UNIT GROUPS OF CYCLIC EXTENSIONS

TOMIO KUBOTA

Let Ω be an algebraic number field of finite degree, which we fix once for all, and let K be a cyclic extension over Ω such that the degree of K/Ω is a power l^{ν} of a prime number l. It is obvious that the norm group $N_{K/\Omega} \mathbf{e}_{K}$ of the unit group e_K of K, being a subgroup of the unit group e of Ω , contains the group $e^{l^{\nu}}$ consisting of all l^{ν} -th powers $\varepsilon^{l^{\nu}}$ of $\varepsilon \in e$. The main aim of the present work is to prove the converse assertion of this fact in certain special Namely, it is verified that, if *l* is an odd prime number prime to the absolute discriminant $D(\Omega)$ of Ω , then, for any subgroup H of e containing e^{t} , there is an infinite set \Re of cyclic extensions of degree l' over \varOmega such that we have $N_{K/\Omega} \mathbf{e}_K = H$ for every $K \in \Re$. More precisely, the infinite set \Re is so chosen that, for every $K \in \mathcal{S}$, the first cohomology group of e_K is isomorphic to the direct product of the 0-th cohomology group of e_{κ} by a cyclic group \Im of degree l^{\prime} , where the cohomology groups are defined by considering \mathbf{e}_{κ} as an operator module of the Galois group of K/Ω . Thus we can also conclude that, if r_{Ω} is the dimension of e and if A_0 is a subgroup of the direct product of r_{Ω} groups all isomorphic to 3, then there is an infinite set \Re of cyclic extensions of degree l^{ν} over Ω such that the 0-th cohomology group of \mathbf{e}_{κ} is isomorphic to A_{0} and the first cohomology group of e_K is isomorphic to $A_1 = A_0 \times \mathcal{B}$, where $K \in \mathcal{H}$ and l is, still as before, an odd prime number prime to $D(\Omega)$.

In § 1, we introduce the convenient notion of *fixed extensions*, and, after preparations in § 2, we deduce all the results in § 3. As for the case of extensions with prime degree l, the results of this paper are already obtained in the previous paper of the author [4].

§ 1. Preliminaries

1. For a normal field K/Ω , we denote its Galois group by $\mathfrak{g}(K/\Omega)$. In

Received October 18, 1957.

¹⁾ This was first introduced and studied in works of Hasse. See, e.g., Hasse [2].

222 TOMIO KUBOTA

particular, if Ω and Ω_A are respectively the algebraic closure and the maximal abelian extension over Ω in the complex number field, then we put $\Re(\overline{\Omega}/\Omega) = G$ and $\Re(\Omega_A/\Omega) = G'$. Groups G, G' are always considered as compact topological groups in usual manner.

Let $\mathfrak B$ be a (discrete) finite group. We call a continuous homomorphism κ of G into $\mathfrak B$ a fixed $\mathfrak B$ -extension over Ω . A fixed $\mathfrak B$ -extension κ uniquely determines an overfield K_{κ} of Ω , i.e., the invariant field of the kernel of κ . It also determines a natural isomorphism between the Galois group of $\mathfrak B(K_{\kappa}/\Omega)$ and the subgroup $\kappa(G)$ of $\mathfrak B$. We call K_{κ} the corresponding field of κ . Some of the properties or invariants of the corresponding field K_{κ} of a fixed extension κ are expressed in the following as those of κ itself, e.g., we say κ is ramified at a place $\mathfrak P$ of $\mathfrak Q$ if K_{κ}/Ω is so, and the degree of κ means the degree $(K_{\kappa}:\Omega)$. If $\mathfrak B$ is of order n, then a fixed $\mathfrak B$ -extension over Ω of degree n is said to be proper.

A fixed \mathfrak{G} -extension κ is naturally considered as a homomorphism of $\mathfrak{G}(K_{\kappa}/\Omega)$, and, if \mathfrak{G} is an abelian group \mathfrak{A} , then κ is also considered as a homomorphism of G'. Furthermore, by the reciprocity law of class field theory, a fixed \mathfrak{A} -extension κ is considered as a homomorphism of the idèle group \mathbf{I} of Ω or of the idèle class group C_{Ω} of Ω . These various interpretations of fixed extensions are occasionally applied as far as no confusion is possible.

The set of all fixed \mathfrak{A} -extensions over \mathfrak{Q} forms an abelian group if we define the product $\kappa\kappa'$ of two fixed \mathfrak{A} -extensions κ , κ' by setting $\kappa\kappa'(\sigma) = \kappa(\sigma)\kappa'(\sigma)$ for any $\sigma \in G$.

Let κ be a fixed \mathfrak{A} -extension over Ω and \mathfrak{p} be a finite or infinite place of Ω , then, using as usual the \mathfrak{p} -component of an idèle of Ω , we can attach to κ a continuous homomorphism $\kappa_{\mathfrak{p}}$ into \mathfrak{A} of the multiplicative group $\Omega_{\mathfrak{p}}^{\times 2}$ of the \mathfrak{p} -completion $\Omega_{\mathfrak{p}}$ of Ω . By local class field theory, $\kappa_{\mathfrak{p}}$ is regarded as a homomorphism of the Galois group of a maximal abelian extension over $\Omega_{\mathfrak{p}}$ and therefore as a fixed \mathfrak{A} -extension over $\Omega_{\mathfrak{p}}$. We call $\kappa_{\mathfrak{p}}$ the \mathfrak{p} -component of κ .

2. Let I, U be the idèle group and the unit idèle group Ω of Ω , respectively, and denote by Ω^{\times} the principal idèle group of Ω . Let \mathfrak{S} be a finite set of places

 $^{^{2)}}$ We always use the mark \times to stand for the multiplicative group of non-zero elements of a field.

³⁾ In this paper, we settle no sign condition for the infinite components of a unit idèle, somewhat differently from the definition of Weil [6].

of Ω and $\kappa_{\mathbf{U}}$ be a homomorphism of \mathbf{U} into \mathfrak{Z} such that the \mathfrak{q} -component of $\kappa_{\mathbf{U}}$ is trivial for every place \mathfrak{q} of Ω outside \mathfrak{S} , where \mathfrak{Z} is a cyclic group whose order l^{ν} is a power of a prime number l. Then $\kappa_{\mathbf{U}}$ is, in a natural way, regarded as a homomorphism of the group $\mathbf{U}_{\mathfrak{S},\nu} = \prod_{\mathfrak{p} \in \mathfrak{S}} U_{\mathfrak{p}}/U_{\mathfrak{p}}^{l^{\nu}}$, where $\mathbf{U}_{\mathfrak{p}}$ is the unit group of the \mathfrak{p} -completion $\Omega_{\mathfrak{p}}$ of Ω . On the other hand, set $B^{(\nu)} = \Omega^{\times} \cap \mathbf{I}^{l^{\nu}}\mathbf{U}$; then $B^{(\nu)}$ consists of numbers β of Ω^{\times} such that the principal ideal (β) is the l^{ν} -th power of an ideal of Ω , and, writing $\beta = \mathbf{a}^{l^{\nu}}\mathbf{u}$ ($\mathbf{a} \in \mathbf{I}$, $\mathbf{u} \in \mathbf{U}$), the mapping $\beta \to \mathbf{u}$ followed by the natural mapping of \mathbf{u} into $U_{\mathfrak{S},\nu}$ gives rise to a homomorphism $\iota_{\mathfrak{S},\nu}$ of $B^{(\nu)}$ into $U_{\mathfrak{S},\nu}$.

Now we state the following three Lemmas.⁵⁾

Lemma 1. Let i^{ν} be a power of a prime number l, 3 be a cyclic group of order l^{ν} and let $\mathfrak S$ be a finite set of places of Ω . Then the restriction to U of a fixed 3-extension κ over Ω which is unramified at every place of Ω outside $\mathfrak S$ is characterized as a homomorphism κ_U of U into 3 which has trivial $\mathfrak Q$ -component for every place $\mathfrak Q$ of Ω outside $\mathfrak S$ and which satisfies $\kappa_U(\mathfrak c_{\mathfrak S,\nu}(B^{(\nu)}))=1$.

Lemma 2. Let h_{ν} be the index $(\mathbf{I}: \Omega^{\times}\mathbf{I}^{|\nu}\mathbf{U})$. Then the number of all fixed 3-extensions κ over Ω unramified at every place \mathfrak{q} of Ω outside \mathfrak{S} is equal to $h_{\nu} \cdot (U_{\mathfrak{S},\nu}: \iota_{\mathfrak{S},\nu}(B^{(\nu)}))$.

Lemma 3. The kernel of $(\mathfrak{S}, \mathfrak{p}, \mathfrak{sons})$ so the numbers $\beta \in B^{(\mathfrak{p})}$ such that β is, for every $\mathfrak{p} \in \mathfrak{S}$, an l-th power in the \mathfrak{p} -completion $\mathfrak{Q}_{\mathfrak{p}}$ of \mathfrak{Q} .

§ 2. Covering of an unramified field

3. Denote by \mathbf{I} , \mathbf{U} the idèle group and the unit idèle group of Ω , respectively, and let 3 be a cyclic group whose order is a power l^{ν} of a prime number l. Set, as in § 1, 2, $B^{(\nu)} = \Omega^{\times} \cap \mathbf{I}^{l^{\nu}} \mathbf{U}$ and consider the mapping $\beta \to \mathbf{a}$ defined for an element $\beta \in B^{(\nu)}$ with $\beta = \mathbf{a}^{l^{\nu}} \mathbf{u}$ ($\mathbf{a} \in \mathbf{I}$, $\mathbf{u} \in \mathbf{U}$). If \mathbf{e} is the unit group of Ω , then the above mapping gives rise to an isomorphism of $B^{(\nu)}/\mathbf{e}\Omega^{\times l^{\nu}}$ onto the group $C^{(\nu)}$ consisting of all elements of $\mathbf{I}/\Omega^{\times} \mathbf{U}$ whose orders divide l^{ν} . Any homomorphism \mathcal{I} of $C^{(\nu)}$ into 3 is therefore regarded as a homomorphism of $B^{(\nu)}/\mathbf{e}\Omega^{\times l^{\nu}}$ into 3, and *vice versa*. Whenever no confusion is possible, \mathcal{I} may also be considered as a homomorphism of $B^{(\nu)}$ or of a subgroup of \mathbf{I} . Take

⁴⁾ This can be defined quite similarly to that of a fixed abelian extension.

⁵⁾ As for the proofs of these lemmas, see Kubota [5], §1.

such a homomorphism χ and denote by $B_{\chi}^{(\nu)}$ the subgroup of $B^{(\nu)}$ which is the kernel of χ . Suppose furthermore that $I \neq 2$. Then we have $(B^{(\nu)}:B_{\chi}^{(\nu)}) = (\mathcal{Q}(\zeta_{I^{\nu}}, {}^{I^{\nu}}\sqrt{B^{(\nu)}}): \mathcal{Q}(\zeta_{I^{\nu}}, {}^{I^{\nu}}\sqrt{B_{\chi}^{(\nu)}}))$, where $\zeta_{I^{\nu}}$ is a primitive I^{ν} -th root of unity. Therefore, by Lemma 3 and by the theory of Kummer extensions, there are infinitely many prime ideals \mathfrak{p} of \mathfrak{Q} prime to I such that $N\mathfrak{p}-1\equiv 0 \pmod{I^{\nu}}$ and that, if we denote by $\iota_{\mathfrak{p},\nu}$ the homomorphism of §1, 2 with the set $\mathfrak{S}=\{\mathfrak{p}\}$ of a single place \mathfrak{p} , then the kernel of $\iota_{\mathfrak{p},\nu}$ coincides with $B_{\chi}^{(\nu)}$. We call such a \mathfrak{p} a prime ideal of \mathfrak{Q} which belongs to the homomorphism χ .

4. Let K' be an unramified cyclic extension over Ω such that the degree $(K':\Omega)$ divides a power l^{ν} of a prime number l, and let K be an overfield of K' such that K/Ω is cyclic of degree l^{ν} and that there is at most one prime ideal of Ω which is ramified in K/Ω . Then we say that K is a covering of degree l^{ν} of K'. We propose to show that, for any K' and l^{ν} , we can always find a covering of degree l^{ν} of K', provided that $l \neq 2$. It suffices to prove that, if \mathfrak{Z} is a cyclic group of order l^{ν} , then, for any unramified fixed \mathfrak{Z} -extension κ' over Ω , there is a covering κ of degree l^{ν} of κ' , i.e., a proper fixed \mathfrak{Z} -extension κ over Ω such that κ is ramified at most at one prime ideal of Ω and that κ' is a power of κ .

Using the notations in 3, let χ be the homomorphism of $C^{(\nu)}$ into 3 which is naturally induced by κ' and let $\mathfrak p$ be a prime ideal belonging to χ . If $U_{\mathfrak p}$ is the unit group of the $\mathfrak p$ -completion $\mathfrak Q_{\mathfrak p}$ of $\mathfrak Q$, then we can find an isomorphic mapping $\chi_{\mathfrak p}$ of $U_{\mathfrak p}/U_{\mathfrak p}^{l\nu}$ onto 3 such that we have $\chi_{\mathfrak p}(\mathfrak c_{\mathfrak p,\nu}(\beta))=\chi(\beta)$ for every $\beta\in B^{(\nu)}$, where χ is considered as a homomorphism of $B^{(\nu)}$ as in 3. Let $I^{\nu-r}$ be the degree of κ' and denote by κ_U the homomorphism of U into 3 whose $\mathfrak p$ -component coincides with $\chi_{\mathfrak p}^{\nu-r}$ and whose $\mathfrak q$ -component is trivial for every place $\mathfrak q \not= \mathfrak p$ of $\mathfrak Q$. Then, since we have $\chi_{\mathfrak p}^{\nu-r}(\mathfrak c_{\mathfrak p,\nu}(\beta))=\chi^{l\nu-r}(\beta)=1$, there is, by Lemma 1, a fixed 3-extension κ_1 over $\mathfrak Q$ such that the restriction to U of κ_1 coincides with κ_U . If now $\mathfrak a$ is an idèle of $\mathfrak Q$ which represents an element of $C^{(r)}$, then we have $\mathfrak a^{lr} \mathbf u = \alpha$ ($\mathbf u \in U$, $\alpha \in \mathfrak Q^\times$) and consequently $\mathfrak a^{l\nu} \mathbf u^{l\nu-r} = \alpha^{l\nu-r} \in B^{(\nu)}$. Therefore we have $\kappa(\mathbf a) = \chi(\alpha^{l\nu-r}) = \chi_{\mathfrak p}(\mathfrak c_{\mathfrak p,\nu}(\alpha^{l\nu-r})) = \chi_{\mathfrak p}(\mathfrak u^{l\nu-r}) = \kappa_1(\mathbf u) = \kappa_1^{-lr}(\mathbf a)$, where χ is considered as a homomorphism of $B^{(\nu)}$. This shows that $\kappa' \kappa_1^{lr}$ induces a trivial mapping on $C^{(r)}$ and therefore we have $\kappa' \kappa_1^{lr} = \kappa_2^{lr}$ with an unramified fixed 3-extension κ_2 over $\mathfrak Q$. Setting

⁶⁾ See Hasse [3], §1, Satz 1, 2.

 $\kappa = \kappa_1^{-1} \kappa_2$, we have $\kappa' = \kappa^{l'}$. Thus we see that, for every prime ideal \mathfrak{p} of \mathfrak{Q} belonging to \mathfrak{X} , there is a fixed \mathfrak{Z} -extension κ over \mathfrak{Q} with $\kappa' = \kappa^{l'}$ and with at most one ramification place \mathfrak{p} , which proves our assertion.

5. Still using the same notations, we make another observation. We denote by $\mathfrak{S} = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_t\}$ a set of prime ideals, prime to l, of Ω and by $U_{\mathfrak{S}}$ the group of unit idèles \mathbf{u} of Ω such that, for every i, the \mathfrak{p}_i -component u_i of \mathbf{u} satisfies the condition $u_i \equiv 1 \pmod{\mathfrak{p}_i}$. If \mathfrak{p}_i completely decomposes in the field $\Omega(\zeta_{l^{\nu}}, \ ^{l^{\nu}}\sqrt{\mathbf{e}})$ and if the factor group $\mathbf{I}/\Omega^{\times}\mathbf{I}^{l^{\nu}}U_{\mathfrak{S}}$ is isomorphic to the direct product of t cyclic groups of order l^{ν} , where t is the rank of the group $\mathbf{I}/\Omega^{\times}\mathbf{I}^{l}U$, then we call \mathfrak{S} a parametric set of degree l^{ν} of Ω and the class field \widetilde{Z}_{ν} over $\Omega^{\times}\mathbf{I}^{l^{\nu}}U_{\mathfrak{S}}$ the complete covering attached to \mathfrak{S} . It follows from Lemma 2 that, for any parametric set of degree l^{ν} of Ω , the order of $\iota_{\mathfrak{S}_{\nu},\nu}(B^{(\nu)})$ is equal to that of $\mathbf{I}/\Omega^{\times}\mathbf{I}^{l^{\nu}}U$ and therefore the kernel of $\iota_{\mathfrak{S}_{\nu},\nu}$ is $\mathfrak{e}\Omega^{\times l^{\nu}}$.

Now, we propose to prove the existence of parametric sets of arbitrary degree l^{\flat} , provided that $l \neq 2$. Let $\tilde{c}_1, \ldots, \tilde{c}_t$ be a base of the group \tilde{C} consisting of all elements of $I/Q^{\times}U$ whose orders are powers of l, and let χ_1, \ldots, χ_t be a set of homomorphisms of $C^{(\nu)}$ into 3 such that the restriction of χ_i to the group $\{\widetilde{c}_i\} \cap C^{(\nu)}$ is an isomorphism into \mathfrak{Z} and that χ_i is trivial on $\{\tilde{c}_i\} \cap C^{(\nu)}$ $(i \neq j)$, where $\{\tilde{c}_i\}$ is the group generated by \tilde{c}_i . Then \mathcal{X}_i 's form a base of the group consisting of all homomorphisms of $C^{(\nu)}$ into 3. Choose for every i a prime ideal \mathfrak{p}_i of Ω belonging to \mathcal{I}_i and set $\mathfrak{S} = \{\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3, \mathfrak{p}_4, \mathfrak{p}_5\}$ \ldots , \mathfrak{p}_t . Then it follows from the results of 4 that, for every unramified fixed 3-extension κ'_i over Ω which is trivial on every $\{\tilde{c}_j\}$ with $i \neq j$, there is a covering κ_i of κ'_i which is unramified at every place of Ω except \mathfrak{p}_i . means that the factor group $I/\Omega^{\times}I^{P}U_{\mathfrak{S}}$ contains the direct product of t cyclic groups of order l^{ν} . On the other hand, χ_1, \ldots, χ_t regarded as homomorphisms of $B^{(\nu)}$ form a base of the group consisting of all homorphisms of $B^{(\nu)}/e\Omega^{\times l^{\nu}}$ into 3. Therefore it follows from the definition of \mathfrak{S} that the kernel of \mathfrak{S} is $eQ^{\times I^{\nu}}$ and consequently the order of $\iota_{\mathfrak{S},\nu}(B^{(\nu)})$ is equal to the order of the group $I/\Omega^{\times}I^{\prime\prime}U$. Hence, by Lemma 2, the number of all 3-extensions κ over \mathcal{Q} unramified at every place of \mathcal{Q} outside \mathfrak{S} is equal to l^{vt} . Thus we see that the group $I/\Omega^{\times}I^{\prime\nu}U_{\mathfrak{S}}$ is just the direct product of t cyclic groups of order l^{ν} , whence \mathfrak{S} is a parametric set of degree l^{ν} of Ω .

§ 3. Unit groups and their norms

6. The main purpose of this section is to prove the following

Theorem 1. Let 3 be a cyclic group whose order l^{\vee} is a power of an odd prime number l prime to the absolute discriminant $D(\Omega)$ of Ω . Denote by e the unit group of Ω and let e be a subgroup of e containing $e^{l^{\vee}}$. Then there are infinitely many proper fixed 3-extensions e over e such that we have e e is the unit group of the corresponding field e of e.

7. Let I, U be the idèle group and the unit idèle group of Ω , respectively, and let Z_1 be the class field over $\Omega^{\times} I^l U$. Then, under the assumptions in Theorem 1, we have $Z_1 \cap \widetilde{\Omega}_{\nu} = \Omega$, where $\widetilde{\Omega}_{\nu} = \Omega(\zeta_{l^{\nu}}, {}^{l^{\nu}}\sqrt{B^{(\nu)}})$, $B^{(\nu)} = \Omega^{\times} \cap I^{l^{\nu}} U$ and $\zeta_{l^{\nu}}$ is a primitive l^{ν} -th root of unity. For, since the assumptions imply that $\Omega(\zeta_{l^{\nu}})/\Omega$ is an extension of degree $l^{\nu-1}(l-1)$ containing no unramified subfield except Ω itself, $\widetilde{\Omega}_{\nu}/\Omega$ has $\Omega(\zeta_{l^{\nu}})$ as the largest abelian subfield and has Ω itself as the largest unramified abelian subfield. From this follows that there is a parametric set $\mathfrak{S} = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_l\}$ of degree l^{ν} of Ω such that the substitutions $\left(\frac{Z_1/\Omega}{\mathfrak{p}_i}\right)$ form a base of the Galois group $\mathfrak{g}(Z_1/\Omega)$, because the signifying condition in §2 of \mathfrak{p}_i concerns only the decomposition of \mathfrak{p}_i in $\widetilde{\Omega}_{\nu}$. We take such a parametric set \mathfrak{S} and fix homomorphisms $\mathfrak{X}_{\mathfrak{p}_i}$ of $U_{\mathfrak{p}_i}$ onto 3, where $U_{\mathfrak{p}_i}$ is the unit group of \mathfrak{p}_i -completion $\Omega_{\mathfrak{p}_i}$ of Ω .

Now, we can find subgroups H_1,\ldots,H_s of e containing H such that e/H_i is cyclic and that we have $\bigcap_i H_i = H$. Let c_i be the index $(e:H_i)$ and ζ_{c_i} be a primitive c_i -th root of unity. Then, since we have $(\Omega(\zeta_{c_i}, {}^{c_i}\sqrt{e}):\Omega(\zeta_{c_i}, {}^{c_i}\sqrt{H_i})) = c_i, ^{\tau_i}$ there is a prime ideal q_i of Ω prime to I such that $Nq_i - 1 \equiv 0 \pmod{c_i}$ and that we have $H_i = e \cap U_{q_i}^{c_i}$, where U_{q_i} is the unit group of the q_i -completion Ω_{q_i} of Ω and Ω and Ω is regarded as a subgroup of Ω_{q_i} . We take such a prime ideal Ω for every Ω , and fix homomorphisms Ω of Ω into Ω with the kernel $\Omega_{q_i}^{c_i}$. Let Ω be a generator of the prime ideal of Ω and Ω be a generator of Ω . Then, setting Ω in Ω we can extend Ω to a homomorphism of the whole multiplicative group Ω . We also extend Ω to a homomorphism into Ω of Ω in an arbitrary way.

By the existence theorem of Grunwald, there are infinitely many proper

⁷⁾ See footnote 6.

⁸⁾ See Hasse [3].

fixed 3-extensions κ over Ω such that we have $\chi_{\mathfrak{p}_i} = \overline{\chi}_{\mathfrak{p}_i}$, $\kappa_{\mathfrak{q}_i} = \overline{\chi}_{\mathfrak{q}_i}$ for the local components $\kappa_{\mathfrak{p}_i}$, $\kappa_{\mathfrak{q}_i}$ of κ and that there is only one ramification prime ideal \mathfrak{x} outside the set $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_t, \mathfrak{q}_1, \ldots, \mathfrak{q}_s\}$.

8. We propose to show that the proper fixed 3-extensions κ in 7 have the required properties of Theorem 1. Since we have $\kappa \left(\frac{\alpha, K_{\kappa}/Q}{\mathfrak{p}_{i}}\right)^{9} = \overline{\chi}_{\mathfrak{p}_{i}}(\alpha)$, $\kappa\left(\frac{\alpha, K_{\kappa}/\Omega}{\mathfrak{q}_{i}}\right) = \overline{\chi}_{\mathfrak{q}_{i}}(\alpha)$ for $\alpha \in \Omega^{\times}$, it follows from the definition of $\overline{\chi}_{\mathfrak{q}_{i}}$ that we have $N_{K_K/\Omega} \mathbf{e}_{\kappa} \subset H$ and, on the other hand, it follows from the definition of χ_{p_i} and from a property in 5 of parametric sets that no element of $B^{(\nu)}$ outside $e Q^{\times I^{\nu}}$ is a norm of K_{κ}/Ω . The latter result implies that, if an ideal α of Ω is principal in K_{κ} , then it is principal in Ω , because from $\mathfrak{a}=(\alpha^{\kappa})(\alpha^{\kappa}\in K_{\kappa})$ necessarily follows $\mathfrak{a}^{l^{\nu}} = (N_{K_k/\Omega}\alpha^{\kappa})$ and $N_{K_k/\Omega}\alpha^{\kappa} \in B^{(\nu)}$. Hence, denoting by (α) a principal ideal of Ω , by (α_0^{κ}) an "ambig" principal ideal of K_{κ}/Ω and by α an ideal of Ω , we heve $((\alpha_{\kappa}^{\kappa}) \cap \alpha : (\alpha)) = 1$, where a general element of a group stands for the group itself. Therefore, if a_0^{κ} is an "ambig" ideal of K_{κ}/Ω , we have $((\alpha_0^{\kappa}):(\alpha))=((\alpha_0^{\kappa})\alpha:\alpha)=(\alpha_0^{\kappa}:\alpha)/(\alpha_0^{\kappa}:(\alpha_0^{\kappa})\alpha)$. Since the group $(\alpha_0^{\kappa})/(\alpha)$ is isomorphic to the first cohomology group of e_{κ} as a $\mathfrak{g}(K_{\kappa}/\Omega)$ group, we have, by Herbrand's relation, $((\alpha_0^{\kappa}):(\alpha))=l^{\nu}\cdot (e:N_{K\kappa/\Omega}e_{\kappa})$. Thus we obtain $(\mathbf{e}:N_{K_{\kappa}/\Omega}\mathbf{e}_{\kappa})=l^{-\nu}\cdot(\mathfrak{a}_{0}^{\kappa}:\mathfrak{a})/(\mathfrak{a}_{0}^{\kappa}:(\alpha_{0}^{\kappa})\mathfrak{a})$. The factor $l^{-\nu}\cdot(\mathfrak{a}_{0}^{\kappa}:\mathfrak{a})$ of this formula is estimated as follows: $l^{-\nu} \cdot (\mathfrak{a}_0^{\kappa} : \mathfrak{a}) = l^{-\nu} \cdot \prod_i e(\mathfrak{p}_i) \cdot \prod_i e(\mathfrak{q}_i) \cdot e(\mathfrak{x})$ $\leq l^{\prime t} \cdot (e:H)$, where we denote by $e(\cdot)$ the ramification order with respect to K_{κ}/Ω . As for $(\mathfrak{a}_0^{\kappa}:(\alpha_0^{\kappa})\mathfrak{a})$, we make the following investigation. Suppose that $\mathfrak{p}_i = \mathfrak{P}_i^{\prime \nu}$ in K_{κ} and let $K_{\kappa}, \mathfrak{P}_i$ be the \mathfrak{P}_i -completion of K_{κ} . Then, since we have $\bar{\chi}_{p_i}(\pi_i) = \kappa \left(\frac{\pi_i, K_{\kappa}/\Omega}{p_i}\right) = 1$, there is a generator Π_i of the prime ideal of $K_{\kappa, \mathfrak{P}_i}$ with the norm π_i to $\mathcal{Q}_{\mathfrak{p}_i}$. If there is a relation $\mathfrak{P}_1^{m_1} \ldots \mathfrak{P}_t^{m_t} = (\alpha_0^{\kappa}) a$, then we have $\Pi_1^{m_1} \dots \Pi_t^{m_t} \in K_{\kappa}^{\times} \mathrm{IU}_{\kappa}$, where K_{κ}^{\times} is the principal idèle group of K_{κ} , U_{κ} is the unit idèle group of K_{κ} and Π_i is regarded as an idèle of K_{κ} with \mathfrak{P}_{i} -component H_{i} and with other components 1. Denoting by \mathfrak{S} the parametric set $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_t\}$ and by $\mathbf{U}_{\mathfrak{S}}$ the group defined in 5, we have $K_{K_{\kappa}/\Omega}\mathbf{U}_{\kappa}\subset\mathbf{U}^{l^{\nu}}\mathbf{U}_{\mathfrak{S}}, \text{ whence } \pi_{1}^{m_{1}}\ldots\pi_{t}^{m_{t}}\in\mathcal{Q}^{\times}\mathbf{I}^{l^{\nu}}\mathbf{U}_{\mathfrak{S}}.$ Since, however, the set of $\left(\frac{Z_1/\Omega}{\mathfrak{d}_i} \right)$ is a base of $\mathfrak{g}(Z_1/\Omega)$, an elementary property of finite abelian groups

 $^{^{9)}}$ This notation expresses the image by κ of the automorphism determined by the norm residue symbol.

¹⁰⁾ See Chevalley [1], §10,

of type $(l^{\nu}, \ldots, l^{\nu})$ shows that, if \widetilde{Z}_{ν} is the complete covering attached to $\widetilde{\Xi}$ of Ω , then the set of reciprocal images $(\pi_i, \widetilde{Z}_{\nu}/\Omega)$ form also a base of $\mathfrak{g}(\widetilde{Z}_{\nu}/\Omega)$. This means that the relation $\pi_1^{m_1} \ldots \pi_t^{m_t} \in \Omega^{\times} \mathbf{I}^{l^{\nu}} \mathbf{U} \widetilde{\otimes}$ is impossible unless we have $m_1 \equiv \ldots \equiv m_t \equiv 0 \pmod{l^{\nu}}$. Thus we have $(\mathfrak{a}_0^{\kappa} : (\alpha_0^{\kappa})\mathfrak{a}) \succeq l^{\nu t}$ and therefore $(\mathbf{e} : N_{K_{\kappa}/\Omega} \mathbf{e}_{\kappa}) \leq (\mathbf{e} : H)$. This, together with $N_{K_{\kappa}/\Omega} \mathbf{e}_{\kappa} \subset H$ obtained above, proves our assertion.

- 9. We incidentally observe here the structure of the group $(\alpha_0^{\kappa})/(\alpha)$ of 8. Since $((\alpha_0^{\kappa}) \cap \alpha : (\alpha)) = 1$, we have $(\alpha_0^{\kappa})/(\alpha) \cong (\alpha_0^{\kappa}) \alpha/\alpha$. It is eventually shown in 8 that we have $((\alpha_0^{\kappa}) : (\alpha)) = l^{\nu} \cdot (e : H)$ and that $\alpha_0^{\kappa}/(\alpha_0^{\kappa}) \alpha$ is the direct product of t cyclic groups of order l^{ν} . Therefore the character group of $\alpha_0^{\kappa}/(\alpha_0^{\kappa}) \alpha$ is a direct factor of the character group of α_0^{κ}/α . Since α_0^{κ}/α is isomorphic to the direct product of t+1 cyclic groups of order l^{ν} by the group e/H, $(\alpha_0^{\kappa}) \alpha/\alpha \cong (\alpha_0^{\kappa})/(\alpha)$ must be isomorphic to the direct product of e/H by 3.
- 10. The unit group e_{κ} of the corresponding field K_{κ} of a proper fixed 3-extension κ over \mathcal{Q} is considered as a 3-group because the Galois group $\mathfrak{g}(K_{\kappa}/\mathcal{Q})$ is canonically isomorphic to 3, and the results which we hitherto obtained allow us to know a little about the cohomology groups of the 3-group e_{κ} . Since 3 is cyclic, we may consider only the 0-th and the first cohomology groups. Namely, Theorem 1, together with 9, immediately yields

Theorem 2. Let 3 be a cyclic group whose order l^{ν} is a power of an odd prime number l prime to the absolute discriminant $D(\Omega)$ of Ω . Denote by \mathbf{e}_{κ} the unit group of the corresponding field K_{κ} of a proper fixed 3-extension κ over Ω and by $H^0(\mathfrak{F}, \mathbf{e}_{\kappa})$ resp. $H^1(\mathfrak{F}, \mathbf{e}_{\kappa})$ the 0-th resp. the first cohomology group of the 3-module \mathbf{e}_{κ} . Furthermore, let A_0 be any subgroup of the direct product of r_{Ω} groups all isomorphic to $\mathfrak{F}, \mathcal{F}$, where r_{Ω} is the dimension of the unit group \mathbf{e} of Ω , and set $A_1 = A_0 \times \mathfrak{F}$. Then there are infinitely many fixed 3-extensions κ over Ω such that we have $H^0(\mathfrak{F}, \mathbf{e}_{\kappa}) \cong A_0$, $H^1(\mathfrak{F}, \mathbf{e}_{\kappa}) \cong A_1$.

It is easily seen that Theorem 1 and Theorem 2 hold even in the case where the order of the cyclic group 3 is not a power of a single prime number l but an odd natural number prime to the absolute discriminant $D(\Omega)$ of Ω .

REFERENCES

- [1] C. Chevalley, Class field theory, Nagoya University (1953/54).
- [2] H. Hasse, Die Multiplikationsgruppe der abelschen Körper mit fester Galoisgruppe, Abh. Math. Sem. Univ. Hamburg, 16 (1949), pp. 29-40.
- [3] H. Hasse, Zum Existenzsatz von Grunwald in der Klassenkörpertheorie, J. Reine Angew. Math., 188 (1950), pp. 40-64.
- [4] T. Kubota, A note on units of algebraic number fields, Nagoya Math. J., 9, (1955), pp. 115-118.
- [5] T. Kubota, Galois group of the maximal abelian extension over an algebraic number field, this Journal, pp. 177-189.
- [6] A. Weil, Sur la théorie du corps de classes. J. Math. Soc. Japan, 3 (1951), pp. 1-35.

Mathematical Institute Nagoya University