(µ, Y ) is
infinite-dimensional. Assume that X∗ contains an isometric copy of L1(µ, Y ). Then
X∗

\ NA(X) is lineable.

PROOF. In accordance with Theorem 2.5, L1(µ, X) \ exp(BL1(µ,X)) is lineable. So,
let W be an infinite-dimensional vector space contained in L1(µ, X) \ exp(BL1(µ,X)).
By Proposition 2.1, we have that W ⊆ X∗

\ NA(X) ∪ {0}, and the result holds. 2
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3. A counterexample

In this section, we shall take care of both Questions 1 and 2. In the first place, we
shall present a (negative) solution to Question 1. We shall begin with the next theorem,
which is a sufficient condition to assure that the set X∗

\ NA(X) is not even 2-lineable.

THEOREM 3.1. Let X be a Banach space such that X is a maximal subspace of X∗∗.
For n ∈ N, let Xn be the nth dual of X. Then Xn+1

\ NA(Xn) is not even 2-lineable.
If, in addition, X is isometrically isomorphic to its bidual X∗∗, then X∗

\ NA(X) is
not even 2-lineable either.

PROOF. In the first place, assume that Y is a vector subspace contained in
X∗∗

\ NA(X∗) ∪ {0}. Since X ⊂ NA(X∗), we deduce that X ∩ Y = {0}. The
maximality of X implies that Y has dimension at most one. In the second place,
observe that, since X is a maximal subspace of X∗∗, Xn is a maximal subspace of
Xn+2 for all n ∈ N. Finally, if X is isometrically isomorphic to its bidual X∗∗, then
X∗

\ NA(X) is not 2-lineable because X∗∗∗
\ NA(X∗∗) is not so. 2

In order to provide a negative answer to Question 1, we have to find an example
of a Banach space satisfying the hypothesis of Theorem 3.1. It is well known that the
James space J is one such. By virtue of [14, 15] we have the following result.

THEOREM 3.2 [15]. The real vector space

J := {(αn)n∈N ∈ c0 | ‖(αn)n∈N‖a < ∞},

endowed with the norm

‖(αn)n∈N‖a := 2−1/2 sup
m≥2,p1<···<pm

(m−1∑
n=1

(αpn − αpn+1)
2
+ (αpm − αp1)

2
)1/2

,

is a real Banach space satisfying the following conditions:

(i) the space J is of codimension 1 in its bidual J ∗∗;
(ii) the space J is isometrically isomorphic to its bidual J ∗∗.

Now we are able to answer Question 1 negatively.

EXAMPLE 1. In accordance with Theorem 3.1, the James space and all its duals
answer Question 1 negatively.

To finish this paper, we shall present an approach to a negative solution to
Question 2. In concrete terms, we shall answer negatively the next question by
following a similar process to the above.

QUESTION 3 [3]. Let X be a nonreflexive dual Banach space. Can X always be
equivalently dually renormed to make X∗

\ NA(X) lineable?

Before discussing the solution to the previous question, let us note that, as indicated
in the next results, not every equivalent norm on a dual Banach space is a dual norm
(see, for instance, [9, p. 27]). On this topic, in [2] the following result is shown.
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THEOREM 3.3 [2]. Let X be a real Banach space. If x∗
∈ X∗ is an L2-summand

vector, then x∗
∈ NA(X).

The previous theorem reveals another way to prove that there are always equivalent
norms on nonreflexive dual Banach spaces that are not dual norms (see, again, [2]).

COROLLARY 3.4 [2]. Let X be a nonreflexive real Banach space. Consider
x∗

∈ SX∗ \ NA(X) and x∗∗
∈ SX∗∗ such that x∗∗(x∗) = 1. Then the equivalent norm

on X∗ given by

‖y∗
‖ =

√
‖m‖2 + ‖δx∗‖2, y∗

= m + δx∗, m ∈ ker(x∗∗), δ ∈ R,

is not a dual norm.

Observe that, because of what has previously been discussed, a negative answer to
Question 3 does not necessarily answer Question 2 negatively.

THEOREM 3.5. Let X be a Banach space such that X is a maximal subspace of X∗∗.
For every n ∈ N, the nth dual Xn of X cannot be equivalently dually renormed to make
Xn+1

\ NA(Xn) 2-lineable.

PROOF. Obviously, it suffices to show that the result holds for X∗. If ‖·‖ is an
equivalent dual norm on X∗, then there exists an equivalent norm |·| on X such that
|·|

∗
= ‖·‖. Now, it is sufficient to apply Theorem 3.1 to (X, |·|). 2

EXAMPLE 2. In accordance with Theorem 3.5, all the duals of the James space answer
Question 3 negatively.
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