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DEBLURRING AND DENOISING OF IMAGES WITH
MINIMIZATION OF VARIATION AND NEGATIVE NORMS
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Abstract

A method based on the minimization of variation is presented for the identification of a
completely unknown blur operator. We assume the knowledge of a blurred image and
its original version. The class of blurring operators is identified in the class of compact
operators. A variational method with negative norms is then used for the restoration of
a blurred and noised image. The restoration method works for a wide class of blurring
operators and we do not assume that the blur operator commutes with the Laplacian.

2000 Mathematics subject classification: primary 68U10; secondary 94A08.
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1. Introduction

An image is considered to be a bounded and open set Q. c K2 with Lipschitz contin-
uous boundary. The model of image degradation commonly used in the literature is

f = Ru + n (1.1)

where / , u : Q —*• K are the degraded image and original image respectively, R is a
linear operator, typically representing blur and n is white Gaussian noise with 0 mean
and variance a2. An important problem in image processing is the one of restoring
the original image u from the blurred and noised version / .

Blur can be introduced by an improperly focused lens, relative motion between the
camera and the scene or atmospheric turbulence. The problem of deblurring with a
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known blur operator has been extensively addressed in the literature. See, for example,
[9], [18] and the references therein. In many situations, the blur operator is partially
known or completely unknown. Two approaches have been taken for restoring a
blurred image with an unknown blur operator. In the first approach, restoration and
simultaneous identification of the unknown blur operator is attempted, see for example
[12], [15] and [20]. In the second approach, the identification of the blur operator (or
point spread function PSF) from a blurred image is performed prior to the restoration,
see for example [4], [8], [10], [17] and [19]. Some of these techniques assume a
statistical model of the image, that is, the image is modelled by an autoregressive
process and the blur as a moving average process. More recently, parametric methods
have been used to identify PSF models. In the present case, we will take the second
approach and model the unknown blur by a linear operator.

We employ here the well-known technique of the minimization of a regularized
energy function (see [5]) for the identification of the blur operator as well as the image
restoration. For the identification of the blur operator R we assume the knowledge of
a blurred image f0 and its original unblurred version «0. The identification is done by
minimizing the energy function

E(R)= f \fo-RuQ\2dQ + y trace (/?*/?),

where y > 0 is a weight parameter and the trace(-) functional (see, for example, [7]) is
used in order to introduce a Hilbert space structure on the linear manifold of "blurring
operators" and to force the identification of a compact operator (see Section 2).

Once the blurring operator has been identified, the restoration of the original image
from the noised and blurred one will be carried out. One of the earlier techniques
of image restoration, proposed by Rudin, Osher, and Fatemi [16], involves the mini-
mization of the energy functional

F(u) = J(u) + X [ \(f-Ru)\2dQ.
Jn

Here, J (u) is a regularizing term, k > 0 is a weight parameter and fn\(f - Ru) \2d0,
is a fidelity term. The term J («) is the total variation (in the sense of measures; see
Section 3) of the function u. This model allows for discontinuities along curves and
therefore, edges are better restored. Its drawback, however, is that small details and
oscillating patterns [13] in the image are mostly treated as noise and are thus lost in
the restoration process. In this paper we use the energy functional

G{u) = /(«) + X [ \VA~l(f- Ru)\2dQ,
Jn

where V is the gradient operator and A"1 is the inverse of the Laplacian. This
energy functional was used in [14] to handle images with oscillating patterns. Their
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results show that oscillating patterns are better separated from pure noise using this
functional. We include in this paper a direct proof of the existence and "uniqueness"
of a minimizer without assuming that the operator R commutes with the Laplacian.
In fact, we do not even assume that R is a compact operator as far as image restoration
is concerned, as we shall see in Section 3. .

2. Identification of the blur operator

In this section we discuss the problem of identification of the operator R in (1.1)
assuming the knowledge of an original image «o € L2(fi) and its blurred version
/o = Ru0 € L2(Q). Recovering R from this equation is an ill-posed problem [5]. To
regularize it, we resort to the minimization of an energy functional such as

for some suitable operator norm || • ||*. The operator R is sought in a space H of
compact operators on L2(Q). The induced operator norm on L2(J2) could be used,
however, to ensure recovery of a compact operator, the Hilbert norm is imposed on H.
For a given V e H, the Hilbert norm of V is defined by

for some, and hence all, orthonormal basis {ey}°i, of L2(Q). An operator V e H
with finite Hilbert norm is a Hilbert-Schmidt operator and thus is compact (see [7]).
For ease of notation we will denote L2(S2) by W. The energy functional £ can now
be written as .

The existence of a unique minimizer R is ensured by the strict convexity of the E.
The following lemma checks the continuous embedding of H into -S?(W), the

space of bounded operators on W, as well as the completeness of H.

LEMMA 2.1. We have the following properties:

(1) There isaoO such that \\ V || < c || V || H for all V e H (here \\ • \\ is the induced
operator norm on W).
(2) H is a Hilbert space with respect to the Hilbert norm.
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PROOF. TO show (1), let V e H and let [e^JL, be an orthonormal basis for W
consisting of eigenvectors of V*V with corresponding eigenvalues {Xj}JLv Then

00 00 00

]=\

where V* is the adjoint of V and ra(V*V) is the spectral radius of V*V. We claim
that there is a C > 0 such that -|| V* V || > C||V||2 for all V e H. If not then there is a
sequence {Vn} in H such that ||VJ| = 1 but ||V;Vn|| -* 0. Let {Mn}~=1 beanormone
sequence in W such that || V>,un|| tv > 1/2- Then

\ < IIvnunfw = {v;vnUn, un) < Iv;vn\\ -> o,

which is a contradiction. This proves (1) with c = VC"1 .
To show (2), let {Vn}^! be a Cauchy sequence in the norm || • ||w. By Property (1)

of this lemma, {Vn}^, is also a Cauchy sequence in the original norm of i f (W). Then
Vn -> V and Vis compact. Let {A.,}^, be the eigenvalues of V* V listed in decreasing
order. Since V*Vn -> V*V, for each Xj there is a sequence A.j*") of eigenvalues of
VI Vkn such that kljn) -» Xj as n -> oo. Thus, for any W e N , there is a subsequence
{V;J~ , such that Xfn) ->• A.; as n -> oo, j = 1, 2 , . . . , n. Since (Vn}~ , is bounded
in the norm || • ||H, say by M > 0, £ ~ , X<n) < M for all n. Therefore,

Xj = lim 2_, »] < Hm ^ Xf> < M.

Thus \\VfH = E ~ , Xj <M < oo, that is, V e H. •

Next we turn to the minimization of the energy functional (2.1). The Euler-Lagrange
equation corresponding to (2.1) is

{fo-Ruo, Vuo)w = y{R, V)H W e / / . (2.2)

Define the operator TUo : H -> W by T^ V = Vu0 for all V e H.

LEMMA 2.2. The operator TUo is a bounded linear operator and there i j o c e (0,1)

such that \\uo\\w < \\TUo\\ < c-l\\u0\\w

PROOF. By Lemma 2.1 we have

\\TU0V\\ = \\Vuo\\w < \\V\\ \\uo\\w < c" 1 ||V\\H \\uo\\w.
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Hence || THB || < c~1||«olln'- On the other hand, if we take P e H as the projection onto
the subspace span{M0).

It follows that ||M0IIw< \\TUJ <c- ' | |«olU- •

In light of the above lemma, we can rewrite Equation (2.2) as

which must be satisfied by the minimizer R of the energy E. Since T*TUo is non-
negative, Equation (2.3) is solvable for any positive y. However, taking large values
of y tends to produce minimizers which are not in good agreement with the actual
operator R. On the other hand, if large values of y are allowed, then Equation (2.3)
can be solved by fixed point iterations as the following lemma will show.

LEMMA 2.3. Define the affine operator F : H —>• H by

FV = -K (/o - Vu0) = - C (/„ - TU0V).

\\UQ\\2
W/Y sufficiently small, F is a contraction and therefore the iterations

= FRP

converge to a fixed point of F (the solution of (2.3)J for any choice of the initial

guess R°.

PROOF. Let U, V e H. Then, by Lemmas 2.1 and 2.2

\\FU - FV\\H = - | r ; o ( v « o - uuo)\\w < — \\uo\\
2
w \ \ v - u\\

<C—\\uo\\2
w\W-U\\H.

Therefore, the result follows for sufficiently small ||MOII w/K- d

2.1. The discretized problem Let {Vn}™=i be a complete set in H. That is, the set
of finite linear combinations of the elements in {Vn}^, is dense in H. Let Hn be the
subspace of H given by

/ / n =span{V, , V2 Vn]

and let Pn be the orthogonal projection of H onto Hn with respect to the norm || • ||w.

Observe that IJ^li Hn is dense in H.
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LEMMA 2.4. The sequence {Pn }™=, converges strongly to the identity operator on H.
In other words, for every V 6 H, Pn V -> V as n -»• oo.

PROOF. Let V e H and let e > 0 be given. Since [JJjI, Hn is dense in H, there is
an n0 and a V e //„„ such that || V - V\\H < e. Now, forn > n0, since PnV is the
orthogonal projection of V in Hn and since Hnu c //„, we have

|| V _ PnV\\H < IV - V\\ VVe / / n .

In particular,

|| V _ PnV\\H < II V - V\\ < e. •

Consider the discretized problem: Find Rn e Hn such that

(SRn, V) —(T*fo,V) VV G //„, (2.4)
where

S = {YI + KT»o) >
or the fixed point version of it: Find Rn e Hn such that

{FRn,V)H={RHtV)H VVeHn, (2.5)

with F defined as in Lemma 2.3. The operator equivalent of either (2.4) or (2.5) is

¥PnT*TjRn = PJ*U. (2.6)

It is easy to see that this "matrix equation" is solvable for each y > 0 and, for
sufficiently large y, independent of n, the fixed point formulation (2.6) converges for
any choice of the initial guess /?°. We will proceed now to show that the sequence of
solutions {Rn}™=\ of (2.6) converges strongly to the solution of (2.3). For this purpose,
it suffices to show that the operators

Sn:=PnSPn, n = 1,2, . . . ' (2.7)

converge to the operator 5 in the discrete-stable sense (see [3]).

LEMMA 2.5. The operators Sn defined by (2.7) converge to S in the discrete-stable
sense.

PROOF. TO show this we have to establish two things: (1) Sn -> S strongly, and
(2) \\Sn V\\H > M \\V\\H for all n sufficiently large and all V e Hn. To establish-(1),
let V e H. Since Pn converges strongly to I, PnV -*• V. Since 5 is continuous,
SPnV^SV. Now

\\SnV - SV\\H = \\PnSPnV - SV\\H < \\PnSPnV - PnSV\\H + \\PnSV - SV\\H

<\\Pn\\\\SPnV-SV\\H + \\PnSV-SV\\H

= \\SPnV-SV\\H + \\PnSV-SV\\H
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and the right-hand side goes to zero as n goes to oo. To establish (2), let V e Hn.
Then

2 2 2

Therefore, (2) follows with M := y independent of n. D

COROLLARY 2.6. The solutions /?„, n = 1 ,2 , . . . of either (2.4) or (2.5) converge
to the solution R of (2.3) in the strong sense.

PROOF. See [3]. D

In summary, we have shown that, for a fixed, sufficiently large n, the solution /?„
of either (2.4) or (2.5) is a good approximation of the solution R of (2.3) which can
be obtained by solving (2.4) or by fixed-point iteration. In the numerical experiments
of Section 4 we used a Krylov Conjugate Gradient method (see [11]) to obtain a
"approximate" solution of Equation (2.4).

3. The restoration problem

Before considering the problem of restoration of an image from its blurred and
noised version, we need some preliminary results and notation. Denote the norm in
//~'(£2) by || • ||_i. Here //~'(£2) is aHilbert space with the inner product defined by

(L,M) = (VA" 'L , ' )

The underlying space of images is taken to be the space B V (Q) of functions of bounded
variation in the sense of measure. It is shown in [1] that BV(Q) can be identified
with those functions u e L](Q) such that u has a weak gradient, denoted Du, which
extends to a continuous linear functional on CO(£2)2. If u € Wlil(£l) then Du = Vw.
It is known that B V(£2) is compactly embedded in Z.1 (f2) and continuously embedded
in L2(Q). On B V(Q) we define the functional

J (u) = / \Du\dQ,

that is, the total variation of u e B V(Q). The problem of image restoration can be
stated as

Minimize J(u) (3.1)

subject to

j RudSl = j fdQ, ||KK-/||2_, <a2

overall u e BV(Q) such that Ru e H~\Si).
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It will be shown below that the above minimization problem is equivalent to

Minimize E(u) := J(u) + - \\Ru - /||2_,. (3.2)

Proposition 3.1 and its corollary generalize the results in [2] where the L2(ft) norm
was used. The function J can be regarded as a convex and lower semicontinuous
function on L2(ft), (J(u) = +oo if u $ 5 V(ft)).

The following assumptions are made:

Al. R : //"'(ft) -> //"'(ft) is a continuous linear operator.

A2. R\ = 1.

A3. | | / - / / | |_, > a. See the discussion in [2].

REMARK. Observe that Al is satisfied, for example if R : L2(ft) -»• L2(ft) is a
bounded linear operator since L2(ft) is densely and compactly embedded in / /" ' (ft).
The (continuous) adjoint operator R* is understood as a map from / /" ' (ft) into itself.

PROPOSITION 3.1. Suppose f e /?(BV(ft)). If u € R(BV(Q)) is a solution of
(3.1) then there exists a X > 0 such that

-kR*(Ru- f)edJ(u).

Here 3 J (u) c H~l (ft) is the subdifferential ofJatu.

PROOF. Set

G(u) =

where ~B{f, a) is the closed ball in //"'(ft) centred at / with radius a. Problem (3.1)
is equivalent to

min7(u) + G (/?«). (3.3)

It can be shown (see [2] or [6]) that, under the assumption / e R(B V{Q)),

d(J + GoR)(u) = 37 («) + d(GoR) («) and

3 (G o R) (M) = R*dG (Ru)

with 3G(M) = {0} if M e B(f, a) and, for u 6 dB(f, a),

3G (M) = [\& (M - / ) : A. > 0}, ,

where & : //"'(ft) -> (//"'(ft))* is the duality mapping defined by

«) = j z 6 ( / / " ' ( f t ) ) * : | | z | | ( l f - . ( Q ) ) - = l l « l l - , , (u, z) = Iliilli, j .
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Such a mapping exists by the the Hahn-Banach Theorem (see [21]). Observe that
= M if (H-X(fl)y is identified with #-'(£2) itself or &(u) = A~xu if

)* is identified with //O'(J2). In our case &(u) = u. Thus

d(J + GoR)(u) = dJ (u) + R*dG (Ru).

If « is a solution of (3.3) then 0 g d(J + G o /?)(«). Since any solution of (3.1)
satisfies \\Ru — / | |_i = a (a slight modification of the argument in [2] p. 170), this
shows that there exists a X. > 0 such that

OedJ(u) + kR*(Ru- / ) . •

COROLLARY 3.2. The minimization problem (3.1) is equivalent to the minimization
problem (3.2) for all k>0.

PROOF. By Proposition 3.1, a minimizer u of (3.1) satisfies

- f).

Therefore, w minimizes (3.2). On the other hand, a minimizer u of (3.2) also minimizes
(3.1) with || Au - /| |_i = a (see [2] p. 170). •

We show next that problem (3.1) has a "unique" minimizer. Our proof is partly
motivated by the argument in [14] p. 354.

THEOREM 3.3. Assume that f e R(BV(Sl)). Then (3.1) has a solution u e flV(fi)
and Ru € H~\Q) is unique.

PROOF. Let {«„} be a minimizing sequence for (3.1) satisfying the constraints.
Then J(un) < M. From the generalized Poincare inequality (see [22], Lemma 4.1.3)

fa < CJ («„).

Since / Run = / / ,

un — < M.
L'(fi)

We conclude that {«„} is bounded in L'(fi) and, consequently, in L2{Q). Thus {«„} is
#^(£2) bounded. Since BV(Q) is compactly embedded in L'(J2), (a subsequence)
un ->• M in L'(J2) and

•/(««) 5 Hminf J(un).
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RundQ. = / RudQ.

[10]

/ fdQ. = [ Rundn = f
Jn Jn Jn

On the other hand, since B V(Q) is continuously embedded in L2(Q), (a subsequence)
un —»• u in L2(Q). By the continuity and linearity of R we have Run -^ Ruin / / " ' ( ^ ) -
Therefore,

\\f-Ru\\_t < liminf | | / - /?«n||_, <a.

Hence, u is a solution of (3.1). It can also be shown that u satisfies \\Ru — / | | i , = a1

(see [2] p. 170).
To show uniqueness, assume that u and v are solutions of (3.1), then

and

Jn l Jn

^ 2 {J{u)

f i a .

= m i n J

RU-^-f
- l

Hence, (u + v)/2 is a solution of (3.1). Consequently,

**-¥•-1

By the strict convexity of || • \\2_l we conclude that Ru = Rv. D

Following [14], the formal computation of the Euler-Lagrange equation for (3.2)
yields

' R*(Ru-f), (3.4)

(3.5)

where du/dn is the outward normal derivative of u and, for v e R2,

To see how the derivative of || Ru — / | | i , is computed, we proceed as follows. Let

K(u) = \\Ru-f\\2,.
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Then, for h e Co°°(£2),

K(u + th) = \\Ru- /Hi, + It (Ru - / , Rh) + t2 l

Therefore,

^-K (u + th)u=0 =2(Ru- f, Rh) = 2 (R* (Ru -f),h)
at

= 2 ( V A " ' / ? ' (Ru - / ) , V A - ' / i ) = - 2 { A ~ l R * (Ru - f ) , h ) .

This gives the right-hand side of (3.4).
Equation (3.4) is solved by driving to steady state

\Du\ 8u8u
= 0, —

dn
= 0 ,

u (0) = / .

(3.6)

To justify this procedure, we show that the energy E(u) in (3.2) decreases with time.
The PDE (3.6) can be written as

u, = -£ ' (« ) .

Now,

£ : BV(Sl)^> R =» £'(w) e (fiV(fi))'C #" ' ( f t ) Vw € BV

Thus, considering u, e //~'(£2), we have

4. Numerical Experiments

Experiment results with simulated blurred and noised images are described in this
section. The fixed-point iteration technique described in Sections 2 and 3 was used
for estimating the unknown parameters of the blur operator R. Since the technique
is globally convergent, we started with an initial guess of R = 0. We also assumed
the a priori knowledge of a source image to compute the blur operator. The blur
operator or PSF representation of the blurring operator R was assumed to have a
support region of 30 x 11 pixels. The image in Figure l(b) was obtained by adding
Gaussian noise with zero mean and variance of 0.01. Figure l(c) shows the noisy-
blurred picture. Restoration was done using the technique described in Section 3. The
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FIGURE 1. (a) Original picture, (b) Picture with added noise of mean zero and variance 0.01, (c) Blurred
picture with added noise, (d) Restored picture.

initial estimation was selected to be the blurred image. The calculation was terminated
when the difference between two consecutive iterations was less than 1.0E-4.

The restored image is shown in Figure l(d) and for comparison the original image
is included in Figure l(a). A general observation with this approach is that increased
sharpness in the restored image is traded with noise amplification. As shown in
Figure l(d), the technique enhances the quality of the picture by reducing the noise
and removing the effect of the blur while preserving the texture of the image. This
simulation case confirms the effectiveness of the technique in removing the blurring
effect and reducing the noise.

The value of the weighting factor A. was traded between noise reduction and the
sharpness of the picture. The value of A. that gives a good visual picture varies from
one picture to another. For this particular case, the picture shown was obtained for
A. = 200. See [14] for more discussion on the choice of A..

Before performing the calculations, the values of the pixels of the pictures were
normalized to the interval [0,1]. This is why a large value weighting factor A. was used.

The technique was also tested for various type of images. The simulation results
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shown in Figure 2 are for a coloured image and in Figure 3 are fingerprints.

(c) (d)

FIGURE 2. (a) Original picture, (b) Picture with added noise of mean zero and variance 0.01, (c) Blurred
picture with added noise, (d) Restored picture.
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(a)

FIGURE 3. (a) Original picture, (b) Picture with added noise of mean zero and variance 0.01, (c) Blurred
picture with added noise, (d) Restored picture.
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