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Environmental Regulations in the Mining Sector
and Their Effect on Technological Innovation

maxwell andersen and joëlle noailly

6.1 Introduction

This chapter examines the impact of environmental policy on innovation
in clean technologies for the mining sector. Mining activities pose several
challenges to the environment. The extraction and processing of metals
(e.g. copper, gold, aluminum, iron, nickel), solid fuel minerals (coal,
uranium),1 industrial minerals (phosphate, gypsum) and construction
materials (stone, sand and gravel) is associated with air pollution, water
contamination by toxic chemicals, landscape disruption and waste gen-
eration. Energy-intensive activities such as excavation, grinding of ore
and the transport of material by large diesel trucks, generate substantial
greenhouse gas emissions: in 2016, the mining sector accounted, for
instance, for 16 percent of Australia’s greenhouse gas emissions
(Australian National Greenhouse Accounts, 2018), behind the energy
sector (38 percent) but abovemanufacturing (11 percent) and agriculture
(12 percent).2 The environmental impact of mining explains why the
sector is the focus of increasingly stringent environmental policies. On
top of permit requirements for new mines, which typically impose an
assessment of environmental impact, mining companies have to meet

1 By convention, our definition of mining activities excludes fuel minerals (oil, gas, etc).
2 Total emissions from the mining sector can be decomposed between emissions from coal
mining (42 percent of mining emissions), oil and gas extraction (40 percent) and metal ore
and nonmetallic mineral mining and quarrying (18 percent). Emissions from the manu-
facturing of metal and other mineral products are accounted for in the manufacturing
sector. Emissions from metal ore and nonmetallic mineral mining and quarrying have
increased three times over the 1990–2016 period (Australian National Greenhouse
Accounts, 2018).
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stringent regulations on greenhouse gases, waste management or water
pollution.

Innovation in clean technologies (i.e. technologies aiming to reduce
the environmental impact of mining operations), can provide an effect-
ive solution to address these environmental challenges. Innovative
technologies can help reduce water and energy consumption, limit
waste production and prevent soil, water and air pollution at mine
sites. Examples of such technologies are water-saving devices, electric
haul trucks, desulphurization techniques to limit SO2 emissions and
underground mining technologies to minimize land disruption
(Hilson, 2002).

The objective of this chapter is to estimate the impact of environmental
regulations on innovation in clean technologies for the mining sector. Do
more stringent environmental regulations lead to higher patenting activ-
ities in clean mining technologies? As most existing literature on this
topic remains largely anecdotal and based on case studies, our analysis is
the first quantitative study looking at the impact of environmental policy
on clean innovation in the mining industry across a large range of
countries. We rely on a novel dataset of clean patents for the mining
industry provided by WIPO for 32 countries over the 1990–2015 period
and investigate the impact of environmental policy stringency, as meas-
ured by the EPS index developed by the OECD on clean patenting
activities. The EPS is a country-level composite index which presents
the advantage of aggregating environmental policy stringency in a single
indicator across a multitude of existing regulations for a large set of
countries. Our analysis finds evidence that stringent environmental pol-
icies are associated with higher levels of clean patenting activities in the
mining sector: a 1 percent increase in the growth rate of the EPS index is
associated with a 0.3–0.45 percent increase in clean patents. These results
imply that policies aiming to protect the environment are effective in
encouraging mining companies to develop more environmentally
friendly technologies. We do not, however, find evidence for a sizeable
impact of market-based policy instruments, as often hypothesized in the
literature.

The chapter is organized as follows. Section 6.2 provides some
background literature and presents the conceptual framework of the
analysis. Section 6.3 describes our main measures of clean techno-
logical innovation and environmental policy stringency. Sections 6.4
and 6.5 present the empirical analysis and results, respectively. Section
6.6 concludes.
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6.2 Literature Review

This study relates to several strands of literature. First, it connects to the
literature on the impact of environmental regulations on the develop-
ment and diffusion of clean technologies (i.e. technologies that aim to
reduce the environmental impact of production processes, such as
energy-efficient, water-saving or renewable energy technologies). Clean
technologies are characterized by a “double externality” (Jaffe, Newell
and Stavins, 2005): first, just like all technologies, clean technologies
generate knowledge spillovers (the knowledge externality) and second,
they contribute to reducing the negative externality of pollution (the
environmental externality). Due to this dual market failure, firms have
few incentives to invest in clean technologies in the absence of govern-
ment intervention and public policies are always justified to encourage
the development of these technologies.3

Environmental regulations affect firms’ incentives to innovate in the
sense that they impact the price of production factors. According to the
induced innovation hypothesis, when a factor price increases firms will
develop new technologies aiming to reduce this factor (Hicks, 1932).
Hence, as fuel prices increase, firms will develop fuel-efficient technolo-
gies. This hypothesis is widely supported by empirical evidence (Aghion
et al., 2016; Dechezleprêtre and Glachant, 2014; Johnstone, Haščič and
Popp, 2009; Noailly and Smeets, 2015; Popp, 2002) and the literature
generally concludes that firms’ innovation response to environmental
regulation will be quick (typically within five years) and of a large mag-
nitude. Empirical work has found that environmental policies tend to
have a positive impact on clean innovation in the automobile sector
(Aghion et al., 2016), electricity generation (Johnstone et al., 2009;
Noailly and Smeets, 2015), the building sector (Noailly, 2012) and several
manufacturing industries (Popp, 2002, 2006). So far, however, no study
has more specifically looked at the mining industry.4

3 An exception can be made for cost-saving clean technologies, such as energy-saving
technologies. Profit-maximizing firms may, in this case, have incentives to innovate,
even without policy intervention.

4 Statistics and analyses on clean patents, generated for a large part by the OECD, provides
some descriptive analysis of the evolution of various clean technologies over time. While
some technologies have risen drastically over the last decades, such as wind energy, others
which may be more relevant in the mining context such as water pollution abatement;
waste management and soil remediation have instead grown much more slowly (Haščič
and Migotto, 2015).
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Another insight of the aforementioned literature is that the impact
of environmental regulations on clean innovation depends on which
specific policy instrument is used (Popp, Newell and Jaffe, 2010).
Theoretical work generally concludes that market-based instruments –
which set a price on the externality, such as emission taxes, emission
trading or subsidies – provide higher incentives to innovate than
nonmarket command-and-control regulations, such as technology
and performance standards. The intuition is that market-based instru-
ments provide more flexibility to firms on how to comply with the
regulations and provide continuous incentives for technological
improvements. Instead, nonmarket instruments are believed to be
less effective as firms have no incentives to go beyond the standard
once enacted. In addition, technological standards, in particular, may
tend to lock in technological development. Nonetheless, there are also
some arguments in favor of nonmarket-based regulations, in particu-
lar as command-and-control instruments may be more credibly
enforced than market-based instruments. A few theoretical models
also raise the possibility that command-and-control policy instru-
ments may lead to more innovation in process innovation, rather
than end-of-pipe technologies, such as waste-water treatment or flue
gas scrubbers (Amir, Germain and Van Steenberghe, 2008; Bauman,
Lee and Seeley, 2008). Finally, most countries have traditionally relied
on command-and-control regulations and experiences with market-
based instruments are still relatively recent, limiting empirical ana-
lysis. As a result, the various impacts of market versus nonmarket
environmental policy instruments on innovation still need to be
worked out empirically.

By its focus on mining, this study also relates to the small literature on
innovation in the mining sector. Insights are quite scarce, as the sector
remains largely understudied. Overall, the mining sector has the reputa-
tion of being a rather traditional and conservative sector in terms of
innovation, without many examples of radical innovation over the last
decades. The OECD classifies the mining and quarrying sector as
a “medium-low” R&D intensity industry, together with the textile,
paper and food industry and far from other high-tech (pharmaceuticals,
computers), medium high-tech (machinery, electrical equipment) and
medium-tech (basic metals, plastic) industries (Galindo-Rueda and
Verger, 2016). Bartos (2007) similarly concludes that themining industry
is not a high-tech industry but is rather comparable to general
manufacturing.
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As noted in Chapter 1, the main characteristics of innovation in the
mining sector are as follows: (1) most mining technologies are not
developed in-house by mining companies but rather are provided by
METS; (2) since mineral commodities provide little scope for product
differentiation, innovation in mining is mainly aimed at cost-reduction
of mining operations; and (3) profits and thus innovation in the mining
industry are largely affected by booms and busts in the mineral-
commodity price index (itself affected by shifts in aggregate demand5).
The empirical evidence has mostly pointed towards a procyclical rela-
tionship between industry-specific fluctuations and innovation (Barlevy,
2007; Geroski and Walters, 1995).6

The specificity of competition in the mining industry has some impli-
cations for the impact of environmental regulation on clean technologies.
First, as commodities are homogenous, the scope for creating a market
for “green” mining products remains limited, although there are many
initiatives in this direction in recent years (Laurence, 2011; Mudd, 2007;
Whitmore, 2006). In the absence of a demand push for sustainably mined
products, most clean innovation will have to be fostered by government
regulation. A wide array of environmental regulations affects mining
(Bridge, 2004): greenhouse gas regulations (fuel taxes, emission trading,
etc.), water pollution legislation, regulation of land use, policies on waste
management and toxic chemicals, etc. Such environmental policies may
represent costly investments for mining companies as firms will need to
allocate resources to pollution abatement rather than other productive
investment. On the other hand, environmental policy may bring benefits
if it leads to the implementation of cost-saving technologies or new
profitable production processes. Although adopting environmental tech-
nologies may lead to productivity gains, the literature is inconclusive on
whether these will be sufficient to offset compliance costs.7 For now, the
literature on the impact of environmental regulation on clean innovation
in the mining industry is mainly qualitative and limited to a few case
studies. Hilson (2002) looks at the example of the Kennecott copper

5 The higher commodity-mineral prices around 2003–8 were, for instance, the result of
increased demand from emerging economies and in particular China. While in theory,
prices could also be affected by large supply shocks, there is no evidence that this problem
has been relevant over the last decade (Kilian and Zhou, 2018). Kilian and Zhou (2018)
argue therefore that indices of real commodity prices can serve as proper indicators of
changes in global real economic activity.

6 See again, Chapter 7 for a full discussion of the impact of commodity prices on innovation
in mining.

7 See the debate surrounding the “strong Porter hypothesis” (Ambec et al., 2013).
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smelter in Garfield, Utah. Increasing SO2 regulatory stringency led to
collaborative innovation by Outokumpu and Kennecott into sulfur-
capture technologies. Those innovations led the sulfur-capture rate at the
smelter to increase from 93 percent to 99.9 percent. Crucially, that improve-
ment led to a greater than 50 percent reduction in operating costs at the
smelter. Warhurst and Bridge (1997) look at the case of the INCO Sudbury
nickel smelter. Increasing stringency governing SO2 emissions, as well as the
smelter’s outdated design, meant that it was no longer viable. This led INCO
to invest in new smelting technologies that immensely reduced SO2 emis-
sions, which in turn led the smelter to become one of the world’s most
productive and efficient nickel smelters. As these studies are mainly anec-
dotal, the results cannot be generalized to other mining sites or countries.

To conclude, the literature brings important insights for our analysis.
First, a large set of environmental regulations are likely to affect the
development of clean technologies in mining. Second, since the scope
for product differentiation is limited, there is no specific market demand
for clean mining products, and we can expect environmental regulations
to be particularly important.

6.3 Measuring Clean Innovation and Environmental Policy
Stringency

6.3.1 Clean Patents in the Mining Sector

Wemeasure technological innovation by patent counts, as established in
the literature on clean technologies (Dechezlepretre et al., 2011). Mining
patent data were extracted from the WIPO Statistics Database and the
2017 autumn edition of the European Patent Office’s Worldwide Patent
Statistical Database (PATSTAT) using a search strategy outlined in Daly
et al. (2019) to build a comprehensive database of mining patenting.

For this analysis, the total number of clean mining patents invented in
a given country-year was extracted from the database. Patents were
counted by inventor.8 The main unit of analysis is the first filing of
a given invention, using the earliest filing date.

Cleanmining patents were defined as mining patents having a primary
focus on the environment. Table 6.1 gives the relevant International
Patent Classification (IPC) and Cooperative Patent Classification
(CPC) codes, some alone, some in combination and some in

8 I.e., if a patent was invented by two Australians and one German, two patents in Australia
and one patent in Germany were counted.
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Table 6.1 Patent classification of clean mining patents

Sub-category

IPC, IPC combinations
and IPC/keyword
combinations

CPC (if different
from IPC)

Reclamation of mining
areas

E21C 41/32

Treatment of waste water
from quarries or
mining activities

C02F 103/10 C02F2103/10

Treatment of waste water C02F AND E21
C02F AND (mining OR

mine OR mineral OR
ore OR coal)

Biological treatment of
soil

B09C 1/10 AND E21
B09C 1/10 AND (mining

OR mine OR mineral
OR ore)

Soil treatment B09C AND E21
B09C AND (mining OR

mine OR mineral OR
ore OR coal)

Waste Disposal B09B AND E21
B09B AND (mining OR

mine OR mineral
OR ore)

Protection against
radiation

G21F AND E21
G21F AND (mining OR

mine)
Environmental Y02 AND E21

Y02 AND (mining OR
mine OR mineral
OR ore)

Technologies related to
mineral processing

Y02P 40/

Technologies related to
metal processing

Y02P 10/

See Daly et al. (2019) for further details on the methodology. Note that while Y02P
40/ and YO2P 10/ are subclasses of YO2 (similarly COF 103/10 is a subclass of
CO2F), we use an assignment system that takes only one category per patent, so
patents are only counted once.
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combination with keywords in the title or abstract. Specifically, only
patents with IPC or CPC codes E21C 41/32 (reclamation of mining
areas), C02F (treatment of wastewater), B09C (treatment of soil),
B09B (waste disposal), Y02P (technologies related to mineral and
metal processing), G21F (protection against radiation), and Y02 (gen-
eral environmental) were counted as “mining clean patents”. Clean
patenting is dominated by four categories: metal processing, mineral
processing, metallurgical wastewater treatment, and general clean
patents.

As seen on Figure 6.1, on average, 15 percent of mining patents were
classified as environmental mining patents over the entire data set.
While the share decreased slightly over the 1990–2000 period, it
increased at the end the 1990s to stabilize around 16 percent of mining
patents.

Table 6.2 gives the top countries ranked by shares of clean patents in
mining over the 1990–2015 period. Japanese inventors filed the high-
est share of clean patents, followed by Austria and Korea. While these
countries do not concentrate much on mining activities, they are
major providers of clean patents in general and have developed indus-
tries specialized in clean technologies – many METS companies are
actually located in these countries. Major mining countries such as
Australia, Brazil and Canada also appear in the top-10 of innovative
countries.
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Figure 6.1 Number of clean mining patents over time in total sample (left panel) and
share of clean patents among all mining patents (right panel)
Source: Author’s calculations.
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6.3.2 Measuring Environmental Policy Stringency

We measure environmental policy stringency by the Environmental
Policy Stringency (EPS) index developed by the OECD for 32 countries
from 1990 to 2015.9 The EPS is a composite index which summarizes the
stringency of environmental policy in a given country by aggregating
several sub-indicators measured on a scale from 0 to 6, with higher
numbers being associated with more stringent environmental regulation.
At the lower end, 0 means a policy instrument is not present in a given
country-year, while 6 means the given policy instrument is the most
stringent version of that policy instrument across both years and
countries.

The methodology to construct the EPS is set out in detail in Botta and
Koźluk, (2014) and Figure 6.2 provides a description of its main struc-
ture. The EPS index can be sub-divided into two separate indicators: (1)
a component on market-based policies, which groups together

Table 6.2 Top countries as ranked according to their share of clean patents
in total mining patents, 1990–2015

Country Percentage
Number of clean
mining patents

Total mining
patents

Japan 27% 30,027 113,141
Austria 26% 2,710 10,236
Korea, Rep of 22% 4,770 21,641
Italy 22% 2,030 9,407
Brazil 21% 1,140 5,327
Germany 18% 15,111 83,552
Belgium 18% 1,054 5,918
Australia 17% 2,446 14,668
India 16% 1,012 6,143
Canada 16% 6,090 38,221

Source: Author’s calculations.
Note: Only countries with more than 1,000 clean patents are displayed.

9 Australia, Austria, Belgium, Canada, Czechia, Denmark, Finland, France, Germany,
Greece, Hungary, Ireland, Italy, Japan, Korea, the Netherlands, Norway, Poland,
Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, the UK, the USA,
Brazil, China, India, Indonesia, Russia, South Africa.
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instruments assigning an explicit price to externalities such as taxes,
trading schemes, feed-in tariffs and deposit-refund systems and (2)
a nonmarket-based policies component, which categorizes command-
and-control regulations such as environmental standards and govern-
mental R&D subsidies (specific to renewable energy).10 We will use both
indicators at a later stage in our empirical analysis. Given our focus on the
mining sector, we modify the standard index by excluding feed-in tariffs
and deposit-refund systems, as these are not likely to be relevant for
regulating mining activities.

The EPS index presents several advantages compared to other meas-
ures of environmental policies existing in the literature – namely: single
policy changes, pollution abatement and control expenditures (PACE),
surveys of executive and/or industry perceptions of stringency, or meas-
ures of environmental performance (Botta and Koźluk, 2014; Brunel and
Levinson, 2013; Sauter, 2014). First, the EPS addresses the challenge of
the multidimensionality of environmental policy, which targets various
pollution sources and types of pollutants via a multitude of policy
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Figure 6.2 Decomposition of the OECD EPS index
Source: Botta and Koźluck (2014).

10 To compute the aggregate EPS, each of these subindicators receives a weight of 0.5 as
illustrated in Fig. 6.1. The nonmarket-based policies index aggregates the two subindica-
tors on standards and R&D subsidies, each with a weight of 0.5. In our case, we abstract
from feed-in tariffs (FITs) and deposit-refund systems (DRS), so our market-based
indicator only aggregates over taxes and trading schemes with a weight of 0.5 each.
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instruments. Such multidimensionality cannot, for instance, be captured
by counts of single policy changes. Second, the EPS presents the advan-
tage of being comparable across time and space. The aggregation strategy
is admittedly a bit simplistic, particularly in its weighting of different
policy measures. However, that issue can be resolved by looking at
disaggregated measures of EPS, as is done in this study. By contrast,
surveys based on subjective judgements cannot easily be compared across
time and countries, as the perceived burden of environmental policies
will differ depending on the macroeconomic and business environment
of the executives being surveyed.

A main challenge when using the EPS index is that it is not specific to
mining. Instead, it covers all environmental policies in an economy with
a specific focus on policies addressing greenhouse gases and air pollutants.
Mining pollutes through several main channels: land degradation, ecosys-
tem disruption, acid mine drainage, chemical leakages, slope failures, toxic
dusts and compounds of carbon/sulfur/nitrogen with toxic metal particu-
lates, none of which are covered by the EPS index. Nonetheless, the EPS
presents the advantage of summarizing environmental regulations in
upstream activities, such as energy and transport, which are polluting inputs
highly used in many sectors including the mining and extraction industry.
Indeed, mining is highly energy intensive and requires the use of heavy,
carbon-emitting machinery. Hence, regulations captured by the EPS are
likely to be relevant for mining operations. Also, the exclusion of water or
soil pollution legislationmay not be as important an issue as it might appear.
The OECD, in defending the validity of its index for the analysis of general
environmental policy, found that other measures of environmental strin-
gency, including measures related to water and other non-covered sectors,
were highly correlated with the EPS (Botta and Koźluk, 2014).11

Finally, in identification issues, the non-specificity of EPS is an advan-
tage in that it helps to address endogeneity concerns. It greatly reduces
the potential for reverse causality between individual sectors and overall
national EPS (Albrizio, Kozluk and Zipperer, 2017). Other measures of
environmental policies, such as pollution abatement expenditures or
measures of environmental performance are more likely affected by
omitted variable bias, as they tend to be correlated with how efficient
countries are in reducing pollution in a given year – for reasons other
than environmental policies.

11 These include, for example, the World Economic Forum’s Executive Opinion Survey
responses or the EBRD’s CLIM index.
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Figure 6.3 plots the evolution of market (red, bottom line), nonmarket
(green, top line) and overall EPS over time for the countries in our
sample. We observe that the nonmarket EPS is consistently higher than
market EPS across the entire dataset. Moreover, there is more and
steadier growth in nonmarket EPS. Indeed, nonmarket EPS growth is
considerably less volatile than market EPS (std. dev. of 0.08 vs. 0.21,
respectively).

6.4 Empirical Strategy and Descriptive Statistics

6.4.1 Empirical Strategy

We estimate the impact of the stringency of environmental regulations
on the number of patent applications related to clean technologies in the
mining sector by estimating the following model:

log
1
3

X2

k¼0
PATit�kjX

� �
¼ 1

3

X4

k¼2
Δ%EPSit�k

� �
β1

þ 1
3

X4

k¼2
EPSit�k

� �
β2 þ

1
3

X2

k¼0
Xγit�k

� �
þ ci þ pt þ uit ð1Þ

Where PATi are patent counts in country i, Δ% EPS12 and EPS are, respect-
ively, the growth rate and level of theEPS index andX is a vector of covariates.
The remaining terms are country fixed effects ci, year fixed effects pt, (or
a time trend depending on the specification) and the idiosyncratic error term
uit. All variables are expressed as three-year moving averages. The lag
structure was chosen due to the nature of patenting. Since it takes time to
develop anew technologyonce anewregulation is implemented,we consider
that regulations passed in the period t-2 to t-4 will have an impact on
patenting activities in the period t-2 to t, so we assume that the effect of
environmental policy will occur within two years. This structure is in line
with the literature, although there is some debate as to the exact lag length
(Lanoie et al, 2011; Noailly, 2012; Noailly and Smeets, 2015).

We chose to include both the (logged) levels of EPS and the growth
rate of EPS (in percent) in the absence of conclusive evidence from the
literature. Indeed two recent studies cited in this chapter, Albrizio,
Kozluk and Zipperer (2017) and Fabrizi, Guarini and Meliciani (2018)
use growth and levels of EPS, respectively. Given that yearly patenting

12 The growth rate in percentage terms was calculated according to: % ΔEPSt ¼ EPSt�EPSt�1
EPSt�t

.
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data measure the flow of environmental innovative output, it seemsmore
likely that the marginal change in EPS (i.e. its growth rate), will be more
determinative of marginal output than the level of EPS.

In the second part of our analysis, we aim to compare the effect of
market-based versus nonmarket-based policy instruments on patenting
activities. To do so, we disaggregate the EPS index into nonmarket and
market instruments (and then into their subcomponents, namely R&D
support and standards, and taxes and trading schemes, respectively) and
estimate equation (2) as follows13:

log
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We use the Poisson fixed effects (FE) regression model to estimate both
equations (1) and (2). The Poisson FE estimator was chosen following
Allison and Waterman (2002), which identified fundamental flaws in the
panel fixed effects negative binomial estimator constructed by Hausman,
Hall and Griliches (1984). In the presence of overdispersion, Allison and
Waterman propose using either a Poisson FE model or an unconditional
negative binomial dummy variable estimator (NBDV). Poisson FE were
chosen over NBDV following Wooldridge (1999), who demonstrated that
a Poisson FE model remains consistent as long as the specification of the
conditional mean and strict exogeneity are respected. Issues stemming from
overdispersion can moreover be dealt with using robust standard errors.

The identification strategy is based on the main assumption that
patenting activities in a given country are affected by domestic environ-
mental policy stringency. In reality, there may be a disconnect between
the geographic location of inventors and where extraction and mining
operations take place. This may weaken the identification strategy, as
mining firms subject to a given country’s regulation can simply import

13 The major difference between this analysis and the baseline sample is that China is absent
from this set of regressions because the EPS is not disaggregated into market and
nonmarket-based policy for China.
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patents for useful technologies from other countries. Empirically, the
result of that would be a zero, or insignificant, coefficient estimate. As
a result, the coefficient we find may be a lower bound estimate.

We may be worried about endogeneity concerns if, for instance, high
levels of clean patenting activities facilitate the adoption of more stringent
environmental policies or if countries with low levels of clean patents may
successfully lobby against environmental regulation. In the estimation, this
would lead to a potential reverse causality between clean mining innovation
and the EPS index. Nonetheless, as discussed earlier, these concerns are
likely minimized when using the EPS index: the EPS captures regulation in
upstream sectors (energy, electricity and transport) and it is less likely that
mining firms are active into these sectors. In addition, in the estimation the
EPS variable is lagged by two years to avoid reverse causality and simultan-
eity issues. Finally, the estimation includes fixed effects to control for
additional time-invariant confounding factors that may be omitted and
affect both innovation and the level of environmental stringency (such as,
for instance, the level of development of a country).

We chose a set of covariates that accounts for several factors likely to
affect clean innovation in the mining industry and that relate to (1)
demand-side factors not captured by policy (greenhouse gas emissions,
GDP per capita, global mineral prices), (2) characteristics of a country’s
mining sector (net mining imports, mineral rents) and (3) technological
capacity in the mining sector.

Table 6.3 gives the list of covariates used in the analysis.
Regarding demand-side factors, we include the level of greenhouse gas

(GHG) emissions per capita in each country to reflect increasing concerns
about pollution and the need for technological solutions to address it. We
expect, therefore, GHG per capita to have a positive impact on cleanmining
patents. The level of GHG is also likely correlated with GDP14 and captures
the level of development of a country, so higher output and income per
capita is generally associated with higher levels of innovation.

To capture the global demand for mining products, as well as the
profitability of the mining sector, we include fluctuations in the
global mineral price index. We use the IMF’s mineral price index,
which captures changes in the price of copper, aluminum, iron ore,
tin, nickel, zinc, lead and uranium and which is set on the global

14 Their correlation in the estimation sample is 0.46. Despite its obvious relevance to both
stringency and patenting, GDP per capita was excluded from this regression, although we
will include it in some specifications.

156 m. andersen and j. noailly

https://doi.org/10.1017/9781108904209.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108904209.007


market.15 This will capture business cycles effects specific to the
mining sector. In line with the empirical literature and with the
findings of Chapter 7, we expect innovation to be procyclical, so
that higher prices and profitability will be associated to higher levels
of patenting.16

We include covariates to control for the characteristics of the mining
sector in each country. We add mining imports and exports computed as
percentage of total imports, mineral rents as a percentage of GDP, and
the value of net exports of minerals. These covariates aim to capture the
concentration of mining activities in a given country. In general, we
expect a higher concentration of mining activities (lower imports, higher

Table 6.3 Control variables

Variable Description / unit Source

Greenhouse gas
emissions per capita

1,000 per unit of GDP World Resources
Institute’s CAIT

Growth of GDP per
capita

percent World Bank’s World
Development
Indicators (WDI)

Mining imports, exports percent of all export World Bank’s World
Development
Indicators (WDI)

Mineral rents percent of GDP World Bank’s World
Development
Indicators (WDI)

Mining net exports 1,000 USD UN COMTRADE
database

Growth of global mineral
price index

percent IMF

Total mining patents Excluding clean patents WIPO

Source: Author’s calculations.

15 MPI growth, as it is country-invariant, is collinear with the year fixed effects included in
some specifications. They are thus principally relevant in specifications lacking year fixed
effects.

16 Note that innovation may affect the supply of minerals (through exploration activities for
instance) and thereby the mineral price index, leading to endogeneity issues when
estimating the impact of mineral prices on innovation. In our case, however, it is unlikely
that clean patenting will affect the supply of minerals and thereby the global price index.
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exports, higher share of mineral rents into GDP) to be associated with
higher levels of clean innovation. Nonetheless, the results may be sensi-
tive to multicollinearity issues if, for instance, exports are highly correl-
ated with imports, and if mineral rents and the volume of net mining
exports are correlated with the level of development of the country (GDP
per capita, GHG emissions), such that a higher dependence on mineral
rents would translate into lower levels of innovation.

Finally, we also include the total number of (non-clean) mining
patents to control for the baseline innovativeness of a country’s mining
sector over time. A positive sign is expected, given that a country that is
more innovative in the mining sector should also be more innovative in
the specific subfield of mining clean innovation.17

6.4.2 Summary and Descriptive Statistics

The data set is a panel of principally developed countries, as well as the
major developing country miners of Brazil, China, Indonesia, India,
Turkey and South Africa. Because it does not include other developing
countries with important, dominant, mining sectors (e.g. Botswana,
Papua New Guinea, Zambia), results are not necessarily externally valid
to all countries. Indeed, all the countries in the data set are at least middle
income and all have been politically stable for as long as they have been
present in the data set. The years covered are from 1990 to 2015. Table 6A
in the Appendix provides summary statistics of the sample.

Figure 6.4 plots the evolution of clean mining patents and EPS growth
over time for a subset of countries.18 There is considerable commonality
between these trends, particularly in the cases of the United States, France
and Australia, suggesting the existence of a positive effect of tightening EPS
on patenting. Figure 6.5 plots the level and growth of the IMF’s index
mineral prices. As can be seen from Figure 6.5, mineral prices have been
quite volatile over the years covered in the data,more than doubling between
1990 and 2008, only to drop during the financial crisis, rebound and then fall
rapidly again starting in 2011. There is no clear link between the evolution of
the mineral commodity price index and the share of clean mining patents.

17 Total mining patents were structured as a moving average with the same lag structure as
clean mining patents.

18 Specifically, a three-year, country-demeaned, moving average of logged clean mining
patents is plotted against a (two-year) lagged three-year moving average of EPS index
growth.
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Source: Author’s calculations.
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Figure 6.5 Mineral price index (MPI)
Source: Author’s calculations.
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6.5 Results

6.5.1 Baseline Results

Table 6.4 sets out the results of estimating equation (1). Columns (1) and
(2) include only GHG emissions per capita and total mining sector

Table 6.4 Baseline results

VARIABLES (1) (2) (3) (4)

Level of EPS,
(logged MA)

−0.0510 0.0480 −0.00592 0.106
(0.219) (0.209) (0.169) (0.188)

Percentage change in
EPS (MA)

0.434*** 0.359*** 0.332*** 0.343***
(0.100) (0.134) (0.118) (0.126)

Level of GHG per
capita (logged MA)

−0.419 −0.447 −0.724 −1.061
(0.527) (0.596) (0.673) (0.710)

Total number of
mining patents
(logged MA)

0.616*** 0.574*** 0.585*** 0.552***
(0.141) (0.158) (0.137) (0.162)

Growth of the MPI
(logged MA)

0.263 8.535***
(0.189) (2.669)

Mining exports
(percent of
GDP, MA)

−7.930** −5.985
(3.473) (3.829)

Mining imports
(percent of
GDP, MA)

2.181 7.131
(4.366) (5.572)

Mineral rents (percent
of GDP, MA)

6.498 4.070
(10.85) (12.81)

Net exports of minerals
(1,000s USD, MA)

−1.33e-09 −1.59e-09
(3.01e-09) (3.55e-09)

Time trend Yes No Yes No
Year fixed effects No Yes No Yes
Observations 553 553 503 503
Number of countries 31 31 30 30

Source: Author’s calculations. The dependent variable is a moving-average of the
number of clean mining patents per country from t-2 to t. All moving average
independent variables are from t-2 to t-4, with the exception of total non-clean
mining patents. Robust standard errors in parentheses,
*** p < 0.01, ** p < 0.05, * p < 0.1.
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patents as covariates, whereas columns (3) and (4) add trade exposure
covariates. Odd-numbered columns include year trends, while even-
numbered columns include year fixed effects. As these are Poisson
regressions, and the independent variables are either percentages or
natural logarithms, coefficients are easily interpretable as elasticities.19

Across specifications, and regardless of the presence or absence of year
fixed effects, there is evidence of a strongly significant, positive effect of
the growth rate of policy stringency on clean mining patenting.
Specifically, a 1 percent increase in the growth rate of environmental
policy stringency is associated with anywhere from a 0.3 percent to
0.45 percent increase in clean patenting. Those results are significant at
1 percent level across all specifications. By contrast, we find no significant
effect of the level of EPS on patenting.

As expected, there is evidence of a positive relationship between
total mining patents (excluding clean) and clean mining patents,
which is strongly significant in all specifications. Specifically,
a 1 percent increase in overall total mining patents is associated
with a 0.5 to 0.6 percent increase in clean mining patents. The
magnitude of this coefficient is notably only somewhat larger than
the coefficient on EPS growth, indicating EPS’s important role in
inducing mining innovation. The impact of fluctuations in the global
mineral price index is positive and significant in column (2), although
we may be concerned about issues of multicollinearity with the year
fixed effects terms. Other covariates do not appear to have
a statistically significant impact on clean mining patents.20

Several robustness checks were performed. We first considered differ-
ent estimation models.21 Poisson FE results are robust to the use of
cluster-bootstrapped standard errors. Results are somewhat robust to
NBDV and negative binomial “fixed effects” estimators, for which we
found positive coefficient estimates with statistical significance in some
specifications, but none in others.

Next, we considered different lag structures as shown in Table 6B in
the Appendix. The results are robust to specifications using individual
lags, as opposed to moving averages, as covariates. Interestingly, those

19 With the exception of mining net exports, which could not be transformed into a logged
variable due its negative elements. Its coefficient is consequently interpretable as a semi-
elasticity.

20 Although we find a negative sign of mining exports in column (3), this is not robust to
including fixed effects in column (4).

21 Results on the various estimation models are available upon request.
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results find a negative impact of the level of EPS in t-2, which is
offset by a similarly sized positive impact of the level of EPS in t-3.
In other words, two years after legislation is passed, EPS had
a negative impact on patenting, but that negative impact is counter-
balanced by a positive effect as of the third year. This could indicate
that in the relatively short term, environmental policy may crowd
out innovation, but a positive impact occurs in the longer term.
Finally, results are robust to defining variables in terms of two-year
moving averages.

6.5.2 Market vs. Nonmarket Instruments

We now turn to estimating the impact of different environmental policy
instruments, comparing market with nonmarket-based policy instru-
ments. Table 6.5 reports the results of estimating equation (2), where
we include both market and nonmarket sub-indicators of the EPS.22

Column (1) includes a time trend, while column (2) includes year fixed
effects. As in the preceding section, the level of the EPS variables has no
statistically significant effect on patenting, while only the growth rate of
EPS appears relevant. Specifically, a 1 percent increase in the growth rate
of nonmarket EPS is associated with between a 0.25 percent and 0.5 per-
cent increase in clean patenting. The magnitude of that effect is roughly
comparable to the estimate from overall EPS, suggesting that the esti-
mated impact on clean patenting from overall EPS is driven by nonmar-
ket instruments. By contrast, we find no statistically significant impact of
market-based instruments contrary to the theoretical insights.

To investigate this striking result further, we further disaggregate the
analysis by type of policy instrument. In Table 6.6, we estimate the
separate impact of the various policy instruments: namely environmental
standards and government renewable R&D for nonmarket instruments
and environmental taxes and trading schemes for market-based instru-
ments – see Figure 6.2 for the construction of the EPS index across the
various types of instruments. The results find evidence for a positive and
statistically significant effect of the growth rate of environmental stand-
ards. Specifically, a 1 percent increase in the growth rate of the stringency
of environmental standards is associated with a 0.5 percent to 0.8 percent

22 A further complication is due to the fact that market and nonmarket EPS are highly
correlated (0.65), as are the more disaggregated measures of EPS. That correlation does
not appear to induce multicollinearity, as the inclusion of all EPS measures in the same
equation caused no issues with the variance inflation factor of any of them.
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increase in clean patenting. This is a larger impact than the aggregate EPS
index growth found in Table 6.4. Government R&D expenditures in
renewable energy is found to have a negative impact on clean mining

Table 6.5 Results – Impact of market vs. nonmarket EPS

VARIABLES (1) (2)

Level of market EPS (logged MA) 0.0659 0.0437
(0.151) (0.142)

Percentage change of market EPS (MA) −0.166 −0.162
(0.140) (0.130)

Level of nonmarket EPS (logged MA) −0.0466 0.0604
(0.191) (0.221)

Percentage change of nonmarket
EPS (MA)

0.478*** 0.277**
(0.150) (0.137)

Level of GHG per capita (logged MA) −1.326*** −1.875***
(0.476) (0.513)

Total number of mining patents
(logged MA)

0.566*** 0.588***
(0.133) (0.164)

Growth of the MPI (logged MA) 0.321 6.234**
(0.199) (2.869)

Mining exports (percent of
exports, MA)

−3.219 −1.057
(3.651) (3.317)

Mining imports (percent of
imports, MA)

−5.672 −3.048
(3.848) (4.704)

Mineral rents (percent of GDP, MA) −2.278 −4.142
(12.53) (12.00)

Net exports of minerals (1000s
USD, MA)

−4.38e-09** −6.32e-09**
(2.09e-09) (2.75e-09)

Year trend Yes No
Year fixed effects No Yes
Observations 465 465
Number of countries 28 28

Source: Author’s calculations. The dependent variable is a moving average of the
number of clean mining patents per country from t-2 to t. All moving-average
independent variables are from t-2 to t-4, with the exception of total non-clean
mining patents. Cluster-robust standard errors in parentheses,
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6.6 Results – Impact of individual policy instruments

VARIABLES (1) (2)

Nonmarket-based instruments:
Percentage change in env. standards EPS (MA) 0.572** 0.811***

(0.235) (0.240)
Percentage change in R&D EPS (MA) −0.192*** −0.227***

(0.0712) (0.0871)
Level of standards EPS (logged MA) 0.0691 0.0492

(0.0687) (0.0618)
Level of R&D EPS (logged MA) −0.00322 0.0743

(0.0573) (0.114)
Market-based instruments:
Pct. change in tax EPS (MA) −0.207 −0.135

(0.144) (0.178)
Pct. change in trading schemes EPS (MA) −0.0853*** −0.0485

(0.0296) (0.0388)
Level of tax EPS (logged MA) −0.0156 0.00863

(0.0179) (0.0253)
Level of trading schemes EPS (logged MA) 0.132 0.0194

(0.121) (0.133)
Other covariates:
Level of GHG emissions per capita (logged MA) −1.801*** −1.836***

(0.443) (0.520)
Total non-clean mining patents (logged MA) 0.548*** 0.508***

(0.121) (0.134)
MPI growth (MA) 0.190 5.891***

(0.168) (2.171)
Mining exports (percent of exports, MA) −0.710 −1.938

(3.429) (3.743)
Mining imports (percent of imports, MA) −6.208* −3.380

(3.707) (4.837)
Mineral rents (percent of GDP, MA) −8.295 −4.951

(13.05) (13.87)
Net exports of minerals (1000s USD, MA) −7.38e-09** −8.37e-09**

(3.69e-09) (3.93e-09)

Year trend Yes No
Year fixed effects No Yes
Observations 462 462

Source: Author’s calculations. The dependent variable is a moving average of the
number of clean mining patents per country from t-2 to t. All moving-average
independent variables are from t-2 to t-4, with the exception of total non-clean
mining patents. Cluster-robust standard errors in parentheses,
*** p < 0.01, ** p < 0.05, * p < 0.1.
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patenting activities: a 1 percent increase in R&D EPS is associated with
a roughly 0.2 percent decrease in mining clean patenting. Given that
renewable energy technologies are not highly relevant for mining activ-
ities, we can expect that more spending on renewable energy will lead to
some crowding out of clean innovation related to mining.

Further, we find no evidence that environmental taxes have an impact
on clean patenting, while the growth in the stringency of tradable permits
is associated with a very small statistically significant decline in clean
patenting activities in mining in column (1), but this result is not robust
to adding year fixed effects in column (2). Overall, these results confirm
the ones found in Table 6.5, namely that market-based policy instru-
ments do not appear to have a significant impact on clean innovation in
the mining industry.

Just as before, we perform a set of robustness tests and find that results
are robust to various estimation models and to alternative lagged struc-
ture and moving averages.23 Using disaggregated measures of EPS, the
coefficient on the growth rate of environmental standards remains sig-
nificant across various moving-average specifications.

The large significant impact of environmental standards, compared to
market-based instruments, may seem puzzling in light of the theoretical
results. Nonetheless, as discussed in Section 6.2, a main challenge in
testing the theory arises from the lack of sufficient experience with
stringent market-based instruments. Environmental standards (related
to air pollution in the EPS index) remain traditionally the most popular
form of environmental policy and have been used extensively in many
countries. In our dataset, it appears that the stringency of environmental
standards has increased consistently and remained higher than other
instruments over the years.24 As seen in Figure 6.3, nonmarket EPS is
consistently higher than market EPS across the entire dataset. Moreover,
there is more and steadier growth in nonmarket EPS. Indeed, nonmarket
EPS growth is considerably less volatile than market EPS (std. dev. of 0.08

23 Results are robust to cluster-bootstrapped standard errors, to the use of a conditional
random effects Poisson model using both clustered and cluster-bootstrapped standard
errors. They are robust to a NBDV model as well as a conditional “fixed effects” negative
binomial model in some specifications. Results are robust to alternative moving averages,
specifically two- and four-year moving averages of all covariates. Those regressions find
the same, positive and significant relationship between nonmarket changes in stringency
and clean patent filing using two- and four-year MAs. Detailed results are available upon
request.

24 Standards have a maximum EPS value of 6/6 as compared with 4/6 and 5.2/6 for taxes and
trading schemes, respectively.
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vs. 0.21, respectively). In addition, the particularly positive impact of
standards may also be ascribable to their high level of stability: their
growth is uniformly positive, indicating that, once implemented, stand-
ards are not repealed. By contrast, environmental taxes and tradable
schemes are still relatively new, have not been set at high stringency
levels yet and may tend to be more geographically concentrated in
Europe, rather than in regions where mining activities are prevalent.25

6.6 Conclusions

This chapter provides a first exploratory investigation of the impact of
environmental policy stringency on clean innovation in the mining sector.
Using a novel dataset of patenting activities in the mining industry devel-
oped by WIPO, we are able to identify mining patents specific to clean
technologies. We combine patents data with the EPS index of environmen-
tal policy stringency developed by the OECD and conduct the analysis for
a set of 32 countries over 1990–2015. Our findings show that environmental
regulations do trigger mining firms to develop new clean technologies:
a 1 percent increase in the EPS index is associated with an increase of 0.3
to 0.45 percent of clean patenting activities in mining. Given that the policy
indicator is quite broad and abstract from water or soil regulation, our
estimates are likely to be a lower bound of the impact. In further analysis, we
investigate which types of policy instruments between market- and non-
market-based policies, are themost effective in encouraging clean patenting.
We find that nonmarket policy instruments, in particular environmental
standards (mainly related to air pollution as defined in the EPS index)
explain most of the effect. This may be due to the prevalence of traditional
command-and-control types of regulations in countries most active in
mining, with, so far, few implementations of stringent market-based pol-
icies – but a detailed investigation of this question is left for future analysis.

As our study is mainly exploratory, there are still many questions
worth investigating in future work. First, the novel dataset on clean
mining patents used in this study calls for a more in-depth under-
standing and mapping of the various types of technologies that aim to
reduce the environmental impact of mining. As an illustration, the
CPC Y02 classification that flags “environmental patents” is very
broadly defined and could be further disaggregated. Second, an import-
ant assumption in our analysis is that domestic environmental

25 Australia started with emission trading in 2016, after abolishing carbon pricing in 2014.
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regulations spur innovation at home. This assumption may not hold,
however, if foreign METS firms are instead important technology
providers to domestic mining corporations. Third, our analysis could
be extended to test the robustness of our results to other specific policy
instruments for the mining sector, rather than the aggregate EPS index.
Finally, it would be worthwhile to investigate whether innovation in
clean technologies triggered by regulation leads to productivity gains –
as a contribution to the debate on whether environmental policy may
foster competitiveness of the mining industry.

References

Aghion, P., Dechezleprêtre, A., Hémous, D., Martin, R., and Van Reenen, J.
(2016). Carbon Taxes, Path Dependency, and Directed Technical Change:
Evidence from the Auto Industry. Journal of Political Economy, 124(1),
1–51. https://doi.org/10.1086/684581

Albrizio, S., Kozluk, T., and Zipperer, V. (2017). Environmental Policies and
Productivity Growth: Evidence across industries and firms. Journal of
Environmental Economics and Management, 81, 209–226.

Allison, P. D., and Waterman, R. P. (2002). Fixed-Effects Negative Binomial
Regression Models. Sociological Methodology, 32(1), 247–265. https://doi
.org/10.1111/1467-9531.00117

Ambec, S., Cohen, M. A., Elgie, S., and Lanoie, P. (2013). The Porter
Hypothesis at 20: Can environmental regulation enhance innovation and
competitiveness? Review of Environmental Economics and Policy, 7(1),
2–22. https://doi.org/10.1093/reep/res016

Amir, R., Germain, M., and Van Steenberghe, V. (2008). On the Impact of
Innovation on the Marginal Abatement Cost Curve. Journal of Public
Economic Theory, 10(6), 985–1010. https://doi.org/10.1111/j.1467-
9779.2008.00393.x

Australian National Greenhouse Accounts. (2018). National Inventory by
Economic Sector 2016. Department of the Environment and Energy,
Australian Government.

Barlevy, G. (2007). On the Cyclicality of Research and Development.American
Economic Review, 97(4), 1131–1164. https://doi.org/10.1257/aer.97.4.1131

Bartos, P. J. (2007). Is Mining a High-Tech Industry?: Investigations into
Innovation and Productivity Advance. Resources Policy, 32(4), 149–158.

Bauman, Y., Lee, M., and Seeley, K. (2008). Does Technological Innovation
Really Reduce Marginal Abatement Costs? Some theory, algebraic evi-
dence, and policy implications. Environmental and Resource Economics,
40(4), 507–527. https://doi.org/10.1007/s10640-007-9167-7

environmental regulations in the mining sector 167

https://doi.org/10.1017/9781108904209.007 Published online by Cambridge University Press

https://doi.org/10.1086/684581
https://doi.org/10.1111/1467-9531.00117
https://doi.org/10.1111/1467-9531.00117
https://doi.org/10.1093/reep/res016
https://doi.org/10.1111/j.1467-9779.2008.00393.x
https://doi.org/10.1111/j.1467-9779.2008.00393.x
https://doi.org/10.1257/aer.97.4.1131
https://doi.org/10.1007/s10640-007-9167-7
https://doi.org/10.1017/9781108904209.007


Botta, E., and Koźluk, T. (2014). Measuring Environmental Policy Stringency
in OECD Countries: A Composite Index Approach. OECD Economic
Department Working Papers, 1177.

Bridge, G. (2004). Contested Terrain: Mining and the environment. Annual
Review of Environment and Resources, 29(1), 205–259. https://doi.org/10
.1146/annurev.energy.28.011503.163434

Brunel, C., and Levinson, A. (2016). Measuring the Stringency of
Environmental Regulations. Review of Environmental Economics and
Policy, 10(1), 47–67.

Daly, A., Valacchi, G., and Raffo, J. (2019). Mining patent data: Measuring
innovation in themining industry with patents.World Intellectual Property
Organization (WIPO) Economic Research Working Paper, 56.

Dechezleprêtre, A., and Glachant, M. (2014). Does Foreign Environmental
Policy Influence Domestic Innovation? Evidence from the wind industry.
Environmental and Resource Economics, 58(3), 391–413. https://doi.org/
10.1007/s10640-013-9705-4

Fabrizi, A., Guarini, G., and Meliciani, V. (2018). Green Patents, Regulatory
Policies and Research Network Policies. Research Policy, 47(6), 1018–1031.
https://doi.org/10.1016/j.respol.2018.03.005

Galindo-Rueda, F., and Verger, F. (2016). OECD Taxonomy of Economic
Activities Based on R&D Intensity. OECD Science, Technology and
Industry Working Papers 2016.4.

Geroski, P. A., andWalters, C. F. (1995). Innovative Activity over the Business
Cycle. The Economic Journal, 105(431), 916. https://doi.org/10.2307/
2235158

Haščič, I., and Migotto, M. (2015) Measuring environmental innovation using
patent data. OECD Environment Working Papers, 89.

Hausman, J., Hall, B., and Griliches, Z. (1984). Econometric Models for Count
Data with an Application to the Patents-R&D Relationship (No. t0017).
Cambridge, MA: National Bureau of Economic Research. https://doi.org
/10.3386/t0017

Hicks, J. (1932). The Theory of Wages. Macmillan.
Hilson, G. (2002). Eco-efficiency: Improving environmental management

strategy in the primary extraction industry. Journal of Environmental
Systems, 29(1), 1–14. https://doi.org/10.2190/KW9 M-0ER4-9W3P-96P3

Jaffe, A. B., Newell, R. G., and Stavins, R. N. (2005). A Tale of Two Market
Failures: Technology and environmental policy. Ecological Economics, 54
(2), 164–174.

Johnstone, N., Haščič, I., and Popp, D. (2009). Renewable Energy Policies and
Technological Innovation: Evidence based on patent counts. Environmental
and Resource Economics, 45(1), 133–155. https://doi.org/10.1007/
s10640-009–9309-1

168 m. andersen and j. noailly

https://doi.org/10.1017/9781108904209.007 Published online by Cambridge University Press

https://doi.org/10.1146/annurev.energy.28.011503.163434
https://doi.org/10.1146/annurev.energy.28.011503.163434
https://doi.org/10.1007/s10640-013-9705-4
https://doi.org/10.1007/s10640-013-9705-4
https://doi.org/10.1016/j.respol.2018.03.005
https://doi.org/10.2307/2235158
https://doi.org/10.2307/2235158
https://doi.org/10.3386/t0017
https://doi.org/10.3386/t0017
https://doi.org/10.2190/KW9
https://doi.org/10.1007/s10640-009�9309-1
https://doi.org/10.1007/s10640-009�9309-1
https://doi.org/10.1017/9781108904209.007


Kilian, L., and Zhou, X. (2018). Modeling Fluctuations in the Global Demand
for Commodities. Journal of International Money and Finance, 88, 54–78.
https://doi.org/10.1016/j.jimonfin.2018.07.001

Lanoie, P., Laurent-Lucchetti, J., Johnstone, N., and Ambec, S. (2011).
Environmental Policy, Innovation and Performance: New Insights on the
Porter Hypothesis. Journal of Economics and Management Strategy, 20(3),
803–842. https://doi.org/10.1111/j.1530-9134.2011.00301.x

Laurence, D. (2011). Establishing a Sustainable Mining Operation: An
overview. Journal of Cleaner Production, 19(2–3), 278–284. https://doi
.org/10.1016/j.jclepro.2010.08.019

Mudd, G. M. (2007). Global Trends in Gold Mining: Towards quantifying
environmental and resource sustainability. Resources Policy, 32(1–2),
42–56. https://doi.org/10.1016/j.resourpol.2007.05.002

Noailly, J. (2012). Improving the Energy Efficiency of Buildings: The impact of
environmental policy on technological innovation. Energy Economics, 34
(3), 795–806. https://doi.org/10.1016/j.eneco.2011.07.015

Noailly, J., and Smeets, R. (2015). Directing Technical Change from Fossil-Fuel
to Renewable Energy Innovation: An application using firm-level patent
data. Journal of Environmental Economics and Management, 72, 15–37.
https://doi.org/10.1016/j.jeem.2015.03.004

Popp, D. (2002). Induced Innovation and Energy Prices. The American
Economic Review, 92(1), 160–180.

Popp, D. (2006). International Innovation and Diffusion of Air Pollution
Control Technologies: The effects of NOX and SO2 regulation in the US,
Japan, and Germany. Journal of Environmental Economics and
Management, 51(1), 46–71. https://doi.org/10.1016/j.jeem.2005.04.006

Popp, D., Newell, R. G., and Jaffe, A. B. (2010). Energy, the Environment, and
Technological Change, in Handbook of the Economics of Innovation (Vol.
2, pp. 873–937), Bronwyn H. Hall and Nathan Rosenberg, eds. Elsevier.
https://doi.org/10.1016/S0169-7218(10)02005–8

Sauter, C. (2014). How ShouldWeMeasure Environmental Policy Stringency?
A new approach. IRENE, Working Paper, 14(1), 21.

Warhurst, A., and Bridge, G. (1997). Economic Liberalisation, Innovation, and
Technology Transfer: Opportunities for cleaner production in theminerals
industry. Natural Resources Forum, 21(1), 1–12. https://doi.org/10.1111/
j.1477-8947.1997.tb00668.x

Whitmore, A. (2006). The Emperor’s New Clothes: Sustainable mining?
Journal of Cleaner Production, 14(3–4), 309–314. https://doi.org/10.1016/j
.jclepro.2004.10.005

Wooldridge, J. M. (1999). Distribution-free estimation of Some Nonlinear
Panel Data Models. Journal of Econometrics, 90(1), 77–97. https://doi
.org/10.1016/S0304-4076(98)00033-5

environmental regulations in the mining sector 169

https://doi.org/10.1017/9781108904209.007 Published online by Cambridge University Press

https://doi.org/10.1016/j.jimonfin.2018.07.001
https://doi.org/10.1111/j.1530-9134.2011.00301.x
https://doi.org/10.1016/j.jclepro.2010.08.019
https://doi.org/10.1016/j.jclepro.2010.08.019
https://doi.org/10.1016/j.resourpol.2007.05.002
https://doi.org/10.1016/j.eneco.2011.07.015
https://doi.org/10.1016/j.jeem.2015.03.004
https://doi.org/10.1016/j.jeem.2005.04.006
https://doi.org/10.1016/S0169-7218(10)02005�8
https://doi.org/10.1111/j.1477-8947.1997.tb00668.x
https://doi.org/10.1111/j.1477-8947.1997.tb00668.x
https://doi.org/10.1016/j.jclepro.2004.10.005
https://doi.org/10.1016/j.jclepro.2004.10.005
https://doi.org/10.1016/S0304-4076(98)00033-5
https://doi.org/10.1016/S0304-4076(98)00033-5
https://doi.org/10.1017/9781108904209.007


APPENDIX

Table 6A Summary statistics of key variables
1) All sample, MA transformed variables

Variable Obs Mean Std. Dev. Min Max

Clean mining patents 694 173 418 0 3099
EPS level 630 1.42 0.79 0.37 3.89
EPS growth 598 0.06 0.08 −0.14 0.43
GHG emissions per capita 630 2.23 0.60 0.33 3.41
Total mining patents 694 3472 9527 0 80633
Mining exports (percent

of exports)
616 0.04 0.05 0.01 0.36

Mining imports (percent
of imports)

618 0.03 0.01 0.01 0.14

Mineral price index 630 55 25 34 103
Growth of GDP per capita 564 0.02 0.02 −0.04 0.08
Market EPS level 608 0.91 0.60 0 3.54
Market EPS growth 554 0.10 0.21 −0.33 1.16
Nonmarket EPS level 608 1.97 1.13 0.33 5.33
Nonmarket EPS growth 630 0.03 0.07 −0.33 0.33

Source: Author’s calculations.

2) Baseline estimation sample, logged MA transformed variables

Variable Obs Mean Std. Dev. Min Max

Clean mining
patents

503 267 628.1753 0 5414

Logged EPS 503 0.27 0.583448 −0.9808292 1.35342
EPS growth 503 0.06 0.088846 −0.1489899 0.436715
GHG emissions per

capita
503 2.24 0.621479 0.3430755 3.418411

Non-environmental
patents

503 5.68 1.928179 0.9985774 10.14555

MPI growth 503 0.07 0.131274 −0.1067837 0.362375
Mineral exports 503 0.04 0.0568 0.0031 0.364131
Mineral imports 503 0.046 0.020141 0.0117066 0.141764
Mineral rents 503 0.00 0.009332 0 0.065297

Source: Author’s calculations.
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Table 6B Robustness best of baseline estimation, using further lags and
moving-average definition

VARIABLES (1) (2) (3)

Level of EPS,
logged t-2

−3.895***

(0.719)
Level of EPS,

logged t-3
2.232***

(0.758)
Level of EPS,

logged t-4
1.751

(1.074)
Percentage change

in EPS, t-2
3.553***

(0.655)
Percentage change

in EPS, t-3
1.537

(0.970)
Percentage change

in EPS, t-4
−0.0536

(0.131)
Percentage change

in EPS (MA-2)
0.348***

(0.124)
Level of EPS,

logged (MA-2)
0.0898

(0.187)
Percentage change

in EPS (MA-4)
0.142

(0.112)
Level of EPS,

logged (MA-4)
0.0898

(0.228)
Other controls Yes Yes Yes
Year fixed effects Yes Yes Yes
Observations 518 535 435
Number of

countries
29 30 28

Source: Author’s calculations.
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