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1. Introduction. A ®nite group G can be represented as a group of auto-
morphisms of a compact Riemann surface, that is, G acts on a Riemann surface.
The symmetric genus �(G) is the minimum genus of any Riemann surface on which
G acts (possibly reversing orientation).

The origins of the symmetric genus parameter can be traced to the work of
Hurwitz, Poincare, Burnside and others (see [1] and [5]). The modern terminology
was introduced in the important article [14]. There is now a considerable body of
work on the symmetric genus parameter [3, Chapter 6]. Much of this has con-
centrated on non-solvable groups; see the survey article [2].

Another body of work has concentrated on solvable groups. The symmetric
genus of each ®nite abelian group has been determined [7] and [11]; also relevant
here is the work of Maclachlan [6]. The symmetric genus of metacyclic groups was
considered in [8] and May and Zimmerman [9] obtained a general lower bound for
the symmetric genus of a ®nite group G and in the same paper calculated the sym-
metric genus of all groups of order less than 48 (with the exception of groups of
order 32).

The purpose of this paper is to produce a lower bound for the genus of a 2-
group and to ®nd the genus of all groups of order 32. We use the standard repre-
sentation of G as a quotient of a non-euclidean crystallographic group ÿ by a sur-
face group K; then G acts on the Riemann surface U/K, where U is the open upper
half-plane. In our work on groups of order 32, we frequently employ the computer
algebra system GAP [12]. In particular, the groups of order 32 are accessed in GAP
through the command AllSolvableGroups(Size,32). Table 1 gives the symmetric
genus of each group of order 32. For example, the group G20 stands for the group
labeled grp_32_20 in the GAP Library. The non-abelian groups in this listing are in
the same order as in the Hall-Senior Table [4]. In addition, I either provide a
descriptive name for the group, if one exists in GAP or the designation for that
group in the Hall-Senior Table, if one does not.

2. Preliminaries. Non-euclidean crystallographic groups (NEC groups) have
been quite useful in investigating group actions on surfaces. We shall assume that all
surfaces are compact. Let L denote the group of automorphisms of the open upper
half-plane U, and let L+ denote the subgroup of index 2 consisting of the orienta-
tion-preserving automorphisms. An NEC group is a discrete subgroup ÿ of L (with
the quotient space U/ÿ compact). If ÿ � L+, then ÿ is called a Fuchsian group.
Otherwise ÿ is called a proper NEC group; in this case ÿ has a canonical Fuchsian
subgroup ÿ+=ÿ \ L+ of index 2.

Associated with the NEC group ÿ is its signature, which has the form
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The quotient space X=U/ÿ is a surface with topological genus p and k holes. The
surface is orientable if the plus sign is used and non-orientable otherwise. Associated
with the signature (2.1) is a presentation for the NEC group ÿ (See [7]).

Let ÿ be an NEC group with signature (2.1). The non-euclidean area �(ÿ) of a
fundamental region ÿ can be calculated directly from its signature [13, p.235]:
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where �=2 if the plus sign is used and �=1 otherwise.
An NEC group K is called a surface group if the quotient map from U to U/K is

unrami®ed. Let X be a Riemann surface of genus g�2. Then X can be represented as
U/K where K is a Fuchsian surface group with �(K)=4�(gÿ1). Let G be a group of
dianalytic automorphisms of the Riemann surface X. Then there is an NEC group ÿ
and a homomorphism �:ÿ!G onto G such that kernel �=K.If � is a subgroup of
®nite index in ÿ, then [ÿ:�]=�(�)/�(ÿ). It follows that the genus of the surface U/K
on which G�ÿ/K acts is given by

g � 1� jGj:��ÿ�=4�: �2:3�

Minimizing g is therefore equivalent to minimizing �(ÿ).

3. Groups of genus one. There are 51 groups of order 32 of which the ®rst 7 are
abelian. The genus of the abelian groups is computed from the formulas in [7] and
[11]. In addition, the genus of some of the other groups of order 32 is known. The
group G9 (Q8�C2

2) has genus 13 [9]. Also the dicyclic group G51 (Q32) has genus 1
[15] and the dihedral group G49 (D32) has genus 0.

Table 1. The genus of the groups of order 32

Group � Group � Group �

G1±C5
2 5 G18±ÿ2h 5 G35±Q8+Q8 17

G2±C3
2�C4 9 G19±ÿ2i 9 G36±ÿ4b1 1

G3±C2
2�C8 1 G20±ÿ2j1 1 G37±ÿ4b2 9

G4±C2
4�C2 9 G21±C8+Q8 1 G38±ÿ4c1 5

G5±C16�C2 0 G22±ÿ2k 1 G39±ÿ4c2 9

G6±C8�C4 1 G23±D16�C2 1 G40±ÿ4c3 17

G7±C32 0 G24±QD16�C2 5 G41±ÿ4d 13

G8±D8�C2
2 1 G25±Q16�C2 9 G42±D8YD8 1

G9±Q8�C2
2 13 G26±D16YC4 1 G43±D8YQ8 9

G10±(D8YC4)�C2 5 G27±ÿ3c1 1 G44±ÿ6a1 1

G11±ÿ2c1 5 G28±ÿ3c2 7 G45±ÿ6a2 7

G12±2�(2�4).2 9 G29±ÿ3d1 7 G46±ÿ7a1 1

G13±ÿ2d 7 G30±ÿ3d2 7 G47±ÿ7a2 5

G14±D8�C4 1 G31±ÿ3e 1 G48±ÿ7a3 9

G15±Q8�C4 17 G32±ÿ3f 11 G49±D32 0

G16±ÿ2f 9 G33±ÿ4a1 1 G50±QD32 1

G17±D8YC8 1 G34±ÿ4a2 1 G51±Q32 1
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In this section, we will look at the groups of order 32 that have genus 1. They
are given in Table 2. In order to show that a group has genus 1, we must show that it
is a quotient of a group with presentation given in Tucker's Theorem 6.3.3 [3]. We
call these partial presentations ``Tucker classes''. It should be noted that some of
these groups are in more than one Tucker class.

The ®rst step in ®nding the symmetric genus of the other groups of order 32 is to
show that they are not toroidal (genus 1). Let � be a group with one of the pre-
sentations in Tucker's Theorem 6.3.3 [3, p. 291]. Suppose that there is an epi-
morphism from � onto a group G. Then there is an epimorphism between the
abelianizations �ab and Gab. The invariants of the abelianization �ab are given in
Table 3.

There are 17 partial presentations in Tucker's Theorem 6.3.3. Five of these
partial presentations (c,e,m,n and q) involve generators of order 3. So any homo-
morphism into a 2-group will take these generators to the identity and the result will
be an abelian image. Another ®ve of these partial presentations (b,j,k,l, and o) are
generated entirely by involutions. Therefore, any group in which all of the involu-
tions lie in a proper subgroup cannot be an image of one of these partial presenta-
tions. There are 21 non-toroidal groups having this property.

Fact 3.1: The groups G12, G16, G18, G19, G21, G24, G25, G28, G29, G30,
G32, G35, G37, G38, G39, G40, G41, G45, G47, G48, and G50 have the property
that all of their involutions are contained in a proper subgroup. These groups are
not an image of one of the partial presentations (b), (c), (e), (j), (k), (1), (m), (n), (o)
or (q).

Finally, ®ve of these partial presentations (a,f,g,h and i) have one or more gen-
erators of in®nite order. The group described by any presentation in class (a) is
abelian and any ®nite group in class (h) is Zm�Dn. If we add relations to the pre-
sentation in class (h) to make it have exponent 8, then is isomorphic to Z8�D16. This

Table 2. The groups of order 32 with genus 1

Group Tucker class Group Tucker class

G8±D8�C2
2 class (j) G31 class (i)

G14±D8�C4 class (h) G33 class (o)

G17±D8YC8 class (h) G34 class (b1)

G20 class (i) G36 class (l1)

G21±8+Q8 class (f2) G42±D8YD8 class (j)

G22 class (f2) G44 class (k)

G23±D16�C2 class (h) G46 class (d)

G26±D16YC4 class (h) G50±QD32 class (i)

G27 class (g1) G51±Q32

Table 3. Invariants of the abelianizations of the Tucker classes

Class Invariants Class Invariant Class Invariants

a (1,1) g (2,4) m (2)

b (2,2,2) h (2,2,1) n (6)

c (3,3) i (2,1) o (2,2,2)

d (2,4) j (2,2,2,2) p (2,4)

e (6) k (2,2,2) q (2,2)

f (2,1) l (2,2,2)
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group has order 128 and 5 normal subgroups of order 4. The quotient groups of
Z8�D16 by these 5 normal subgroups are the four groups with class (h) in Table 2
and the abelian group C8�C2

2. Therefore, G3, G14, G17, G23 and G26 are the only
groups of order 32 in class (h). Suppose that we add enough relators to make the
groups in classes (f), (g) and (i) nilpotent of class 2 and of exponent 8. The group
that results in classes (f) and (i) are isomorphic to G21 and G20 respectively. The
group that results in class (g) has order 16. All other classes are generated by ele-
ments of order 4 or less. Therefore, the only groups which are non-abelian, nilpotent
of class 2, have exponent 8 and are in one of the classes (f), (g), (h), or (i) are G14,
G17, G20 and G21. We conclude that any other nilpotent class 2 group with expo-
nent 8 that cannot be generated by elements of order 2 or 4 is not toroidal. Thus
groups G13 and G47, where all elements of order 2 and 4 are contained in a proper
subgroup, have genus greater than 1.

Now we will show that the groups of order 32 that are not in Table 2 have genus
greater than 1. Suppose that G is a group where all elements of order 2 are in the
Frattini subgroup. If � maps onto G, then G is generated by the images of gen-
erators of � of order greater than 2. In all cases, except Tucker class (f), this would
force G to be abelian. The groups G18, G19, G28, G29, G30, G32, G35, G40, and
G48 have the property that all elements of order 2 are in the Frattini subgroup.
These groups are all nilpotent of class 2 and have exponent 8. Since none of these
groups is in class (f), it follows that G18, G19, G28, G29, G30, G32, G35, G40, and
G48 have genus greater than 1.

The groups G11, G12, G15, and G16 all have abelianization equal to C4�C2
2.

The only group in Tucker's Theorem 6.3.3 with an abelianization large enough to
map onto C4�C2

2 is in class (h). As we have seen previously, they cannot be in class
(h). It follows that G11, G12, G15 and G16 have genus greater than 1.

Next we consider the groups G24, G25, G37, G38, G39, G41 and G45 which
have abelianization equal to C3

2. We combine Fact 3.1 and the information in Table 2
to see that class (h) is the only possible Tucker class that these groups could be in.
Therefore, their genus is greater than 1.

Finally, we consider the groups of order 32 which have abelianization C4
2. The

only class that they could possibly be in is class (j). Adding relators to the pre-
sentation in class (j) to make the group have exponent 4 results in the group D8�D8,
which has order 64. This group has only 3 normal subgroups of order 2 and it is easy
to verify that the quotients that result are isomorphic to either G8 or G42. There-
fore, the groups G9, G10 and G43 have genus greater than 1.

4. Minimal generating sets for these groups. The next step is to list the orders of
the elements in a minimal generating set for each of the remaining groups. Let nq be
the number of generators of order q in a minimal generating set. A minimal gen-
erating set has the smallest number of generators as speci®ed by the Burnside Basis
Theorem and as many as possible have order 2 and then order 4, etc. We will list
these numbers as an ordered triple, (n2,n4,n8). Therefore, we have a lexicographic
order on the ordered triples.

We will show that there is a generating set which embodies each of the ordered
triples in Table 4. The fact that a group is the image of an NEC group with gen-
erators whose order is that of a minimal generating set does not mean that the genus
is obtained from that NEC group. Furthermore, the genus may not be attained by
an NEC group with generators whose orders are in a minimal generating set. The
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group G45 is an example. The ordered triple of G45 is (2,1,0) and it is an image of
NEC groups with generators having these orders, namely the NEC groups with
signatures (0; +; [4],{(4,4)}) and (0; +; [2,2,4,8]; {()}). However, its genus is realized
by an NEC group having two generators of order 2 and one generator of order 8.

First, we must show that each of these triples is minimal in the lexicographic
order. Clearly, if the ordered triple derives from the invariants of the abelianization,
then it is minimal in the lexicographic order. This occurs for the groups G10, G11,
G18, and G43.

Next, we consider the groups where all elements of order 2 are in the Frattini
subgroup. Therefore, the groups G15, G28, G29, G30, G35 and G40 are generated
by elements of order 4. In addition, the group G32 also has all elements of order 4 in
the Frattini subgroup and so it is generated by elements of order 8. Finally, the
groups G19 and G48 also satisfy the property that all elements of order 2 and 4 are
in a subgroup of order 16 and therefore they are generated by an element of order 4
and one of order 8. The rest of the groups have at least one element of order 2 that is
not in the Frattini subgroup.

The groups G12, G16, G25, G41 and G47 have the property that all elements of
order 2 are contained in a proper subgroup H and the intersection of H and the
Frattini subgroup is a subgroup of index 2 in H. Therefore, these groups can have at
most one generator of order 2 in any minimal generating set. All of these groups,
except G47 are generated by one element of order 2 and two of order 4. In the group
G47, all elements of order 4 are in the Frattini subgroup and so it is generated by
one element of order 2 and one of order 8.

The remaining groups, G13, G24, G37, G38, G39 and G45, have the property
that all elements of order 2 are contained in a proper subgroup. Thus the groups
G24, G38, G39 and G45 have minimal generating set consisting of two elements of
order 2 and one element of order 4. In the group G37, all of the elements of order 2
are contained in a normal subgroup N of order 8. If we adjoin a generator of order 4
to N, we get a subgroup of order 16. Therefore, a minimal generating set will have
two elements of order 4 and one of order 2. Finally, group G13 has all elements of
orders 2 or 4 contained in a subgroup of order 16 and so its minimal generating set
consists of two elements of order 2 and one element of order 8. These arguments
establish the ordered triples given in Table 4.

5. NEC groups with small non-euclidean area. In this section, we will ®nd some
lower bounds for the genus of a 2-group. In the process, we list the signatures of the
NEC groups which have area less than 1/2 and are not generated by involutions.
This is needed to calculate the genus of the groups of order 32.

Table 4. Number of generators in a minimal generating set

Group Generators Group Generators Group Generators

G10 (4,0,0) G24 (2,1,0) G38 (2,1,0)

G11 (2,1,0) G25 (1,2,0) G39 (2,1,0)

G12 (1,2,0) G28 (0,2,0) G40 (0,3,0)

G13 (2,0,1) G29 (0,2,0) G41 (1,2,0)

G15 (0,3,0) G30 (0,2,0) G43 (4,0,0)

G16 (1,2,0) G32 (0,0,2) G45 (2,1,0)

G18 (0,2,0) G35 (0,3,0) G47 (1,0,1)

G19 (0,1,1) G37 (1,2,0) G48 (0,1,1)
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Proposition 5.1. Let ÿ be an NEC group whose signature has a non-empty per-
iod cycle with one link period. Suppose that ÿ maps onto a ®nite 2-group G such that
the kernel of the map is a Fuchsian surface group. Let c and d be the involutions
associated with the period cycle (n). If G has nilpotence class 2 or c maps to the center
of G, then n=2. Furthermore, in all cases, n divides exponent(G).

Proof. The generators c,d and e are associated with the period cycle (n). They
satisfy the relations c2=d2=(cd)n=1 and eceÿ1=d. It follows that [c,eÿ1]n=1. Let
�:ÿ!G be the onto homomorphism described above. Now 1=[c2,eÿ1]=
[c,eÿ1]c.[c,eÿ1]. It follows that [c,eÿ1]2EKer(�). If n�4, then (cd)n/2EKer(�) and Ker(�)
would contain an analytic element of ®nite order. So n=2. The same argument
shows that in general n divides exponent (G0).

Theorem 5.2. Let G be a non-abelian 2-group with �(G)�2. Suppose that G has
rank 3 or greater and cannot be generated by involutions or if it is generated by invo-
lutions, then it has rank 5 or greater. If jGj=2n, then �(G)�1+2nÿ3.

Proof. Suppose that ÿ is an NEC group which maps onto G and the kernel is a
Fuchsian surface group. We must show that �(ÿ)/2��1/4. Therefore, suppose that
ÿ is a non-abelian NEC group with Non-Euclidean area ��ÿ�=2� < 1=2. We will list
the possible signatures of such groups below.

Case 1: Suppose that k�1. Suppose that U/ÿ is orientable. It is clear that k�2 and
p=0. Now suppose that k=2. In this case, r=0 and exactly one of the period cycles
must be non-empty. This gives the signature (0; +; [ ]; {(), (n)}), which has area
(nÿ1)/2n. Next suppose that k=1. Clearly, this forces r�2. Suppose that r=2. If the
period cycle is empty, then the signature is (0; +;[2,m]; {()}), with m>2, which has
area (mÿ2)/2m. If the period cycle is non-empty, then the area inequality forces
both ordinary periods to be 2. So the signature is (0; +; [2,2], {(n)}), which has area
(nÿ1)/2n. In each of these cases, ��ÿ�=2� � 1=4.

Now let r=1. The signature for this type of NEC group is (0; +;[m]; {C}). If C
is empty, then the group G is abelian. Suppose that C = (n1,. . .,nt). Since G has
rank 3 or greater, it follows that t�2. If m�4, then t=2 and m=4. If m=2, then
t�3 and G has rank 4 or less and is generated by involutions. In each of these
cases, ��ÿ�=2� � 1=4. Finally, suppose that r=0. The signature in this case is (0; +;
[ ]; {(n1,� � �,nt)}) with t�5. Since G is generated by involutions, t=5 and
��ÿ�=2� � 1=4.

Suppose that U/ÿ is non-orientable. In this case, p=1 and r=0. The period
cycle must be non-empty for the area to be positive and the only possibility is (1;ÿ;
[ ];{(n)}), which has area (nÿ1)/2n.

Case 2: Suppose that k=0. Suppose that U/ÿ is orientable. It is clear p=0 and the
signature must be of the form (0; +; [m1,� � �,mr],{}) with 3�r�4. Since G has rank 3
or higher, r=4 and �(ÿ)/2��1/4. If U/ÿ is non-orientable, then p=1 and r�2. If
r=1, then we get a cyclic group. So the signature that we need to consider is
(1;ÿ;[2,m];{}), with area (mÿ2)/2m. Since m�4, ��ÿ�=2��1/4. This concludes the
list of possible signatures and the proof of the theorem.

It is worthwhile to summarize the signatures that result in the following special
case. Suppose that G is a 2-group with at least one generator of order larger than 2
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in all generating sets. If G is the image of an NEC group with area less than 1/2 then
it has one of the following signatures:

(1) (0;+;[2,m];{()}) and m�4
(2) (0;+;[�];{(m,n)}) and ��4
(3) (0;+;[m1,� � �,mr];{})
(4) (0;+;[�];{(n)}) and ��4
(5) (1;ÿ;[ ];{(n)})
(6) (1;ÿ;[2,m];{}) and m�4

Groups with the signatures (3) with r=3, (4), (5) and (6) are two generator groups.
Finally, we note the following corollary.

Corollary 5.3. A 3-generator group of order 32 with at least one generator of
order 4 or higher that has genus greater than one, has genus at least ®ve.

This corollary comes from applying Theorem 5.2 to the groups of order 32 and
it is best possible. There are several examples, but I will mention G47 which is the
image of (0;+;[2,8,8];{}) and hence has genus 5 by Corollary 5.3.

Theorem 5.4. Let G be a non-abelian 2-group with �(G)�2. If jGj=2n, then
�(G)�1+2nÿ5.

Proof. Suppose that ÿ is an NEC group which maps onto G, the kernel is a
Fuchsian surface group and �(ÿ)/2��1/16.

Case 1: Suppose that k=0. Suppose that U/ÿ is orientable. It is clear that p=0 and
r=3. In particular, the NEC group with the smallest positive area has signature
(0;+;[2,4,8];{}) and the area is 1/8 (see [16]). If U/ÿ is non-orientable then the NEC
group has signature (1;ÿ;[m,n];{}) and the smallest positive non-euclidean area is 1/4.

Case 2: Suppose that k�1. Suppose that U/ÿ is orientable. It is clear that p=0, k=1
and r�1. Suppose that r=1. Therefore, the NEC group has signature (0;+;[m];{C})
where C=(n1,� � �,nt) is non-empty. It is easy to see that t�2. If t=2, then m=2 and
the NEC group with the smallest positive area has signature (0;+;[2];{(2,4)}) and the
area is 1/8. If t=1, then m�4 and an NEC group with the smallest positive area has
signature (0;+;[4];{(4)}) or (0;+;[8];{(2)}). The area in both cases is 1/8.

Now suppose that r=0. Therefore, the NEC group has signature (0;+;[ ];{C})
where C=(n1,� � �,nt). Since any group generated by two involutions is dihedral and
has genus 0, we see that 3�t�4. If t=4, the NEC group with the smallest positive
area has signature (0;+;[ ];{(2,2,2,4)}) and the area is 1/8. Therefore, t=3 and ÿ is
an extended triangle group. Since the area of an extended triangle group is half the
area of the corresponding triangle group, by case 1, the NEC group with the smal-
lest positive area is the extended triangle group with signature (0;+;[ ];{(2,4,8)}) and
area 1/16. It is easily checked that the non-orientable case has area that is too large.
Thus, we conclude that �(ÿ)/2��1/16 and equality occurs only for the extended
triangle group ÿ[2,4,8]. This proves the theorem.

There are groups which are the image of the extended triangle group.
Zomorrodian [16] has shown that there are 2-groups of every order greater than or
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equal to 16 which are images of the triangle group ÿ with signature (0;+;[2,4,8], {})
by a Fuchsian surface group. Suppose ÿ maps onto a group G generated by two
elements R and S satisfying

R2 � S4 � �RS�8 � 1:

Adjoin an element W of order 2 that transforms the elements of G according to the
automorphism �(R)=Rÿ1, �(S)=Sÿ1. The new group G* will be an image of the
extended triangle group. Thus there are images of the extended triangle group
ÿ[2,4,8] by a Fuchsian surface group of every possible order greater than 16.
Unfortunately, the examples of this construction which have order 32 or 64 are all
groups of genus 1. It is unlikely that this will always be the case, but showing that
groups of order 128 or higher are not toroidal is a di�cult problem.

6. Genus of the remaining groups. There are 5 groups (G12, G16, G25, G37 and
G41) in Table 4 with ordered triple (1,2,0). The groups G12, G16, G25 and G37 are
all images of the NEC group ÿ with signature (0;+;[4,4];{()}). In addition, Theorem
2 [9, p. 121] asserts that their genus is greater than or equal to 9. Thus the groups G
12, G 16, G25 and G37 all have symmetric genus equal to 9.

The group G41 is the image of the NEC group ÿ with signature
(0;+;[2,4,4,4];{}) and �(ÿ)/2�=3/4 and thus has genus at most 13. The group
G41 cannot be an image of the NEC group with signature (0;+;[4,4];{()}) because
the product of the generators of order 4 (which must have order 4) must commute
with the generator of order 2. However the centralizer of any generator of order 2
is the subgroup of order 8 consisting of the elements of order 2 and the identity. It
is easy to show that there are no other possibilities with k�1. If k=0, then there
are no possibilities with smaller area and su�cient generators. Thus G41 has
genus 13.

There are 3 groups (G15, G35 and G40) in Table 4 with ordered triple (0,3,0).
The groups G15, G35 and G40 are all images of the NEC group ÿ with signature
(0;+;[4,4,4,4];{}). In addition, Theorem 2 [9, p. 121] asserts that their genus is
greater than or equal to 17. Thus the groups G15, G35 and G40 all have symmetric
genus equal to 17.

There are 4 groups (G18, G28, G29 and G30) in Table 4 with ordered triple
(0,2,0). These groups have minimal genus of 5 by Theorem 2 [9, p. 121] and G18
attains this genus as an image of the triangle group ÿ(4,4,4). Each of the groups
G28, G29 and G30 has a subgroup N of order 16 which is the union of the Frattini
subgroup and the set of elements of order 8. So any generators of order 4 are in the
coset of N. It follows that the product of two generators of order 4 must have order
8. Indeed, each of these groups is the image of the triangle group ÿ(4,4,8) and has
genus 7.

Now we must show that G28, G29 and G30 cannot have genus less than 7. The
non-euclidean area associated with the triangle group ÿ(4,4,8) is 3/8. Since n2=0, we
need only consider the triangle groups, signature (3). As we have seen the triangle
group with minimal area which maps onto any of these groups is ÿ(4,4,8). This
shows that G28, G29 and G30 cannot have genus less than 7.

There are ®ve groups (G11, G24, G38, G39 and G45) in Table 4 with ordered
triple (2,1,0). By the corollary, each of these groups has minimal genus equal to 5. The
groups G11 and G38 are images of the NEC group with signature (0;+;[2,4};{()}) and
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G24 is the image of the NEC group with signature (0;+;[4];{(2,2)}). Thus G11, G24
and G38 have genus 5.

The group G39 is an image of the NEC group with signature (0;+;[2,2,4,4];{})
and G45 is the image of the NEC group with signature (0;+;[2,8];{()}). Thus the
genus of G39 is 9 or less and the genus of G45 is 7 or less. In order to show that their
genus is equal to 9 and 7, respectively, we must show that they are not images of the
NEC groups with signatures (1) or (2). In G39, the center and Frattini subgroup
coincide. Every generator of order 2 is a product of one of two elements (A or AC)
and an element of the Frattini subgroup. Since the order of A*(AC) is 4, in any
generating set the product of the elements of order 2 must have order 4. This shows
that NEC groups with signature (2) and genus less than 9 cannot map onto G39. In
addition, the centralizer of any generator of order 2 is the group of order 8 gener-
ated by that element and the Frattini subgroup, and thus all elements of the cen-
tralizer have order 2. Any generator of order 4 is in the coset of the normal
subgroup of order 16 which contains all elements of order 2. This implies that the
product of a generator of order 2 and one of order 4 has order 4 and cannot cen-
tralize a generator of order 2. This rules out G39 being the image of any NEC group
with signature (1) and genus less than 9.

In G45, the product of two generators of order 2 has order 4. Thus there is no
NEC group with signature of Type (2) that maps onto G45 and has small enough
area. Finally, a computer search shows that the NEC group with signature
(0;+;[2,4],{()}) cannot map onto G45.

The remaining groups that cannot be generated by involutions are G13, G19,
G32 and G48. If G13 has genus less than 9, then it must be the image of an NEC
group with signature (0;+;[2,8];{()}), (0;+;[8];{(m,n)}) or (0;+;[2,2,8,8];{}). It is the
image of all of them (where m=n=2) and hence has genus 7. The groups G19, G32
and G48 all have rank 2 and all involutions are non-generators (being in the Frattini
subgroup). Therefore, we need only consider NEC groups with signature of Type
(3). The groups G19 and G48 are images of the triangle group (0;+;[4,8,8];{}) and
this is obviously minimal. Thus G19 and G48 have genus 9. Similarly, G32 is the
image of the triangle group (0;+;[8,8,8];{}) and has genus 11.

Finally, there are two non-toroidal groups which are generated by involutions,
G10 and G43. Both groups have genus less than or equal to 9 and have rank 4 or
larger. If a group G has genus less than 9, has rank 4 and is generated by involu-
tions, then it is the image of the NEC group with signature either (0;+;[2];{(2,2,n)})
or (0;+;[ ];{(a1,� � �,at)}). The group G10 is the image of the NEC group with sig-
nature (0;+;{(2,2,4,4)}) and hence has genus 5 or less. It is easy to see that G10 has
genus 5, since it does not have genus 3 [10]. The group G43 is the image of the NEC
group with signature (0;+;[2,2,2,2,2];{}) and also (0;+;[ ];{(4,4,4,4)}) and thus has
genus 9 or less. The group G43 also has the property that two elements of order 2,
say x and y, have product xy of order 2 if and only if y is x times the element in both
the center and the Frattini subgroup. This rules out all signatures above which have
genus less than 9 and so G43 has genus 9.

This completes the calculation of the symmetric genus of all the groups of order
32. The lower bound formulas given in Section 5 are better in some cases than the
formula in Theorem 2 [9]. It would be desirable to improve the bound given in
Theorem 2 [9] in the case when G is a 2-group. However, it appears that a general
formula, involving a parameter, that is better than Theorem 2 [9] in the case of 2-
groups is extremely di�cult or impossible to obtain.
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