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1. Introduction. More than sixty years ago, Sylvester (13) proposed the 
following problem: Let n given points have the property that the straight 
line joining any two of them passes through a third point of the set. Must 
the n points all lie on one line? 

An alleged solution (not by Sylvester) advanced at the time proved to be 
fallacious and the problem remained unsolved until about 1933 when it was 
revived by Erdos (7) and others. Gallai (see 5), Robinson (see 12), Steinberg 
(see 4, p. 30), Kelly (see 3) and Lang (11) produced solutions of varying 
characters, the first afBne, the second likewise affine (after dualizing), the 
third projective, and the fourth and fifth Euclidean. The answer is that in 
real projective space the points must indeed be on a line. Simple examples 
show that such is not the case in the complex projective plane (3). The answer 
is also negative in finite projective geometries, where each line contains the 
same number of points. The property is very strongly dependent on the 
axioms of order. 

The problem may be formulated in more general terms. Let P be a set of 
n points in real projective space and 5 the set of connecting lines which join 
these points. Call a line of S ordinary if it contains exactly two points of P. 
If S contains more than one line, show that it contains at least one ordinary 
line and determine lower bounds for the number of such lines. It is clear that 
the number of ordinary lines is invariant under a suitable central projection 
and so the question need only be settled in the real projective plane. The 
remainder of this investigation will be in the real projective plane, with P 
a set of n non-collinear points and S the set of their connecting lines. Let m 
denote the number of lines which are ordinary. Dirac (6) showed that m > 3 
and Motzkin (12) showed that the order of magnitude of m is at least \/n. 
It is the purpose of this note to show that m > Zn/7 and that, in a certain 
sense, this is a best possible bound. 

2. Definitions, notation and preliminary theorems. A generic point 
of P is denoted by p and a generic line of S by 5. Subscripts distinguish particular 
points and lines. 

It is a known and easily established fact that a set of two or more lines 
in the plane which do not form a pencil effect a subdivision of the plane into 
two or more regions (see (14) for relevant definitions). With this in mind it is 
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apparent that, except in the cases to be noted presently, the lines of 5 not 
passing through p dissect the plane into polygonal regions. In the event that 
the n — 1 points of P distinct from p are on a line, no division is effected. If 
exactly n — 1 of the points, including p, are on a line, then the division is 
into n — 2 angular regions, that is, regions bounded by two lines. In all other 
cases the division is into polygonal regions (bounded by at least three edges). 

The point p is, of course, in the interior of one of these regions, which is 
called the residence of p, and p is said to reside in the region. The lines of 
5 containing the edges of the residence are neighbours of p. 

A set of n lines in the plane exactly n — 1 of which are concurrent is a 
near-pencil. This configuration is slightly exceptional in this study. We observe 
that if n — 1 points of P lie on one line, then 5 is a near-pencil. 

THEOREM 2.1. If a point p has precisely one neighbour, then S is a near-pencil. 

Proof. In this case the neighbour of p is the only line of S which does not 
pass through p; on this neighbour lie the remaining n — 1 points of P. 

THEOREM 2.2. If a point p has precisely two neighbours, then S is a near-
pencil. 

Proof. In this case the lines of 5 which do not pass through p form a pencil; 
for otherwise they would form a proper dissection of the plane and p would 
have at least three neighbours. Let q be the vertex of this pencil. Let su s3 

be any two of the lines through q; let pu pj, both different from q, be points 
on siy Sj respectively. The connecting line through pt and pj does not pass 
through q\ hence, it must pass through p. It follows that there is only one 
line of 5 which passes through p; the remaining lines pass through q, which is 
necessarily a point of P. 

THEOREM 2.3. If S is not a near-pencil then each point of P has at least three 
neighbours. 

Proof. If a point of P has only one or two neighbours, then, by Theorems 
2.1 and 2.2, 5 is a near-pencil. 

3, Ordinary lines. The number of ordinary lines passing through p is the 
order of p. The number of neighbours of p which are ordinary lines is the 
rank of p. The order plus the rank is the index. 

THEOREM 3.1. If the order of p is zero then every neighbour of p is an ordinary 
line. 

Proof. Suppose, to the contrary, that the neighbour s of p passes through 
three points of P, say pi, p2j pz. Let x be a point on s which lies on the boundary 
of the residence of p. Suppose the notation so chosen that pix//p2pz, that is, 
p\ and x separate pi and p%. Since p is of order zero, the connecting line through 
p and pi passes through a third point of P, say p\. The lines pip± and pip± 
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intersect both the segments determined by p and x on the line through them. 
Hence, x cannot be a point of p's residence, and we have a contradiction 
which proves the theorem. 

It is now apparent that the residence of a point of order zero is one of the 
polygons into which the plane is dissected by the m ordinary lines. Further
more, it is clear that a polygon in this dissection cannot contain in its interior 
two points of order zero. Since the m ordinary lines pass through at most 

Itn\ 
2m points of P and dissect the plane into at most ( J + 1 polygons, it follows 

that 

( j ) + 1 + 2m > n. 

This is Motzkin's proof of 

THEOREM 3.2. 

(m + 2\ 
\ 2 ) > n -

Note that 

( m + 2\ 2 
\ 2 / ^m ' 

so that the theorem shows that m > \/[2n\ — 2. 

THEOREM 3.3. The index of each point of P which is not of order two is at 
least three. 

Proof. First observe that the theorem is true when 5 is a near-pencil and 
dismiss this case from further consideration. 

Case 1. The order of p is zero. Since S is not a near-pencil, P has at least 
three neighbours; by Theorem 3.1 they are all ordinary lines. 

Case 2. The order of p is one. Let pi be the second point on the ordinary 
line through p. The proof of Theorem 3.1 shows that if a neighbour of p is not 
ordinary, then it passes through pi. Since three neighbours of p cannot have a 
common point, it follows that if p has more than three neighbours then at 
least two of them are ordinary. On the other hand, if p has precisely three 
neighbours then two of them must be ordinary. For, in this case, if Si and S2 
are two non-ordinary neighbours of p then both pass through pu which is 
therefore a vertex of the triangular residence of p. If x, a boundary point 
of the residence of p, is on si, and pi, p2, pz three points on si with the notation 
so chosen that pipil /xpz then (as in the proof of Theorem 3.1) ppz is a second 
ordinary line through p. This contradiction shows that if p has precisely three 
neighbours, then at most one of them is non-ordinary. 

Case 3. The order of p is at least three. Then the index of p is at least three. 
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THEOREM 3.4. If a line s of S is a neighbour of three points pu p2, P%> then the 
points of P which lie on s are on the connecting lines determined by pi, p2, ps> 

Proof. Clearly, three points which have a common neighbour cannot be 
collinear. Let the points of intersection of 5 with the line pipj be xk (i,j, k a 
permutation of 1, 2, 3). Suppose p, a point different from xu x2, x3, lies on 5 
in the segment XiXj/xk, that is, XiXj//pxk. Then, because of the lines ppt and 
ppjf s cannot be a neighbour of pk. Thus, p must coincide with one of the 
points xi, x2l X3. 

COROLLARY 3.4. A line of S is a neighbour of at most four points. 

Remark. It is easy to show that if 5 is a neighbour of exactly four points of 
P , then 5 joins two diagonal points of the complete quadrangle determined by 
the four points. Furthermore, s is then ordinary. 

THEOREM 3.5. / / It is the index of point pu then 

1 n 

m > - X It-
O i=l 

Proof. We count the number of ordinary lines by observing the index of 
each point of P . In this counting, a particular ordinary line may be counted 
a t most six times, four times as a neighbour (Corollary 3.4) and twice because 
it passes through a point. 

THEOREM 3.6. m > 3n/7. 

Proof. Let k be the number of points of order two. Clearly 

m > k. 

By Theorems 3.3 and 3.5 

^ 3(» - k) +2k 
m> . 

Eliminating k from these inequalities, we obtain the desired result. 

n=7 m=3 t=9 

FIGURE 3.1 
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n=8 m=4 t=ll 

FIGURE 3.2 

For n = 7, 8 the theorem shows that m > 3, 4. Figures 3.1 and 3.2 exhibit 
configuration of 7, 8 points with m = 3, 4 respectively (the ordinary lines are 
"broken"). In this sense Theorem 3.6 is best possible. However, for large n 
it would seem to us that the configuration with fewest possible lines is probably 
near the near-pencil arrangement. If this be so, then, for large n, m should be 
at least n — 1. Thus, a reasonable conjecture (6) is m > \n for n > 7; the 
present method does not seem to allow us to draw this conclusion. 

4. Connecting lines. In this section we derive an interesting inequality 
which we use to establish a bound on the number of connecting lines. 

The dual of P is a set of n lines, P, not a pencil; the dual of 5 is S, the set 
of points of intersection of these lines. 

In the dissection of the plane by the lines of P, Ft denotes the number of 
polygons each having exactly i edges, and Vt denotes the number of vertices 
each incident with exactly i edges. V, E, and F denote the total number 
of vertices, edges and faces respectively. 

Clearly Vt = 0 for all odd i, 

4.10 V = V, + Ve + V8 + . . . 
and 
4.11 F = Fz + F, + Fb + . . . . 

Since each edge has two vertices and belongs to two polygons 

4.20 E = 2F 4 + 3F 6 + 4F 8 + . . . 
and 
4.21 2 £ = 3.P3 + 47^4 + 5^5 + . . . . 

Adding 4.20 and 4.21 yields 

4.22 3£ = 2F 4 + 3F 6 + 4F 8 + . . . + 3 ^ 3 + 4F4 + 5Fb + 

By Euler's theorem, 
4.3 V - E + F = 1. 
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Replacing F, F and E in 4.3 by their values 4.10, 4.11 and 4.22 respectively 
yields, after simplification, 

4.4 V4 = 3 + Vs + 2Fio + 3Fi2 + . . . + F* +2F* + SF* +. . . . 

Call a line of 5 which passes through precisely i points of P an i-line and let 
ti denote the number of Klines, for example, an ordinary line is a 2-line and 
m = /2. Clearly, the dual of V2i is tt; hence, by dualizing 4.4 we establish 

4.5 m = h > 3 + h + 2h + 3/6 + . . . . 

We have immediately Dirac's result (6), m > 3. 
Inequality 4.5 may be used to prove that, if n is even, m > (n + 11)/6. 

In fact, the assumption that there is a set P of n points with n even and 
w < (n + 11)/6 leads us to a contradiction. For, in such a case, we see from 
4.5 that the number of points of P each of which is incident with a &-line 
for some k 9e 3 is at most 

2/2 + 4/4 + 5/5 + . . . < 2/2 + 4(/4 + 2/5 + 3/6 + . . .) 
< 2/2 + 4(/2 - 3) = 6m - 12 < n - 1. 

Thus, there is at least one point of P incident solely with 3-lines; clearly n 
must be odd, and we have a contradiction 

Call a point of P which is incident with exactly k connecting lines a &-point 
and let vk denote the number of ^-points. Clearly 

4.60 £ vk = n; 

also 

4.61 E &* = E *»*» 
A;=2 k=2 

for in both sums a &-line is counted k times. From 4.5 we have 

3/2 + 3/3 + 3/4 + . . . > 3 + 2/2 + 3/3 + 4/4 + . . . 

which together with 4.61 yields 

4.62 3/ > 3 + E kh = 3 + E kvk, 

where 

/ = £/* 
denotes the number of connecting lines. 

At the same time that Erdôs (7) reproposed Sylvester's problem he also 
posed the following one: Show that S contains at least n lines. This was 
answered successfully by Steinberg (see 7) as well as de Bruijn and Erdôs 
(5) and Hanani (9; 10). The configuration with 5 a near-pencil shows that 
this is a best possible result. 

Erdôs (8) conjectured that if n is large enough and at most n — 2 points 
are collinear then 2n — 4 lines are determined. If we insist that at most n — 3 
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points be collinear, then approximately 3n lines should be determined. In 
general, if at most n — k points are collinear and n is large (with respect to 
k) we would expect the minimum number of lines to be of order kn. This 
is the substance of the following theorem, a corollary of which establishes the 
truth of his conjecture. 

THEOREM 4.1. If at most n — k points of P are collinear and 

4.70 n > i{3(3& - 2)2 + 3k - 1} 

then 
t> kn- J (3* + 2)(Jfe - 1). 

The proof will follow that of 

LEMMA 4.1. If exactly n — r points of P are on a line, and 

then 
t>rn- J(3r + 2 ) ( r - 1). 

Proof. Suppose the n — r points pr+u Pr+2, . . . , pn lies on the line s, and 
the r points pi, p2, . . . , pr do not lie on 5. Two lines papb and pcpd (1 < a, 
c < r; r + 1 < b, d < n) are certainly distinct iî b j* d. Hence, among the 
r(n — r) connecting lines pipj (i = 1, 2, . . . , r; j = r + 1, r + 2, . . . , n) at 
least 

r{n — r) — \r{r — 1) 

are distinct. Counting the line s we have 

t > 1 + r{n - r) - \r(r - 1) = m - J(3r + 2) (r - 1). 

We now proceed to the proof of Theorem 4.1 and consider two cases. 

Case 1. 
3 * - l 

Z vt > 2. 
1 = 2 

In this case there are two points, say pi and pi, each of which lies on at most 
3& — 1 connecting lines. Let 5 be the line through p\ and p2. The connecting 
lines through pi and pi other than s intersect in at most (3& — 2)2 points. 
Hence, s contains at least n — (3& — 2)2 points. Suppose it contains n — x 
points, where 

k < x < (3k - 2)2. 

Inequalities 4.70 and 4.71 insure that n > | x; hence, by the lemma, at least 

xn — J(3x + 2)(x — 1) 

connecting lines are determined. Using 4.70 and 4.71 we have 
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n> ±{3(x + k) - 1} 
or 

n(x - k) > H3x2 - 3k2 - x + k) 
or 

t> xn - i(Sx + 2)(x - 1) > kn - \(Zk + 2){k - 1). 

Case 2. 
3 / f c - l 

From 4.62 we have 
3* > 3 + 2 + 3&0 - 1) 

or 

/ > i » - j f e + | > j f e » - |(3ife + 2)(& - i n . 

This completes the proof of Theorem 4.1. 

Taking k = 2, we have 

COROLLARY 4.1. If at most n — 2 points are collinear and n > 27, /&ew at 
least 2n — 4 connecting lines are determined. 

n*9 t=l3 

FIGURE 4.1 

Figures 3.1, 3.2, and 4.1 show configurations with n = 7, 8, 9 and t = 9, 
11, 13 respectively. On the other hand, using the above methods a somewhat 
detailed analysis leads to the conclusion that these are best possible, that is, 
if no n — 1 points are collinear and n = 7, 8, 9, then / > 2n — 5. Similarly, 
a detailed analysis shows that if n = 10 and no 9 points are collinear, then 
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/ / a n (n-2)-!ine 

a 3-line 

t=2n-4 

FIGURE 4.2 

/ > 16. Figure 4.2 shows a configuration with arbitrary n and t = 2n — 4. 
Thus, it seems very likely that, if at most n — 2 points are collinear, then 
/ > 2n — 5 (» = 7, 8, 9) and / > 2n — 4 {n > 9) and that for each n there 
is a configuration for which equality holds. 

The related problem of finding configurations for which h is as large as 
possible is considered by Ball (1, pp. 105-6). 

5, Zonohedra . In this section we point out a connection between the 
configurations we have been studying and the convex solids (in Euclidean 
space) known as zonohedra. 

A zonohedron is a convex polyhedron whose faces all possess central sym
metry (2, pp. 27-30). These properties insure that the solid has central sym
metry. Each edge of a zonohedron determines a zone of faces in which each 
face has two sides equal and parallel to the given edge. If the edges occur in n 
different directions, there are n zones. 

Let us call a set of n concurrent lines (in Euclidean space) a star. Then we 
may say that every zonohedron determines a star having one line parallel 
to each of the n directions in which the edges occur. 

To every pair of faces of the zonohedra there corresponds the connecting 
plane (through the vertex of the star and parallel to the pair of faces) which 
contains the lines of the star parallel to the edges of the faces. The projection 
of the star and its connecting planes onto the projective plane at infinity is 
precisely a configuration of n non-collinear points and their connecting lines. 
Thus, a pair of parallel 2&-gons on a zonohedron corresponds to a &-line of 
5. Theorem 3.6 now shows that: 

Every zonohedron with n zones has at least Sn/7 pairs of parallelogram faces. 
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