Irish Section Conference, 22–24 June 2021, Nutrition, health and ageing — translating science into practice – Part A

## Effect of selenium supplementation on biomarkers of bone turnover

G. Perri<sup>1</sup>, T. Hill<sup>1</sup>, J.C. Mathers<sup>1</sup>, J. Walsh<sup>2</sup>, F. Gossiel<sup>2</sup>, K. Winther<sup>3,4,5</sup>, J. Frölich<sup>3</sup>, L. Folkestad<sup>3,6</sup>, S. Cold<sup>7</sup> and R. Eastell<sup>2</sup>

<sup>1</sup>Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK,

<sup>2</sup>Sheffield University, Department of Oncology and Metabolism, Metabolic Bone Centre, Sorby Wing, Northern General Hospital, Sheffield, UK,

<sup>3</sup>Department of Endocrinology, Odense University Hospital, Odense, Denmark,

<sup>4</sup>Centre for Diabetes, Academic Specialist Centre, Stockholm, Sweden,

<sup>5</sup>Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Sweden,

<sup>6</sup>Department of Clinical Research, University of Southern Denmark, Odense, Denmark and

<sup>7</sup>Department of Oncology, Odense University Hospital, Odense, Denmark

Selenium is an essential trace element with roles in musculoskeletal health<sup>(1,2)</sup>. Osteoclast inactivation is associated with selenium supplementation *in vitro* and selenium status is correlated negatively with markers of bone health<sup>(3,4)</sup>. However, the impact of selenium supplementation on bone turnover markers (BTM) has not been studied. This study investigated the effects of selenium supplementation for up to 5 years in older people on BTM including osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), carboxyterminal collagen crosslinks and bone alkaline phosphatase.

490 Danish men and women (60-74 y) were randomised to receive 0, 100, 200 or 300 µg of selenium daily as selenium-enriched yeast. Plasma selenium concentration was measured using inductively-coupled-plasma mass spectrometry and BTMs were measured using an autoanalyser at baseline, 6 months and 5 years in non-fasted samples. Data were analysed by ANCOVA with polynomial contrasts to investigate the shape of the dose-response relationships. Covariates included: age, body mass index, baseline plasma selenium concentration, baseline BTM, smoking, alcohol, supplement use and medication.

Plasma selenium concentration increased significantly with increasing selenium supplementation at 6 months (84.1, 155.2, 212.3, 258.3 ng/ml for placebo, 100, 200 and 300  $\mu$ g selenium, respectively) (P < 0.001) and remained elevated at 5 years (88.2, 156.4, 223.8 and 270.9 respectively) (P < 0.001). At 6 months, there was a significant linear decrease in P1NP (P = 0.036,  $\eta 2 = 0.019$ ) with increasing selenium supplementation but this effect was not apparent at 5 years. There was no significant effect of selenium supplementation on any other BTM.

Selenium supplementation reduced P1NP at 6 months but there were no significant effects on other BTM or after 5 years. Since PINP is a marker of osteoblast function, the fall in PINP with increasing selenium supplementation suggests a reduction in new bone formation 5. The impact of this change in bone turnover on bone health remains to be determined.

## References

- Moreno-Reyes R, et al. (2001) J Bone Miner Res 16, 1556–63. Zhang Z, et al. (2014) Biophys Acta 1840, 3246–3256. Hoeg A, et al. (2012) J Clin Endocrinol Metab 97, 4061–70. Beukhof CM et al. (2016) PLoS ONE 11, e0152748.
- 3
- 5 Kuo T & Chen CH (2017) Biomark Res 5, 18

