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Abstract

Residential energy efficiency programs play an important role in combating climate change. More precise quanti-
fication of the magnitude and timing of energy savings would bring large system benefits, allowing closer integration
of energy efficiency into resource adequacy planning and balancing variable renewable electricity. However, it is
often difficult to quantify the efficacy of an energy efficiency intervention, because doing so requires consideration
of a hypothetical counterfactual case in which there was no intervention, and randomized control trials are often
implausible. Although quasi-experimental econometric evaluation sometimes works well, we find that for a set of
energy efficiency rebate programs in Northern California, a naïve interpretation of econometric measurement finds
that rebate participation is associated with an average increase in electricity consumption of 7.2% [4.5%, 10.1%],
varying in magnitude and sign depending on the type of appliance or service covered by the rebate. A subsequent
household survey on appliance purchasing behavior and analysis of utility customer outreach data suggest that this
regression approach is likely measuring the gross impact of buying a new appliance but fails to adequately capture a
counterfactual comparison. Indeed, it is unclear whether it is even possible to construct a suitable counterfactual for
econometric analyses of these rebate programs using data generally available to electric utilities. We view these
results as an illustration of a limitation of econometricmethods of program evaluation and the importance ofweighing
engineering modeling and other imperfect methods against one another when attempting to provide useful evalu-
ations of real-world policy interventions.

Impact Statement

Many energy utilities offer residential energy efficiency rebate programs to reduce energy consumption and
resulting environmental impacts. We find that for a particular set of rebate programs for energy efficient
household appliances and services, common econometric methods find that participating households tend to
increase electricity consumption after applying for rebates. Thus, it might appear that these efficiency programs
did not actually save energy. However, additional utility data and a household survey suggest that the observed
increase was likely measuring the “effect” of buying a new appliance. In such circumstances, energy savings
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estimates based on engineering models may be more appropriate than econometric methods. This illustrates the
importance in policy evaluation of picking the right quantitative tool for the job.

1. Introduction

Residential energy efficiency is a major component of national- and state-level energy policies in the
United States (Sweeney, 2016). Since 2005, the U.S. federal government has spent over $13 billion on
residential energy efficiency programs (Borenstein and Davis, 2016), whereas state-level utility spending
was $8.4 billion in 2019 alone (Berg et al., 2020). Energy efficiency strategies in the residential sector
are often found to be the most cost-effective climate mitigation strategies, with numerous studies and
analyses that estimate both the potential and achieved cost-effective savings from residential energy
efficiency programs (Meier et al., 1982; Koomey et al., 1991; Rosenfeld et al., 1991, 1993; Rubin et al.,
1992; Blumstein and Stoft, 1995; Jackson, 1995; Levine et al., 1997; Brown et al., 1998; Rosenfeld, 1999;
Coito and Rufo, 2002; Nadel et al., 2004; McKinsey, 2007, 2009; Goldstein, 2008; Richter et al., 2008;
Ürge-Vorsatz et al., 2009; NRC, 2010; Azevedo et al., 2013). A review by Saunders et al. (2021) highlights
the findings from research in energy efficiency in the last 40 years and stresses that key uncertainties persist
regarding the outcomes of energy strategies and programs (Saunders et al., 2021).

With increasing levels of renewable energy deployment in electric power systems across the world and
the inherent supply variability of those resources, the timing of electricity demand and the timing of
savings are increasingly important (Boomhower and Davis, 2020). For example, abundant midday solar
electricity in California creates substantial periods of negative wholesale pricing in the spring and the fall,
resulting in peak demand periods that are pushed back until 8 or 9 pm at night, when little to no solar
is available (Bajwa and Cavicchi, 2017; PG&E, 2019). As a result, a kilowatt hour (kWh) of electricity
saved in the evening provides many more system benefits, including emissions reductions, than the same
kWh saved on a spring afternoon. Of course, the extent to which electric power transmission, distribution,
and generation capacity planners can incorporate these time-based savings into their planning decisions
depends on how well we can measure them.

Energy savings from energy efficiency programs cannot be measured directly—there is no way to
directly measure something that did not happen—so energy efficiency program evaluators must rely on
engineering or econometric methods to estimate energy savings. The majority of residential energy
efficiency activity in the United States has been designed, by necessity, as opt-in programs. A major
exception is home energy reports, whichmany utilities send by default to customers to provide feedback
on their energy consumption with the aim of encouraging behavioral change (Allcott and Kessler,
2019). By their nature, opt-in programs require a homeowner, landlord, building manager, or occupant
to make an active decision to participate. As a consequence, all opt-in programs have some degree of
unavoidable selection bias: The group of participants who elect to engage in an energy efficiency program
will be different from the group that does not elect to engage. We would reasonably expect that the two
groups—those that would elect to participate in an energy efficiency program and those who would
not—will have different future energy consumption patterns even in the absence of an energy efficiency
program intervention. Participants in opt-in programs are potentially more likely, as a group, to engage
in energy-saving behavior in the absence of a utility-sponsored efficiency program. They may also be
more receptive to other messaging about the environmental or financial benefits of saving energy, more
cognizant of their own energy consumption patterns, or simply have fewer hurdles to engaging in
energy-saving actions.

The extent to which any of the (usually unobservable) differences between opt-in participants and
nonparticipants are correlated with future energy consumption patterns is a challenge for attribution:
How can program managers and regulators estimate the marginal effect (the “additionality”) that energy
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efficiency programs are creating? What would the group that opted into the program have done in the
absence of the program, and how great were energy savings induced by program expenditures?

These estimates of savings are important, because they are crucial for evaluating the performance and
cost-effectiveness of programs, and for comparison against other potential uses of scarce societal
resources. For utilities and program implementers, they are generally used to measure progress toward
regulatory energy efficiency requirements. Significant effort has been devoted to creating measurement
standards that can be used for estimating opt-in efficiency program progress. The International Perform-
ance Measurement and Verification Protocol (IPMVP) aims to provide a “flexible framework of
measurement and verification options” that “adhere to the principles of accuracy, completeness, conser-
vativeness, consistency, relevance, and transparency” (EVO, 2012). The Uniform Methods Project
(UMP) is a U.S. Department of Energy effort based on the IPMVP, but which is scoped to provide
“a more detailed approach to implementing” the options from that protocol (Li et al., 2017).

At a high level, there are two broad categories of estimation methods for opt-in efficiency programs.
Engineering estimates (IPMVP options A, B, and D) simulate the effect of using a more efficient
appliance or adding building improvements, such as insulation, compared with a less efficient counter-
factual case (ACEEE, 2019). Utilities and regulatory agencies in more than 25 U.S. states publish
Technical Reference Manuals (TRMs) based on such estimates, to generate “deemed” values of clearly
defined efficiency activities that are applied toward regulatory energy efficiency mandates (see Li and
Dietcsch, 2017 for further details). However, engineering estimates, such as those in the TRMs used in
many U.S. states, are necessarily somewhat coarse and usually ignore considerable uncertainty in the
parameters that affect savings values (Meyer, 2014). They can provide useful insight into the average
expected savings from an intervention, perhaps accounting for the regional climate, the type of new
appliance, and some characteristics of the residence (NYSJU, 2019). Engineering models also cannot
easily include behavioral effects and other potentially critical particularities in a given intervention.

Econometric estimates have long used household electricity consumption data and quasi-
experimental approaches to estimate the effects of individual energy efficiency programs. As early
as 1986, Fels introduced a weather-normalized regression-based baseline method of energy efficiency
evaluation, comparing electricity consumption from monthly utility billing data before and after
an intervention, in some cases comparing treatment and control groups (Fels, 1986). Such methods
have the potential to capture behavioral effects and other operational characteristics that
engineering models cannot generally consider, but only if there is a valid counterfactual. There are
now many such econometric methods (including those detailed by Berger and Ucar, 2013) with the
U.S. Department of Energy’s UMP outlining standards for such energy efficiency evaluation tech-
niques (Li et al., 2017). Several studies (including Allcott and Greenstone, 2017; Fowlie et al., 2018)
suggest that realized energy efficiency savings may be substantially lower than econometric modeling-
based estimates.

For econometric studies, the most robust counterfactuals are generated by a randomized controlled
trial (RCT) design. Such a method measures the net effect of a program, capturing behavioral as well as
engineering components, although they cannot be easily disentangled with this approach. Unfortunately,
most residential efficiency programs require active enrollment by participants, as discussed above, which
means that an RCT is not possible for those programs.

When RCT design is infeasible, a common evaluation alternative is to employ a quasi-experimental
approach. For example, Fowlie et al. (2018) employ a randomized encouragement design (RED) to
construct an instrument of the effect of encouragement for the program. Another alternative is to use
propensity score matching (PSM) to construct a synthetic control group for comparison to the treatment
population in the post-treatment period, as in Qiu and Kahn (2018).

When a RED program is measured on an intention-to-treat basis, it mimics an RCT in its measure-
ment (presuming that the option for participation remains open for the unencouraged control group).
This is rarely done, however. More commonly, program administrators and evaluators are interested
in estimating a local average treatment effect, which is a measure of the effect of the program on the
program participants. This relies on the assumption that participation in the program, subsequent to
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program encouragement, “is orthogonal to any factors that impact [energy] consumption” (Hahn and
Metcalfe, 2021). This is a difficult hurdle to conclusively overcome, since receptiveness to program
encouragement could plausibly be associated with other unobserved characteristics that are associated
with future energy consumption. Similarly, unobserved (and, often, unobservable) characteristics
present a challenge to estimates generated by PSM. For a synthetic control group created by PSM,
balancing all observable characteristics does not, and cannot, guarantee that there are no remaining
unobserved factors associated with energy use that are not statistically imbalanced between the
treatment and synthetic control groups.

In some cases, quasi-experimental methods, which attempt to construct a counterfactual based on
historically occurring, plausibly quasi-random variation in the data, can produce reasonable estimates of
causal effects. In the case of energy efficiency program evaluation, Boomhower and Davis (2020)
estimated energy savings from a central air conditioner replacement program using hourly electricity
consumption data from advanced metering infrastructure (AMI) in Southern California; however, they
caution that these results are not necessarily causal due to the quasi-experimental estimation approach,
stemming from the program’s design. Novan and Smith (2018) apply a similar analysis in the Sacramento
area. Because participating households in both studies had central air conditioning before participating in
the program, average changes in pre- and post-replacement electricity consumption (with a regression
accounting for appropriate control variables) give a plausible estimate of the net effect of the program.
Furthermore, hourly data allowed examination of differential effects at different hours. These hourly
estimates found nighttime electricity savings that far exceeded engineering estimates, providing insight
into household behavior, namely a preference among households in Southern California to run air
conditioners at night (Boomhower and Davis, 2020).

Empirical estimates of energy savings by time of day and season raise the prospect of transforming
energy efficiency into a resource that can reliably contribute to resource adequacy planning, integration of
variable renewable energy, and possibly even electric power capacity markets. These are among the stated
goals of emerging data-driven energy efficiency measurement and verification companies such as
OpenEEMeter and the related CalTRACK program (Recurve, 2020).

We apply regression analysis to a class of energy efficiency programs: rebates for efficient appliances
and other residential energy efficiency measures in Northern California. Our initial evaluation of the
hypothesis that participation in an energy efficiency program is associated with a subsequent decrease in
electricity consumption yielded counterintuitive results. Based on these results, we conducted a house-
hold survey to assess possible explanations for these results due to appliance purchasing and disposal and
conducted detailed discussions with utility employees familiar with the inner workings of these rebates.
We find that constructing a defensible counterfactual is difficult, if not impossible, for most opt-in energy
efficiency rebate programs. Some of these concerns would be mitigated if the datasets would include
other detailed aspects of participant and nonparticipant behavior, such as purchases and retirements of
appliances and equipment, or other behavior changes. Inmany cases, moving forwardwith a conventional
quasi-experimental econometric specification results in estimates of an increase in electricity consump-
tion, rather than savings.We view these results as an illustration of a limitation of econometric methods of
program evaluation and the importance of weighing engineering modeling and other imperfect methods
against one another when attempting to provide the most useful possible evaluation of a real-world policy
intervention.

2. Data and Methods

Our dataset is one of the earliest AMI large datasets, provided by Pacific Gas and Electric Company
(PG&E) via theWharton Customer Analytics Initiative.We applied quasi-experimental energy efficiency
evaluation techniques to this dataset. The data include amix of 15-min and hourly electricity consumption
readings, which we aggregate to hourly and ultimately to daily resolution for consistency and compu-
tational tractability, for up to 4 years for associated households (Sherwin and Azevedo, 2020). The data
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represent a regionally stratified random sample of roughly 30,000 PG&E customer accounts, together
with dates for rebate application by type of appliance or service, rebate approval, and check disbursement
information for energy efficiency rebates for numerous appliances, services, and building improvements,
as well as other important contextual information, such as enrollment in other utility programs. In
Section A1 in the Supplementary Material, we provide further details about the dataset.

We use electricity consumption as the dependent variable, with detailed treatment information, pre-
and post-treatment data, and dwelling-level and time fixed effects, in a traditional difference-in-difference
model of the sort employed both in energy efficiency evaluation and in many fields of applied economics
(Qiu and Kahn, 2018; Burlig and Wolfram, 2020).

While we do not directly observe household address information (for data privacy protection), PG&E
linked household pseudoaccount identifiers with U.S. Census block information in the provided dataset.
Using this location information, we include local hourly temperature. We also observe enrollment
information for several other utility programs offered during the study period (see Section A1.6 in the
Supplementary Material for data on enrollment in other programs). The data do not include household
demographic information, which we supplement with data at the neighborhood-average census block
level. See Table A1 and Sections A1.1 and A1.6 in the SupplementaryMaterial for demographic statistics
as well as details on enrollment in other utility programs and tariff structures, such as the California
Alternate Rates for Energy low-income subsidy.

3. Interval Electricity Consumption Data

Our primary data source is interval electricity consumption data from dwellings associated with
approximately 30,000 PG&E residential customer accounts, roughly 10,000 from each of the three
regions within the sample, the Central Valley, Inland Hills, and Coast. See Figure A1 and Section A1.1
in the Supplementary Material for further details. In all, 30,349 dwellings had valid electricity
consumption readings, meaning that some accounts were associated with multiple dwellings because
the household either moved or owned multiple dwellings simultaneously. Although the data were
originally provided at 15-min resolution, we aggregated to hourly resolution to merge with temperature
data and then, due primarily to computational constraints, aggregated to daily resolution using a degree
day-like metric described in Equations (1) and (2).

Interval data collection began only after the deployment of AMI, which was staged beginning largely
in the Central Valley in 2007, moving to the Inland Hills, concluding on the Coast. See Figure A2 and
Section A1.1 in the Supplementary Material for further details. As a result of this staging, the panel is
unbalanced. However, we do not believe that this substantially influenced our results, which are similar in
all three regions. See the discussion surrounding Table A4 and Section A2 in the Supplementary Material
for further details.

We also use census block location information to approximate local temperature at each dwelling as the
weighted average of the hourly temperature at the three weather stations closest to the center of that
dwelling’s census block, using data from the National Oceanographic and Atmospheric Administration
(Menne et al., 2012). We approximate heating and cooling demand using Equations (1) and (2), based on
the deviation of the daily high and low hourly temperature, Th,i,t and Tl,i,t, from 18°C (~65°F), a common
set point for analysis of heating and cooling in the United States, setting the deviation to zero if the
high temperature is below 18°C or the low temperature is above 18°C (EPA, 2016). This is a rough
approximation of degree days, which are common in monthly billing analysis, or of a similar piecewise
linear representation of hourly temperature, which becomes possible with hourly data.

Temph,i,t ¼ max Th,i,t�18∘C,0½ �: (1)

Templ,i,t ¼ max 18∘C�Tl,i,t,0½ �: (2)
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We conducted our analysis at the dwelling level. We were able to control for all utility programs a
household was enrolled in using account-level data, which apply to all dwellings associated with an
account. See Section A1.6 in the Supplementary Material for further description of other utility programs
available to households during the study period. Rebate participation, including application date,
approval date, and check issuance date, were reported at the dwelling level.

4. Difference-in-Difference Regression

We use a difference-in-difference regression approach to measure the association between energy
efficiency rebate participation and electricity consumption using Equation (3).

ln kWhi,tð Þ ¼ αþβj Tempi,t
� �

jþ γ Rebatei,tð Þþδk Timetð Þkþ ζ TimeTrendtð Þ
þφq Programi,t

� �
qþψq Rebatei,t∗Programi,t

� �
qþuiþ εi,t:

(3)

The main analysis uses Equation (3), which controls for enrollment in other utility programs and
potential interactions between rebate participation and enrollment in these programs. ln(kWhi,t) is the
natural logarithm of electricity consumption in kWh, for dwelling i in day t.We use this approach because
the distribution of electricity consumption is approximately lognormal and results are interpretable
in percentage terms. See Section A5 in the Supplementary Material for further details. The primary
coefficient estimate of interest is associated with Rebatei,t, which is an indicator variable for dwellings
following their first rebate application.We assume that any change in energy consumption associatedwith
efficiency measures begins at roughly the same time as rebate application. We believe this is reasonable,
because the current deadline for rebate submission is 60 days after purchase, and households that apply for
rebates have already purchased the relevant appliances or efficiency services (PG&E, 2017). (Tempi,t)j is a
set of linear and quadratic temperature controls, j, where j has four values, representing daily high and low
temperatures for each household, based on Census block location, in a linear and quadratic form. Both
high and low temperatures are derived from an average of the three nearest weather stations, represented
as the absolute value of the deviation from 18°C, truncated at zero below for high temperatures and above
for low temperatures. See Equations (1) and (2) for further details. (Timet)k is a set of k indicators for
periodic time intervals (months of the year, and days of the week). TimeTrendt is a linear time trend that is
fitted to the model to capture secular changes in electricity consumption over the period of observation,
unrelated to the variable of interest. (Programi,t)q represents the q additional PG&E programs, described
in Section A1.6 in the Supplementary Material. The model also includes a set of q interaction terms
between rebate program participation and the other PG&E programs. The terms α and ui are the intercept
and the dwelling-specific fixed effect. εi,t is an unobserved error term.

Figure 1 uses Equation (4), which differentiates between the different types of rebates available.

ln kWhi,tð Þ ¼ αþβ j Tempi,t
� �

jþ γl Rebatei,l,tð Þþδk Timetð Þkþ ζ TimeTrendtð Þþuiþ εi,t: (4)

All regression components are identical except that controls related to other utility programs are
excluded and rebates are differentiated by type, l. In the “All rebates” case, l corresponds to all rebates.
Otherwise, l corresponds to each distinct type of rebate.

See SectionA2 in the SupplementaryMaterial for robustness checks, including alternative subsamples
and regression specifications.

The household survey was conducted using a separate population of California households, recruited
using Amazon Mechanical Turk. The purpose of this survey, which was not linked to electricity
consumption data, was to gain insight into household appliance purchasing and disposal behavior and
the use of rebates. Such results may not fully generalize to the population in the main analysis, because
there may be demographic or other differences between the surveyed population and the sampled
population within the PG&E service territory. For more information about the household survey, see
Sections A4 and A6 in the Supplementary Material.
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5. First Econometric Impressions and Why They Are Misleading

Applying the difference-in-difference regression described above in Equation (3), we find that rebate
participation did not appear to reduce electricity consumption and was instead associated with an average
increase in electricity consumption of 7.2% with a 95% confidence interval of [4.5%, 10.1%]. Using the
simpler regression specification in Equation (4), which does not control for enrollment in other programs,
this falls slightly to 6.1% [3.4%, 8.8%]. Our initial hypothesis was that household energy consumption
would decrease following efficiency rebate participation. See Section A2 in the Supplementary Material
for full regression results.

This increase in electricity consumption appears to be largely attributable to rebates for new appli-
ances, 45% of all rebates, which showed an even higher increase of 9.7% [5.9%, 13.7%], as shown
in Figure 1, based on Equation (4) in the Difference-in-Difference Regression section. Differentiating by
rebate type using Equation (4), there was a nonsignificant decrease of �6.1% [�13.7%, 2.7%] in
electricity consumption for appliance rebates that required recycling of an old appliance. Building shell
and unknown/unclassified rebates also show significant increases in electricity consumption of 14.0%
[0.7%, 29.0%] and 3.6% [0.2%, 7.1%]. In no case did we see a significant reduction in electricity
consumption associated with rebate participation. These results held for a wide array of robustness
checks, described in Section A2 in the Supplementary Material. See Section A3 in the Supplementary
Material for a detailed breakdown of rebate applications by type over time.

These results could be interpreted naïvely as suggestive evidence that rebates were acting as a subsidy,
encouraging households to purchase new, efficient appliances while keeping older, less efficient versions
running. The fact that there was no increase in consumption for appliance rebates that required recycling
could be construed as evidence supporting this hypothesis. Of course, onemust acknowledge a number of
potential sources of selection bias correlated with both program participation and energy consumption,
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Figure 1. Estimated association between rebate participation and subsequent changes in electricity
consumption. Note that rebate participation was associated with a significant increase in electricity
consumption that does not appear for appliances that required recycling of an old, less efficient
appliance. These results use Equation (4). A naïve interpretation could interpret this as suggestive
evidence that energy efficiency rebates lead to increased consumption. However, this result is most
likely due to the fact that it is essentially impossible to develop a statistically valid counterfactual for
the type of rebate program evaluated in this study, particularly using data generally available to
electric utilities.
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including the possibility of simultaneous and unmeasured changes in household size, income or
employment status, or the household appliance stock or building envelope. However, it is not uncommon
for studies with similar statistical limitations and apparently unintuitive results to be published with the
aim of at least sparking important discussion, perhapsmotivating further, more detailed studies in the future.

The dataset used above does not include important behavioral data. Perhaps households tended to get
new efficient appliances simultaneously with changes in household size or major renovations, which
would also affect electricity consumption. To what extent did the rebate influence whether a household
decided to buy a new appliance, or to buy a more efficient model than they would have otherwise? We
procured more data to assess the extent to which the observed increase in electricity consumption was due
to households buying a new appliance and keeping an old version.

PG&E graciously shared additional details about the rebates and other efficiency measures
employed by households in our sample, described in Section A1.4 in the Supplementary Material.
These data clarified that the vast majority of appliance rebates, roughly 75%,were clothes washers, with
roughly 15% dishwashers, both of which are appliances that a household is likely to have either zero or
one of. Of appliance recycling rebates, over 90% were for refrigerators or freezers. There were some
conflicts between the classifications in the original and additional data, with some rebates labeled as
“Appliance recycling” in the original dataset apparently not indicating recycling in the additional data.
Such data consistency issues are common in many forms of data generated for administrative purposes.

Positive and significant coefficients for building shell efficiency rebates, associated with an average
increase in consumption of 14.0% [0.7%, 29.0%], also motivate similar hypotheses. Households
installing building shell efficiency measures may be simultaneously expanding other parts of the
building or otherwise taking action that may increase overall energy consumption. However, these
building shell retrofits constitute only 99 of 5,484 total efficiency rebates in the database, compared
with 2,429 appliance rebates without recycling and 470 with recycling requirements. As a result, the
remainder of this study focuses on appliance rebates.

6. Household Survey Debunks “Keeping Old Appliance” Hypothesis

The data from PG&E did not include information necessary to understand appliance purchasing behavior.
We conducted an online survey of 665 California households, not linked to the provided household-level
electricity consumption data, to gain insight into such behavioral factors. The survey is described in detail
in Section A4 in the Supplementary Material. We asked these respondents what appliances they had
purchased over the past 10 years, whether they had applied for rebates, and whether they already had old
versions of the same appliances and if so, what they did with them after buying new ones. We also asked
whether and when they had made major renovations to their home, experienced a change in household
size, or enrolled in the California Alternate Rates for Energy low-income subsidy, which could increase
consumption by reducing the effective price of electricity.

The household survey was motivated by the hypothesis that households that participated in
appliance rebate programs (a) kept an old, less efficient version of the same appliance, or
(b) purchased appliances they did not already possess. After the first round of data collection,
101 respondents, we added questions to assess the hypotheses that households purchase appliances
at the same time as (c) increases in household size or (d) major building renovations or additions. After
the conclusion of the survey, we generated hypotheses that (e) households use rebates to purchase more
consumptive, but more efficient appliances, for example, refrigerators with ice-makers or (f) households
purchase additional appliances or equipment at the same time as any rebates. We were not able to assess
hypotheses (e) and (f) in this study.

We found that only 8% of the 222 households that reported getting a rebate for an efficient appliance
also reported keeping an old model. Sixty-two percent of applying households had an old and functioning
version of the same appliance, butmay not have kept it after purchasing the new appliance. Thus, that 38%
of rebate applicants did not have an old version. Of those who applied for a rebate for an appliance they
previously had in the home, only 12% reported keeping the old version, with the rest recycling (48%),
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scrapping (15%), or selling (25%) the old version. Thus, one of our early hypotheses—that households
were keeping old, inefficient appliances after getting new, efficient ones—was not supported by our
new data.

The survey results suggested that simultaneous home renovations or changes in household size were
not the cause of the observed increase in electricity consumption. These questions were added to the
survey after we had collected the first 101 responses. Only 13 of the responding 564 households that were
asked questions about changes in household size report applying for a rebate within the same period as an
increase in household size, whereas 13 report a decrease. This suggests that increases in household size do
not explain our regression results. Only 23 of the same 564 households report simultaneous renovations.
Many of these renovations include efficiency upgrades such as greater insulation or more efficient
windows. As a result, it is likely that this effect is small and its direction is ambiguous. Note that although
the survey includes questions about building renovations and associated energy efficiency measures, it
does not include questions that would allow us to evaluate hypotheses surrounding the observed increase
in electricity consumption following building shell renovations, because the survey focused on appliance
purchasing and disposal behavior. See Section A4 in the Supplementary Material for further information.

The most plausible remaining explanation was that households were using rebates to purchase
appliances they did not already possess, particularly clothes washers. It was also possible that households
were purchasing more efficient versions of appliances with more features than their old versions, or that
they were purchasing other new appliances at the same time as the efficient appliances. Unfortunately, the
survey did not include questions that would have allowed us to assess these hypotheses.

7. Rebates Only Advertised at Point of Sale

Further examining the question of how households were informed about rebates, we assessed the extent to
which rebates could play a role in household purchasing decisions. Analysis of customer communications
in the PG&E dataset did not include any evidence of proactive outreach by phone, email, or physical mail
about the various rebates available. This means that rebates were primarily advertised at the point of sale,
thus reducing the likelihood that customers would even be aware of the existence of rebates until they
were at a store selecting new appliances, present at a store for another reason and visiting the appliances
section, or in contact with a contractor or repair company.

Thus, many households that took advantage of rebates for efficient appliances or services had likely
decided tomake a purchase before the rebate could affect their decisions. Thismeans that rebates probably
did not spur households to purchase appliances they would not have bought otherwise, an assumption
implicit in our initial interpretation of our results. Rebatesmay have then encouraged households to opt for
a more efficient option, but either way, this poses a major selection bias concern for which it is difficult to
correct.

8. What Is the Counterfactual?

If the treatment group is households that purchase a new efficient appliance or efficiency service and apply
for a rebate, what is the appropriate comparison against which to measure their energy savings? The
methodwe had employed thus far essentially set the control group as “all households that did not apply for
a rebate,” including pre-rebate data for households that did. One could easily imagine that households
buying a new appliance that they did not previously own would tend to have a subsequent increase in
electricity consumption. Thus, the increase in electricity consumption observed in our original regressions
could simply be the effect of purchasing a new appliance not previously present in the dwelling, one of the
hypotheses that our survey was not able to fully address.

The mental model implicit in interpreting the econometric results in this way is that in the absence of
rebates, households would have continued to use the same appliances and household energy services as
before. However, if rebates are primarily affecting purchasing decisions at the point of sale, many of the
households that applied for rebates in our sample could have been shopping for a new appliance before
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learning about the rebates. Thus, it is likely they would have bought a new appliance with or without the
rebate. To the extent that these purchasers would have purchased a qualifying efficient appliance anyway,
they can be considered free riders to the rebate program. However, even if these participants would have
purchased a competing, less efficient model, the appropriate comparison for their post-purchase energy
consumption patterns is not their pre-purchase energy consumption patterns. Instead, the ideal compari-
son is their hypothetical (and unobservable) post-purchase consumption patterns in the absence of the
rebate (and the effect that the rebate had on their purchase decision-making). If rebates indeed induce
purchase of less consumptive appliances, such a comparison would likely show a decline, not an increase,
in energy consumption for at least a substantial fraction of the participants in this sample.

Perhaps a more appropriate control group would be households that purchased a new appliance, or
considered purchasing a new appliance, but did not apply for a rebate. However, even assuming one could
assemble such data, and doing so would be a substantial endeavor in itself, there could be numerous
reasons why a household opted not to take advantage of available energy efficiency rebates, advertised at
the point of sale. Such households could have lower incomes, rendering the additional capital expense of
more efficient appliances prohibitive even with a rebate. Such households could also be less concerned
about energy consumption or could place a high premium on specific features that do not happen to be
available in rebate-eligible models. These and many other potential confounding factors could substan-
tially bias the results in ways that are difficult to predict.

In addition, household electricity consumption data tell us nothing about what appliance the household
would have purchased in the absence of a rebate. We do not know what appliance the household would
have purchased otherwise. Asked directly, the residents themselves could likely only give a general idea
of whether and how much the availability of rebates affected their purchasing decisions or would affect
future decisions. A recent analysis of U.S. appliance purchasing trends suggests that the effect is relatively
small, finding that 70% of participants in the 2009 expansion of U.S. energy efficiency rebate programs
were inframarginal, and householdswould have bought the same appliancewithout the rebate (Houde and
Aldy, 2017). In our view, it would be extraordinarily difficult to match such appliance sales figures to
household electricity consumption, control for myriad confounding factors, and produce an estimate of
the resulting energy savings that is more credible than existing engineering estimates.

However, it is unclear how even a randomized experiment could satisfactorily address the fundamental
question of how much energy is saved through appliance rebate programs relative to what consumption
would be in the absence of the programs. One way to conduct such an experiment would be through
a RED, in which a randomly selected subset of households is given promotional materials informing
them of the existence of rebates, perhaps even limiting rebate availability to these selected households
(e.g., Fowlie et al., 2018; Hahn and Metcalfe, 2021).

In such an experiment, the question of the counterfactual remains. One could get an unbiased estimate
of the average effect of this randomized information by comparing energy consumption in the households
that did and did not receive the information. However, rebate uptake is likely to be small, because only
about 5% of households in our sample applied for rebates each year during the study period. For a RED,
incremental uptake from randomly distributed information is likely to be a small fraction of this. Thus,
such a study would likely require a very large sample size to achieve a statistically significant estimate of
what would likely be a very small reduction in average electricity consumption across the treated
population. Any attempt to estimate the average treatment effect on the treated, that is, the energy savings
for households that received additional information and applied for an energy efficiency rebate, would
be plagued by the same lack of a clearly defined counterfactual as our quasi-experimental approach.
Researchers would likely not know who in the control population had purchased new appliances, and
even if they did, many of the same selection bias concerns would still be present.

Furthermore, even with perfect evaluation of the short-term direct household-level energy effect of
an energy efficiency intervention, this would not give a complete picture of the net effect on energy
consumption and greenhouse gas emissions. Indirect rebound effects account for potential increases in
energy consumption and greenhouse gas emissions due to both potential increases in overall demand for
an energy service, because it becomes more efficient and often cheaper, and due to the embodied energy
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and emissions associated with the products and services purchased with money saved through improved
efficiency. Estimates of indirect rebound effects vary widely depending on the context. Estimates in the
2000s of indirect energy rebound effects from efficiency programs range from �1 to 123% (Lenzen
and Dey, 2002; Nässén andHolmberg, 2009; Azevedo, 2014). Estimates of indirect rebound effects in the
2010s range from �57 to 40% (Kratena and Wüger, 2010; Azevedo, 2014), with estimates of indirect
greenhouse gas rebound effects ranging from 5 to 17% for electrical efficiency programs (Thomas and
Azevedo, 2013). These studies tend to focus on time periods of at most 35 years, making it difficult to
project effects beyond that time horizon (Azevedo, 2014). However, projection on decadal timescales has
always been prone to large errors, and the importance of gross energy efficiency for greenhouse gas
emission reduction will likely decline over time, because the carbon intensity of energy production
continues to fall (Schivley et al., 2018; Sherwin et al., 2018). Importantly, a sizeable portion of the
literature on indirect rebound effects uses simulation, rather than statistical analysis.

This case illustrates an important principle in the world of big data:When answering a causal question,
having a large amount of apparently relevant data is not enough to guarantee a meaningful estimate
(or even the right sign), as illustrated in Smith (2020). A larger dataset with more detailed demographic
information likely would not have resolved the underlying selection issues in this analysis, even ignoring
indirect rebound effects.We are still convinced that observational causal inference has an important role to
play for some energy efficiency programs and in many other fields, and again, even an RCT likely would
not have resolved the underlying issues in this particular case. However, this story highlights the need for
caution in such analyses. Particularly for domains such as residential energy efficiency, which lie at the
intersection of engineered systems, public policy, and human behavior, we need to very concretely think
through how people respond to economic and policy incentives when deciding what appliances to put in
their households and how to use them. Econometrics is well suited to energy efficiency evaluation in
instances inwhich treatment or encouragement can be successfully randomized (Fowlie et al., 2018; Hahn
and Metcalfe, 2021), or when an efficiency intervention focuses on an energy service such as central air
conditioning that is already present in the home and that a household will not have more than one of
Boomhower and Davis (2020). This paper illustrates the severe limitations of econometric approaches
when evaluating opt-in energy efficiency programs, such as appliance and building efficiency rebates,
which cannot be easily randomized and are subject to numerous selection bias and inframarginality issues
highlighted above.

9. Accept the Uncertainty?

Most climate changemitigation scenarios require large improvements in energy efficiency, with sustained
reductions in the energy intensity of GDP at or above the highest rates ever achieved in the United States
(Loftus et al., 2015). In addition, with increasing levels of variable renewable electricity, the timing
of electricity consumption becomes ever more important for the cost, reliability, and greenhouse gas
emissions and human health impacts of the grid. Thus, measurement of the magnitude and ideally the
timing of energy efficiency savings from specific interventions could help prioritize investment in the
most cost-effective strategies, thus reducing the cost of addressing climate change.

In cases with a clear counterfactual, econometric evaluation may be able to provide such estimates.
In warmer parts of the United States, such as California’s Central Valley, over 90% of households already
have some form of air conditioning (Palmgren et al., 2010). Thus, rebates for more efficient air
conditioners or efficiency improvements (and, for that matter, better insulation) are unlikely to spur
new adoption of air conditioning. Boomhower and Davis (2020) produce what we think is a convincing
(however, not decisively causal) econometric estimate of the hourly savings from an air conditioner repair
program, which happens to align closely with engineering estimates. Such an approach can even capture
region-dependent behavioral aspects of air conditioner use that engineering models would be unable to
quantify, such as unexpectedly high energy savings at night (Boomhower andDavis, 2020). However, for
energy services that may or may not already be present in a home (e.g., clothes washing or drying) or in
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cases in which a household may have two or more of a single appliance (e.g., refrigerators), econometric
evaluation of rebate programs may not yield improvements over engineering estimates.

California utilities have already reduced the breadth of their rebate offerings from their high point
following the 2007–2008 recession, with PG&E now only supporting smart thermostats, high-efficiency
heat pump water heaters, and backup generators for well water pumps (PG&E, 2021). This is partially
because of a renewed focus on market transformation, which includes rebates to retailers, rather than
customers, alongside improved standards and education. This may also be due in part to evidence that a
large number of such rebates are inframarginal, rendering the true cost of these programs relatively high
compared with other energy efficiency programs (Boomhower and Davis, 2014; Houde and Aldy, 2017).

The lofty goal of precisely estimating seasonal and hourly effects of energy efficiency measures to
integrate them directly into electric power resource adequacy planning and renewables integration is
probably not possible for the types of energy efficiency rebates studied here, and the same may well be true
for many other forms of energy efficiencymeasures, particularly those with a strong behavioral component.

Still, appliance energy efficiency rebates remain a tool in energy policy makers’ tool kits. Engineering
estimates suggest that these rebates save energy if they encourage consumers to purchase more efficient
appliances than theywould otherwise. The availability of these rebates, in addition to efficiency codes and
standards, also encourages manufacturers to prioritize energy efficiency improvements, transforming the
market. Unfortunately, all of these effects are difficult to quantify with precision beyond engineering
estimates, perhaps coupled with market-level econometric evaluations of changes in appliance sales
trends (Houde and Aldy, 2017).

In short, rebates for efficient household appliances may have an important role to play in our energy
future, but we likely will not be able to precisely determine how much energy is being saved and when.
Tracking the presence or absence of a less efficient appliance as a requirement for rebate participation, and
requiring recycling in some instances, may assist with econometric evaluation in some cases, as can
surveys of rebate applicants related to confounding factors such as simultaneous building modifications
and changes in household size. However, suchmeasures can only partially address these uncertainties. To
a certain extent, we will have to accept the uncertainty.
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