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ON THE k-BUCHSBAUM PROPERTY OF POWERS OF
STANLEY–REISNER IDEALS

NGUYÊN CÔNG MINH and YUKIO NAKAMURA

Abstract. Let S =K[x1, x2, . . . , xn] be a polynomial ring over a field K. Let

Δ be a simplicial complex whose vertex set is contained in {1,2, . . . , n}. For
an integer k ≥ 0, we investigate the k-Buchsbaum property of residue class
rings S/I(t) and S/I t for the Stanley–Reisner ideal I = IΔ. We characterize

the k-Buchsbaumness of such rings in terms of the simplicial complex Δ and

the power t. We also give a characterization in the case where I is the edge

ideal of a simple graph.

§1. Introduction

Let S = K[x1, x2, . . . , xn] be a polynomial ring over a field K with the

maximal ideal m= (x1, x2, . . . , xn). Let Δ be a simplicial complex on a vertex

set contained in [n] = {1,2, . . . , n}. Let IΔ be the Stanley–Reisner ideal of Δ

in S. Let k be a nonnegative integer. For an ideal J in S, we say that S/J

is k-Buchsbaum if mkH i
m(S/J) = (0) for all i < dimS/J , where H i

m(S/J)

is the ith local cohomology module of S/J with respect to m. Obviously,

the 0-Buchsbaum property implies the Cohen–Macaulay property, and the

1-Buchsbaum property implies the quasi-Buchsbaum property. The purpose

of this paper is to investigate the k-Buchsbaum property of the residue class

rings S/ItΔ and S/I
(t)
Δ , where I

(t)
Δ stands for the tth symbolic power of IΔ.

The first main result of this paper is the following.

Theorem 3.2. Let I = IΔ be the Stanley–Reisner ideal of a simplicial

complex Δ. Let k be a nonnegative integer. Then, the following statements

are equivalent:
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(1) S/I(t) is Cohen–Macaulay for all t≥ 1;

(2) S/I(t) is k-Buchsbaum for all t≥ 1;

(3) S/I(t) is k-Buchsbaum for some t≥ k+ 3;

(4) Δ is a matroid.

The notion of a matroid is a concept of discrete mathematics (for its

definition, see the text following Lemma 2.5). That is a quite broad general-

ization of linear independence and has widespread applications, for example,

to graph theory. The second main result of the paper regards the ordinary

powers of the Stanley–Reisner ideal, as follows.

Corollary 4.7. Let I = IΔ be the Stanley–Reisner ideal of a simplicial

complex Δ. Let k be a nonnegative integer. Then, the following statements

are equivalent:

(1) S/I t is Cohen–Macaulay for all t≥ 1;

(2) S/I t is k-Buchsbaum for all t≥ 1;

(3) S/I t is k-Buchsbaum for some t≥ k+ 3;

(4) I is a complete intersection.

This is a combination of the results of a 1-dimensional case (Theorem 4.6)

and a higher-dimensional case (Theorem 4.4).

Research on the Cohen–Macaulay property of S/I
(t)
Δ and S/ItΔ was begun

by [MT1] and [GH] for 1-dimensional simplicial complexes Δ. Then, by

the authors, the Buchsbaum properties of S/I
(t)
Δ and S/ItΔ were studied in

[MN1] and [MN2] for Δ with dimΔ= 1. Moreover, the k-Buchsbaum prop-

erty of S/I
(t)
Δ was studied in [MN3]. Later, the Cohen–Macaulay property

of S/I
(t)
Δ for an arbitrary dimension was studied in [MT2] and [V], and the

Buchsbaum cases were studied in [TT].

On the other hand, according to [CN, Corollary], the Cohen–Macaulayness

of S/ItΔ for all t > 0 implies that IΔ is a complete intersection. So, it is

interesting to research the properties of S/IΔ or IΔ under the condition

that S/ItΔ has good properties for every large-enough t. One can see var-

ious results in [GT], [TY], [RTY], and [TT]. The authors of these papers

developed many kinds of properties for S/IΔ or IΔ under the condition

that S/ItΔ or S/I
(t)
Δ is Cohen–Macaulay, Buchsbaum, generalized Cohen–

Macaulay, or (S2) for every large-enough t; also, they determined the range

for such a t. The target of this paper is the k-Buchsbaumness of S/ItΔ and

S/I
(t)
Δ . One of the interesting points is the discovery of the relation between

t and k.
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For a simple graph G, we have a square-free monomial ideal I(G) in

S which is called the edge ideal of G. An edge ideal can be expressed as

the Stanley–Reisner ideal of a suitable simplicial complex; hence, the result

for Stanley–Reisner ideals can be applied to the case of edge ideals. In

Corollary 3.7, we give a characterization for S/I(G)(t) to be k-Buchsbaum

for every large-enough t in terms of G.

This paper consists of four sections. In Section 2, we set up the fundamen-

tal notation and terminologies, for which we mainly refer to the book [BH].

Degree complex Δa(I) plays an important role (for details, we refer to [T],

[MN1], and [MN2]). In Section 3, we provide an argument for the symbolic

powers of Stanley–Reisner ideals. Section 4 is devoted to the argument of

ordinary powers.

§2. Preliminaries

A simplicial complex Δ on [n] := {1,2, . . . , n} is a collection of subsets of

[n] such that F ∈Δ whenever F ⊆ F ′ for some F ′ ∈Δ. Here F ∈Δ is called

a face of Δ. We put dimF = |F | − 1, where |F | is the cardinality of F , and

we put dimΔ=max{dimF | F ∈Δ}, which is called the dimension of Δ.

Let K be a field, and let S =K[x1, x2, . . . , xn] be a polynomial ring of

n variables over K. We denote the homogeneous maximal ideal of S by

m= (x1, x2, . . . , xn). The Stanley–Reisner ideal of Δ is defined as

IΔ =
(∏
i∈F

xi

∣∣∣ F /∈Δ
)
=

⋂
F∈Max(Δ)

PF ,

where PF is the ideal in S generated by {xj | j /∈ F}.
Each element in Max(Δ) is called a facet, which is a maximal face of Δ

with respect to inclusion, and the intersection of PF s gives an irredundant

primary decomposition of IΔ. If all facets of Δ have the same dimension, we

say that Δ is pure. Every square-free monomial ideal of S can be written as

a Stanley–Reisner ideal of a suitable simplicial complex. The residue class

ring K[Δ] = S/IΔ is called the Stanley–Reisner ring of Δ. It is known that

dimK[Δ] = dimΔ+ 1.

Let a= (a1, a2, . . . , an) ∈ Z
n. We put the subset Ga = {i | ai < 0} of [n],

and we write xa =
∏n

j=1 x
aj
j , which is an element of SGa , where SGa is the

localization S[x−1
i | i ∈Ga] of S.

For a monomial ideal I of S, the degree complex Δa(I) is the simplicial

complex on [n] defined as follows.
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Definition 2.1. Let I be a monomial ideal of S (see [T]). Let a ∈ Z
n.

Then Δa(I) is a collection of subsets, F of [n], satisfying the following two

conditions:

(1) F ∩Ga = ∅;
(2) for every minimal monomial generator xb of I , where b= (b1, b2, . . . , bn),

there exists an index i /∈ F ∪Ga with bi > ai.

We note that the second condition is equivalent to saying that xa /∈
ISF∪Ga . The degree complex is a useful tool to describe the local coho-

mology modules of S/I . We denote by H̃j(Δ;K) the reduced cohomology

group of a simplicial complex Δ over K (see [BH, Section 5.3]).

Theorem 2.2 ([T, Lemma 2]). Let I be a monomial ideal of S. For each

p ∈ Z and a ∈ Z
n, there is an isomorphism of K-vector spaces:

Hp
m(S/I)a

∼= H̃p−|Ga|−1
(
Δa(I);K

)
.

For a Stanley–Reisner ideal IΔ and a positive integer r, the rth symbolic

power of IΔ is given as
⋂

F∈Max(Δ)PF
r, which is also a monomial ideal.

The following lemma is very useful for calculating the degree complex of

symbolic powers of IΔ. For a = (a1, a2, . . . , an) ∈ N
n and F ∈ [n], we put

σa
F =

∑
i/∈F ai.

Lemma 2.3 ([MT2, Lemma 1.5]). Let I = IΔ be the Stanley–Reisner ideal

of Δ. Let a= (a1, a2, . . . , an) ∈N
n. Suppose that I is unmixed (i.e., that Δ is

pure). Then, for a positive integer r, Max(Δa(I
(r))) consists of F ∈Max(Δ)

satisfying σa
F < r.

For a simplicial complex Δ and F ∈Δ, we define two subcomplexes:

linkΔF = {H ∈Δ |H ∩ F = ∅,H ∪ F ∈Δ},

starΔF = {H ∈Δ |H ∪ F ∈Δ}.

Note that a degree complex can be written as a link. The proof of the

following lemma is given in [M] and [MT2]. For convenience, we provide a

brief proof below.

Lemma 2.4 ([MT2, Lemma 1.5]). Let I be a monomial ideal of S. For

a ∈ Z
n, we define a+ ∈N

n so that

(a+)j =

{
aj (aj ≥ 0),

0 (otherwise).

If Δa(I) 	= ∅, then Δa(I) = linkΔa+ (I)Ga.
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Proof. Note that Δa(I) 	= ∅ (i.e., that ∅ ∈ Δa(I)) if and only if Ga ∈
Δa+(I). Let F ∈Δa(I). Then, x

a /∈ ISF∪Ga , which is equivalent to saying

that xa+ /∈ ISF∪Ga . Hence, F ∩Ga = ∅ and F ∪Ga ∈Δa+(I), which implies

that F ∈ linkΔa+ (I)Ga. The converse implication follows from the same

argument.

The following lemma is proved in [MN1, Lemma 2.3] in the case where

a,b ∈ N
n. We note that the proof also works in the case where a ∈ Z

n,

b ∈N
n with Ga =Ga+b.

Lemma 2.5 ([MN1, Lemma 2.3]). Let I be a monomial ideal of S. Let

a ∈ Z
n, and let b ∈ N

n, with Ga =Ga+b. Then, for any integers j ≥ 0, we

have the following commutative diagram:

Hj
m(S/I)a

xb

−−−−→ Hj
m(S/I)a+b⏐⏐� ⏐⏐�

H̃j−|Ga|−1
(
Δa(I);K

)
−−−−→ H̃j−|Ga|−1

(
Δa+b(I);K

)
where the vertical maps are isomorphisms as in Theorem 2.2, the top map is

induced from the multiplicative map S/I � f �→ xbf ∈ S/I, and the bottom

map is induced from the natural embedding Δa+b(I)⊆Δa(I) of simplicial

complexes.

A simplicial complex Δ 	= ∅ is called a matroid if the following condition

is satisfied: for F,G ∈ Δ with |F | < |G|, there exists x ∈ G \ F such that

F ∪ {x} ∈Δ.

We note that the following lemma is useful in checking for whether a

simplicial complex is a matroid.

Lemma 2.6 ([S, Theorem 39.1]). A simplicial complex Δ 	= ∅ is a matroid

if and only if, for any F,G ∈Δ with |F \G|= 1 and |G\F |= 2, there exists

x ∈G \ F such that F ∪ {x} ∈Δ.

A simple graph G consists of a finite set V (G) of vertices and a collection

of edges E(G), which are 2-element subsets of V (G). We note that a simple

graph has no loops and no parallels. In this article, we always assume that

a graph G is simple and that V (G)⊆ [n]. The edge ideal of G is the ideal of

S generated by {xixj | {i, j} ∈E(G)}, denoted by I(G). Note that an edge

ideal is a square-free monomial ideal, so it can be written as a Stanley–

Reisner ideal of a suitable simplicial complex.
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§3. Symbolic powers

The following proposition is a key component of this paper. Let ei ∈ Z
n

be the ith unit vector. For a subset F of [n], we put eF =
∑

i∈F ei.

Proposition 3.1. Let Δ be a pure simplicial complex on [n]. We put

I = IΔ. Let k and t be integers such that k ≥ 0 and t ≥ k + 3. If Δ is

not a matroid, then dimS/I(t) > 0 and mkHr
m(S/I

(t)) 	= (0) for some r <

dimS/I(t).

Proof. By Lemma 2.6, we can choose F1, F2 ∈ Δ such that F1 \ F2 =

{i}, F2 \ F1 = {j, p}, F1 ∪ {j} /∈Δ, and F1 ∪ {p} /∈Δ. Let L = linkΔ{i} ∩
linkΔ{j, p}. Note that F1 ∩ F2 ∈ L, so we can take F ∈Max(L) such that

F1∩F2 ⊆ F . Let a= (t− 1)ei+ej +ep−eF . In particular, a+ = (t− 1)ei+

ej + ep and Ga = F . Then, one can check that

Δa+(I
(t)) = starΔ{i} ∪ starΔ{j, p}.

In fact, H ∈ Max(Δa+(I
(t))) if and only if σ

a+

H < t and H ∈ Max(Δ) by

Lemma 2.3. On the other hand, it is easy to see that the inequality σ
a+

H < t

is equivalent to saying that i ∈ H or j, p ∈ H . Therefore, it follows that

H ∈Max(Δa+(I
(t))) if and only if H ∈Max(starΔ{i} ∪ starΔ{j, p}). Thus,

the equality holds true. By Lemma 2.4, we get

Δa(I
(t)) = linkΔa+ (I(t))Ga

= link starΔ{i}∪starΔ{j,p}F

= link starΔ{i}F ∪ link starΔ{j,p}F.

Here, we note that since {i} ∈ link starΔ{i}F and {j, p} ∈ link starΔ{j,p}F ,

both links contain at least a vertex. Furthermore, one can show that

link starΔ{i}F ∩ link starΔ{j,p}F = {∅}. In fact, suppose that there is a vertex

x ∈ [n] such that {x} ∈ link starΔ{i}F ∩ link starΔ{j,p}F . Then, it follows that

x /∈ F , F ∪{x} ∈ starΔ{i}, and F ∪{x} ∈ starΔ{j, p}. In other words, x /∈ F ,

F ∪{x, i} ∈Δ, and F ∪{x, j, p} ∈Δ. Note that x is different from i, j, and p.

In fact, if x= j, then F ∪{i, j} ∈Δ, whence F1 ∩F2 ∪{i, j}= F1 ∪{j} ∈Δ,

which is a contradiction.

From the same argument, it follows that x 	= p and x 	= i, too. Therefore,

F ∪ {x} ∈ linkΔ{i} and F ∪ {x} ∈ linkΔ{j, p}. Consequently, we have F ∪
{x} ∈ L, which contradicts the maximality of F in L. Hence, link starΔ{i}F ∩
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link starΔ{j,p}F = {∅}. Thus, we conclude that Δa(I
(t)) is the disjoint union

of nonempty simplicial complexes link starΔ{i}F and link starΔ{j,p}F . In par-

ticular, Δa(I
(t)) has at least two connected components. Let r = |F | + 1.

Since dimF ≤ dim linkΔ{j, p} ≤ dimΔ − 2, r = |Ga| + 1 ≤ dimΔ <

dimS/I(t). Thanks to the formula of Theorem 2.2, we get

Hr
m(S/I

(t))a = H̃r−|Ga|−1
(
Δa(I

(t));K
)

= H̃0
(
Δa(I

(t));K
)

	= (0).

Let b= kej . Then, (a+b)+ = (t−1)ei+(k+1)ej+ep. Because k+2< t,

one can check that Δ(a+b)+(I
(t)) = starΔ{i} ∪ starΔ{j, p} from the same

argument stated above. Consequently, Δ(a+b)+(I
(t)) =Δa+(I

(t)). Moreover,

since Ga =Ga+b, we obtain

Δa(I
(t)) = linkΔa+ (I(t))Ga = linkΔ(a+b)+

(I(t))Ga+b =Δa+b(I
(t)).

Now, by Lemma 2.5, one has the following commutative diagram with the

isomorphic map ξ:

Hr
m(S/I

(t))a
xb

−−−−→ Hr
m(S/I

(t))a+b⏐⏐� ⏐⏐�
H̃0

(
Δa(I

(t));K
) ξ−−−−→ H̃0

(
Δa+b(I

(t));K
)

As can be seen above, Hr
m(S/I

(t))a 	= (0); it follows that xb ·Hr
m(S/I

(t)) 	=
(0). In particular, we have mkHr

m(S/I
(t)) 	= (0), as required.

The proof of the first main result is almost finished. We now recall the

statement again.

Theorem 3.2. Let I = IΔ be the Stanley–Reisner ideal of a simplicial

complex Δ. Let k be a nonnegative integer. Then, the following statements

are equivalent:

(1) S/I(t) is Cohen–Macaulay for all t≥ 1;

(2) S/I(t) is k-Buchsbaum for all t≥ 1;

(3) S/I(t) is k-Buchsbaum for some t≥ k+ 3;

(4) Δ is a matroid.
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Proof. Here (1) ⇒ (2) and (2) ⇒ (3) are trivial, while (4) ⇒ (1) is due

to [MT2, Theorem 3.1] and [V, Theorem 2.1]. What remains is to prove

that (3) ⇒ (4). We may assume that Δ is pure by [HTT, Theorem 2.6].

Suppose that Δ is not a matroid. Then, from Proposition 3.1, it follows

that mkHr
m(S/I

(t)) 	= (0) for some r < dimS/I(t), which implies that S/I(t)

is not k-Buchsbaum.

Applying Theorem 3.2 for k = 0 and k = 1, we immediately get the follow-

ing corollary. This is a slightly better estimation than [TT, Theorem 3.9].

Corollary 3.3. Let I = IΔ be the Stanley–Reisner ideal of a simplicial

complex Δ. Then, the following statements are equivalent:

(1) S/I(t) is Cohen–Macaulay for all t≥ 1;

(2) S/I(t) is Cohen–Macaulay for some t≥ 3;

(3) S/I(t) is Buchsbaum for some t≥ 4;

(4) S/I(t) is 1-Buchsbaum for some t≥ 4;

(5) Δ is a matroid.

When Δ is a 1-dimensional simplicial complex, the condition for S/I(2)

to be Cohen–Macaulay was studied in [MT1, Theorem 2.3]. Now, we will

give a characterization of the Cohen–Macaulayness for S/I(2) in terms of

the k-Buchsbaum property.

Proposition 3.4. Let I = IΔ be the Stanley–Reisner ideal of a simpli-

cial complex Δ with dimΔ = 1. Let k be a nonnegative integer. Then, the

following statements are equivalent:

(1) S/I(2) is Cohen–Macaulay;

(2) S/I(3) is Buchsbaum;

(3) S/I(k+2) is k-Buchsbaum;

(4) diam(Δ)≤ 2.

Proof. The equivalence of (1) and (4) follows from [MT1, Theorem 2.3].

The equivalence of (2) and (4) follows from [MN1, Theorem 3.7]. The equiv-

alence of (3) and (4) follows from [MN3, Theorem 1.1].

By the same argument, we have the following statement as well.

Proposition 3.5. Let I = IΔ be the Stanley–Reisner ideal of a simpli-

cial complex Δ with dimΔ = 1. Let k be a nonnegative integer. Then, the

following statements are equivalent:

(1) S/I is Cohen–Macaulay;

(2) S/I(2) is Buchsbaum;
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(3) S/I(k+1) is k-Buchsbaum;

(4) Δ is connected.

We illustrate Theorem 3.2 and Propositions 3.4 and 3.5 with the following

example, which also explains that the condition on t in Theorem 3.2(3)

cannot be removed.

Example 3.6. Let n= 5, and let Δ be a pentagon. Then the diameter of

Δ is 2, but Δ is not a matroid. Let I = IΔ. Then S/I(2) is Cohen–Macaulay,

but S/I(t) is not Cohen–Macaulay if t≥ 3. More generally, S/I(t) is (t− 2)-

Buchsbaum, but it is not (t− 3)-Buchsbaum for any t≥ 3.

Let G be a simple graph, and let I = I(G) be the edge ideal of G. The

condition for S/I(t) to be Cohen–Macaulay for all t ≥ 1 was studied in

[RTY, Theorem 3.6]. Combining that with our result, we get the following

corollary.

Corollary 3.7. Let I = I(G) be the edge ideal of a graph G. Let k be a

nonnegative integer. Then, the following statements are equivalent:

(1) S/I(t) is Cohen–Macaulay for all t≥ 1;

(2) S/I(t) is k-Buchsbaum for all t≥ 1;

(3) S/I(t) is k-Buchsbaum for some t≥ k+ 3;

(4) G is a disjoint union of finitely many complete graphs.

§4. Ordinary powers

In this section, we discuss the residue class rings of ordinary powers of

a Stanley–Reiner ideal. The following lemma may be well known, but we

provide a proof for the reader’s convenience.

Lemma 4.1. Let I be a monomial ideal of S. Let t and k be integers

with t > 0 and k ≥ 0. Then, S/I t is k-Buchsbaum if and only if S/I(t) is

k-Buchsbaum and mkI(t) ⊆ I t. In particular, S/I t is Cohen–Macaulay if

and only if S/I(t) is Cohen–Macaulay and I(t) = I t.

Proof. We consider the exact sequence

0→ I(t)/I t → S/I t → S/I(t) → 0.

We take the long exact sequence of local cohomology modules:

· · · →H i
m(I

(t)/I t)→H i
m(S/I

t)→H i
m(S/I

(t))→H i+1
m (I(t)/I t)→ · · · .
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We first suppose that mkI(t) ⊆ I t and that S/I(t) is k-Buchsbaum. Then,

because the length of I(t)/I t is finite, we have isomorphisms

I(t)/I t ∼=H0
m(S/I

t) and H i
m(S/I

t)∼=H i
m(S/I

(t)) for all i > 0.

Thus, the k-Buchsbaumness of S/I t immediately follows from that of S/I(t).

Conversely, we suppose that S/I t is k-Buchsbaum. In particular, S/I t is a

generalized Cohen–Macaulay ring. Then, by [SV, Lemma 2.2], we have

AssS I
(t)/I t ⊆AssS S/I

t ⊆MinS/I t ∪ {m}=MinS/I ∪ {m},

while it follows that I(t)SP = P tSP = I tSP for any P ∈MinS/I from the

definition of symbolic powers. Thus, it follows that the length of I(t)/I t is

finite. Again using the isomorphisms of local cohomology modules stated

above, we get mkI(t) ⊆ I t and the k-Buchsbaumness of S/I(t).

When k = 0, the Cohen–Macaulay case follows.

Lemma 4.2. Let I = IΔ be the Stanley–Reisner ideal of a simplicial com-

plex Δ with dimΔ> 0. If S/I(t) is a k-Buchsbaum ring for some t > k ≥ 0,

then Δ is connected.

Proof. Note that Δ is pure by [HTT, Theorem 2.6]. Let b= ke1. Then,

Δb(I
(t)) = Δ0(I

(t)) = Δ. Indeed, F ∈Max(Δb(I
(t))) if and only if σb

F < t

and F ∈Max(Δ) by Lemma 2.3. Thus, the equality Δb(I
(t)) = Δ follows.

For the same reason, we have the equality Δ0(I
(t)) =Δ. Now, by Lemma 2.5,

the following commutative diagram follows, where ξ is an isomorphism:

H1
m(S/I

(t))0
xk
1−−−−→ H1

m(S/I
(t))b⏐⏐� ⏐⏐�

H̃0
(
Δ0(I

(t));K
) ξ−−−−→ H̃0

(
Δb(I

(t));K
)

On the other hand, ξ is a zero map since S/I(t) is k-Buchsbaum with

dimS/I(t) ≥ 2. Thus, H̃0(Δ;K) = (0). Hence, Δ is connected.

Before presenting the proof of the results of this section, we recall an

important result due to Terai and Trung. We note that the simplicial com-

plex Δ is called a complete intersection if its Stanley–Reisner ideal IΔ is a

complete intersection.
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Theorem 4.3 ([TT, Theorem 4.5]). Let I = IΔ be the Stanley–Reisner

ideal of a simplicial complex Δ with dimΔ≥ 2. Then, the following state-

ments are equivalent:

(1) S/I t is generalized Cohen–Macaulay for all t≥ 1;

(2) S/I t is generalized Cohen–Macaulay for some t≥ 3;

(3) Δ is a disjoint union of finitely many complete intersection complexes

of the same dimension.

First we state the result with dimΔ≥ 2, as follows.

Theorem 4.4. Let I = IΔ be the Stanley–Reisner ideal of a simplicial

complex Δ with dimΔ ≥ 2. Let k be a nonnegative integer. Then, the fol-

lowing statements are equivalent:

(1) S/I t is Cohen–Macaulay for all t≥ 1;

(2) S/I t is k-Buchsbaum for all t≥ 1;

(3) S/I t is k-Buchsbaum for some t≥max{3, k+ 1};
(4) I is a complete intersection.

Proof. It is enough to check the implication (3)⇒ (4). Because S/I t is a

generalized Cohen–Macaulay ring, the conclusion follows from Lemmas 4.1

and 4.2 and Theorem 4.3.

Finally, we state the results of a 1-dimensional case. A simplicial complex

with dimΔ= 1 can be regarded as a simple graph. We say that Δ is n-path

(resp., n-cycle) if Δ is a path of n+1 vertices (resp., a cycle of n vertices).

Theorem 4.5 ([TT, Theorem 4.4]). Let I = IΔ be the Stanley–Reisner

ideal of a simplicial complex Δ with dimΔ = 1. Then, the following state-

ments are equivalent:

(1) S/I t is generalized Cohen–Macaulay for all t≥ 1;

(2) S/I t is generalized Cohen–Macaulay for some t≥ 3;

(3) Δ is a disjoint union of paths or cycles.

Theorem 4.6. Let I = IΔ be the Stanley–Reisner ideal of a simplicial

complex Δ with dimΔ = 1. Assume that the number of vertices of Δ is at

least three. Let k be a nonnegative integer. Then, the following statements

are equivalent:

(1) S/I t is Cohen–Macaulay for all t≥ 1;

(2) S/I t is k-Buchsbaum for all t≥ 1;

(3) S/I t is k-Buchsbaum for some t≥ k+ 3;
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(4) I is a complete intersection;

(5) Δ is a 2-path, a 3-cycle, or a 4-cycle.

Proof. The equivalence between (1) and (5) follows from [MT1, Corol-

lary 3.5]. The implications (1) ⇒ (2) ⇒ (3) are trivial. Suppose that con-

dition (3) is satisfied. Then, S/I(t) is k-Buchsbaum for some t ≥ k + 3 by

Lemma 4.1. Hence, Δ is a matroid by Theorem 3.2. On the other hand, by

Theorem 4.5, Δ is a disjoint union of paths or cycles. Thus, Δ is a path or a

cycle because a matroid must be connected. (This follows from Lemma 4.2,

too.) Using the characterization for a graph to be a matroid in [TT, Corol-

lary 2.6], one can see that Δ should be a 2-path, a 3-cycle, or a 4-cycle as

in (5). The equivalence between (4) and (5) is easy to check.

Combining the cases of dimΔ= 1 and dimΔ≥ 2, we get the following.

Corollary 4.7. Let I = IΔ be the Stanley–Reisner ideal of a simpli-

cial complex Δ with dimΔ> 0. Let k be a nonnegative integer. Then, the

following statements are equivalent:

(1) S/I t is Cohen–Macaulay for all t≥ 1;

(2) S/I t is k-Buchsbaum for all t≥ 1;

(3) S/I t is k-Buchsbaum for some t≥ k+ 3;

(4) I is a complete intersection.

When Δ is a 1-dimensional simplicial complex, the condition for S/I2 to

be Cohen–Macaulay was studied in [MT1, Theorem 3.4]. We give a charac-

terization of the Cohen–Macaulayness for S/I2 in terms of the k-Buchsbaum

property.

Proposition 4.8. Let I = IΔ be the Stanley–Reisner ideal of a simplicial

complex Δ with dimΔ = 1. Assume that the number of vertices of Δ is at

least three. Let k be a nonnegative integer. Then, the following statements

are equivalent:

(1) S/I 2 is Cohen–Macaulay;

(2) S/I3 is Buchsbaum;

(3) S/Ik+2 is k-Buchsbaum;

(4) Δ is a 2-path, a 3-cycle, a 4-cycle, or a 5-cycle.

Proof. The equivalence of (1), (2), and (4) follows from [MT1, Corol-

lary 3.4] and [MN2, Theorem 4.10]. The implication (1) ⇒ (3) follows from

Proposition 3.4 and Lemma 4.1. The remaining part is the implication that

(3) ⇒ (4). We may assume that k > 0. By Lemma 4.2, Δ is connected, and
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by Theorem 4.5, Δ is a path or a cycle. On the other hand, by Lemma 4.1,

S/I(k+2) is k-Buchsbaum, whence it follows that diam(Δ)≤ 2 from Propo-

sition 3.4. Consequently, Δ is a path or a cycle with diam(Δ)≤ 2; thus Δ

should be a 2-path, a 3-cycle, a 4-cycle, or a 5-cycle.

We illustrate Theorem 4.6 and Proposition 4.8 with the following exam-

ple, which also explains that condition (3) in Theorem 4.6 is optimal.

Example 4.9. Let n= 5, and let Δ be a 5-cycle. Let I = IΔ. Then S/I2

is Cohen–Macaulay, and S/I3 is not Cohen–Macaulay but is Buchsbaum.

More generally, S/I t is not (t− 3)-Buchsbaum for any t≥ 4.
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