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THE MOMENT SPACES OF NORMED LINEAR SPACES

Fowzi AHMAD SEJEENI AND MATOOQ AHMAD BADRI

For a linearly independent sequence in a normed linear space the moment space
is defined. Basic properties of moment spaces are discussed as well as a necessary
and sufficient condition for the moment space to be a closed subspace of l°°.

1. INTRODUCTION

There is a whole variety of classical problems of moments, variously known as the
Hausdorff moment problem (the little moment problem) and the Hamburger moment
problem (see [1, p.349] and [3, p.197]). The last one can be stated as follows. Let /x
be a positive Borel measure on R such that J \t\n dn(t) = an < oo for n ^ 1. The
sequence {an} is called the moment sequence of /i. The moment problem here is to
characterise those sequences of numbers that are moment sequences.

In this paper, we define moment spaces in the more general setting of normed linear
spaces and study their basic properties.

First, we establish our notations and definitions.
For a normed linear space E we shall denote by E* its dual, the space of all

bounded linear functional on E. For a sequence {xn} in E we shall denote by [xn]
the closed linear span of {xn}; that is, [xn] = span{xn}- The sequence {xn} is
called fundamental if [xn] — E. A sequence {xn} in a Banach space E is called a
(Schauder) basis if, for any x G E, there exists a unique sequence {an} of scalars such

oo

that X = S a»>Xn • The sequence {Xn} is a basic sequence in E if {Xn} is a basis
n=l

for [xn] • Let {xn} be a basis for a Banach space E and let fn:E—*C be defined by

/n ( £ °*X* J = o» far n = 1, 2, 3, . . . . Then each fn e E* and {/n}~=1 is called the
sequence of coefficient functionals associated with the basis {xn} (see [2], p.32). For
normed linear spaces E and Y, f: E —> Y is a linear isomorphism if / is a vector-space
isomorphism and a homeomorphism onto Y. As usual t°° is the Banach space of all
bounded complex sequences a = {a™} with \\a\\gg = sup|an|, c denotes the space of

n

all convergent sequences with |[" lloo» an(^ co = {{°n} : lim an — 0}. Note that c and
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Co are closed subspaces of l°°. For 1 ^ p < oo, I™ denotes the space of all sequences
oo

{an} such that 53 l°n|P < °° with the norm ||• Moo> a nd lP denotes the same space
n=l

/ oo \ J / P

with the usual norm ||o|| = I £) I0"!* I • We say that the sequences {xn} in E
\n=l /

and {yn} m Y are equivalent if there exists a linear isomorphism T of E onto Y such
that Txn = yn for all n.

Now, we are ready to define moment spaces.
DEFINITION 1.1: Let E be a normed linear space and {xn} a linearly independent

sequence in E. We define M(E, {xn}) (the moment space of E with respect to {xn})
by M(E, {xn}) = {{/(Xn)}~=1 :feE*}. Each element of M(E, {Xn}) is called a
moment sequence.

Clearly, M(E, {xn}) is a non-trivial vector space. Suppose {Xn}JJLi is bounded;
that is, sup||xn|| < oo. Let a = {an} G M(E, {xn}) and / G E* be such that

n

/(Xn) = o«. Then sup\an\ = sup|/(x«)| < (sup||xn|| ) ||/|| < oo. Thus a G £°° and
n n \ n /

hence if {x»»} is bounded, we will regard M(E, {Xn}) as a subspace of £°°.
In the next section, we start by showing that M(E, {Xn}) is a continuous linear

image of E* (Theorem 2.1). In Theorem 2.3, we prove a simple but useful fact that
M(E, {Xn}) = A (̂[Xn]> {Xn})- We then compute some moment spaces. In Theorem
2.6, we study the relation between equivalent sequences of Banach spaces and their
moment spaces. In Theorem 2.8, we prove the following: Let E be a Banach space
with a bounded basis {x»»} and let {/n} be the associated sequence of coefficient

oo

functional, then M(E, {Xn}) is closed in £°° if and only if £ l/n(x)l < °° f°r e a c ^
n=l

X € E. The last two theorems present diiferent sets of conditions that ensure that the
moment spaces are CQ , l\, or l°°.

2. RESULTS

THEOREM 2 . 1 . Let E be a normed linear space and {xn} a bounded linearly
independent sequence in E. Define T: E* -» t°° by T(/)(n) = /(xn) for all n; then
F is a continuous linear map onto M(E, {Xn}) •

PROOF: Let f,geE* and a G C. Then T(af + g)(n) = (af + g)(x*.) =
«/(Xn) + </(Xn) = aT{f)(n)+T{g)(n). Also for / G E* we have | | r(/) | | = sup|/(x«)| <

n

(supn ||xn||) H/ll • Hence F is a continuous linear map onto M(E, {xn})- D

COROLLARY 2 . 2 . Assume the hypothesis of Theorem 2.1. If {x«} is funda-
mental, then T is an injection.
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PROOF: Let / G Ker T, then T( / ) (n) = / ( x n ) = 0 for all n G N. Hence, we
have f(x) = 0 for each x^E; that is / = 0. D

Before proceeding further, we prove a simple but useful result.

THEOREM 2 . 3 . Let E be a normedlinear space and {xn} a linearly independent
sequence in E. Then M(E, {Xn}) = M([Xn], {Xn})-

PROOF: Let a e M(E, {Xn}) and / G E* be such that /(x«) = <*n- But then
/ |[Xn]G [Xn]*i implies that a G M([xn], {Xn})- The converse follows by the Hahn-
Banach extension theorem. D

REMARK. It follows from the last theorem that, in order to study M(E, {xn})> we
may assume that {xn} is fundamental.

DEFINITION 2.4: A squence {xn} in normed linear space is called regular if it is
bounded, linearly independent and fundamental. Note that a bounded basis is always
regular.

Let en = {6nk}tLi f°r n = 1, 2, 3, It is known that {en} is a regular basis
for Co and for £p (1 ^ p < oo).

P R O P O S I T I O N 2 . 5 . We have

(a)
(b)
(c) M(i°°, {en}) = M(c, {en}) = £<?;
(d) Af(/p, {e»})= /~ ,

(where 1 < p < oo and q its conjugate exponent).

PROOF: (a) From Riesz representation theorem we have c% = t\. Now apply
Corollary 2.2 to get M(c0, {en}) = If (since {en} is regular).

(b) Similar.
(c) Since c0 is a closed subspace of £°° and of c and [en] = c0, we have

M{1°°, {en}) = M(c, {en}) = M(c0, {en}) = if, by Theorem 2.3.
(d) Similar to part (a). 0

The following theorem links up the moment spaces with the equivalence of se-
quences in Banach spaces.

THEOREM 2 . 6 . Let E and Y be Banach spaces and {xn}, {yn} regular se-
quences in E, Y respectively. If the two sequences are equivalent, then M(E, {xn}) —
M(Y, {yn})- Conversely, if M is a closed subspace of l°° and M(E, {xn}) =
M(Y, {yn}) - M then {x™}, {yn} are equivalent.

PROOF: Suppose T: E —> Y is an isomorphism such that T(x»») = Vn for all n .
Let o = {an} G M(Y, {yn}) and g G Y* such that g(yn) = on. Then g o T G E*
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and (goT)(Xn) = an, for all n . Hence, o G M(E, {x«}) and so M(Y, {yn}) C
M(E, {Xn}) • The reverse inclusion follows similarly.

Conversely, let F i : E* —> M, and Fa : Y* —» M be the linear isomorphisms that
follow from Corollary 2.2 and the fact that M is closed. Let T = (Ff1 o F2)* (where
* denotes the Banach space adjoint). Then T is a linear isomorphism of E** onto
Y**. We will show that T restricted to £ is a linear isomorphism of E onto Y with
T(xn) = Vn i n G N (where E, Y are regarded as closed subspaces of their second duals
via the canonical embeddings). Now, T(Xn) = ( r ; o ( i ^ 1 ) * ) * , = T^XnoFf 1 ) =
(Xn o F r 1 o F2) . Hence, for all g G Y*,

= (Xn o Ff1 o F2)(5) = (Xn 0 r r

= (x- o rr1){/(x0}~=i = x»(/) = /(x«) =

for some / G £* (since M(£ , {Xn}) = M{Y, {yn})). Thus T(xn)(ff) = Vn(fl) for all
5 G 3 " ; that is, T(xn) = yn- Next, T is linear, so T(span{xn}) = span{yn} and
T([xn]) = T(span{xn}) (since T is a homeomorphism). Hence, T(E) = T([xn]) =
r(span{xn}) = span{j/n} = Y. D

The closeness assumption in Theorem 2.6 is essential as we can see in the following:
Let E = e°°, Y = c; then M(£°°, {en}) = M(c, {en}) = £J° while {en} in £ is not
equivalent to {en} in Y.

The next important and known result will be used in the sequel.

THEOREM 2 . 7 . (See [2, p.44]). The following statements (regarding a formal

series Yl zk m a Banach space E) are equivalent:

*=i

(0 £ \f(zk)\ < oo for all f e E*;

(ii) tnere is a constant K > 0 such that for each aGf™,

sup

(iii) for any c G c0, £ c*'2* converges

THEOREM 2 . 8 . Let E be a Banach space, {Xn} a bounded basis for E and {/„}
the associated sequence of coefficient functionals. Then the following are equivalent:

(0 E l/n(x)l <oo for each X € S ;

( i i ) M ( E , { x n } ) is a closed subspace of l ° ° (in the H H ^ n o r m ) .
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PROOF: (i) implies (ii):
Let {om}~=i be a sequence in M(E, {Xn}) converging to o in £°° (where om =
} ^ and o = {an}??=1) and {gm} the corresponding element of E* such that

«>n-For X = E /n(x)Xn define f(X) = £ «»/n(x)- The series £
n=l n=l n=l

oo oo
verges absolutely (since £ «n |/n(x)l < IMIoo Z) l/n(x)l < oo). Hence / is a linear

n=l n=l
functional on E and /(Xn) = a-n for all n. Also for all x £ B , we have

n = l

Thus by Banach-Steinhaus theorem, / G E*, and then a 6 M(E, {x™})-
(ii) implies (i): The operator T: E* —» M(E, {Xn}) i defined in Theorem 2.1 is a lin-

ear isomorphism, so by the inverse mapping theorem there exists a constant K > 0 such

that Il/H ^ K | | r(/) |L. For a = {an} € £°°, we have
4=1

n
J b = l

>i Oi ••Olloo ^ •^llalloo- Hence, sup J2 akfk ^ -^llalloo' anc^ t n e

n fc=l

conclusion follows by Theorem 2.7. U

COROLLARY 2 . 9 . Let E and Y be Banach spaces. If {xn} and {yn} are
equivalent basic sequences in E and Y respectively and {/„}, their respective

oo o o

coefficient functionals, then £ |/*(x)l < °° f°T all x £ E if and only if £ |<7fc(l/)| < oo
fc=i fc=i

for all ye Y.
PROOF: Combine Theorem 2.6 with Theorem 2.8. D

PROPOSITION 2 . 1 0 . Let E denote any of the following Banach spaces Co, c,
or lp (1 ^ p ^ oo) and let {en} be the standard unit vector basis. Then M(E, {en})
is closed in £°° if and only H E = t\.

PROOF: First, if E denotes c0, c or <M, then M{E, {en}) = if, which is not
oo

closed in £°°. Next, if E denotes £p (1 ^ p < oo), then £ |/i(x)l < °° f° r e a c ^
t=i

oo

X = £ /*(x)e* 6 E (where {/*} is the associated sequence of coefficient functionals)
if and only if E = l\. Hence, M(E, {em}) is closed in £°° if and only if E = £i
(Theorem 2.8). D
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THEOREM 2 . 1 1 . Let E be a Banach space, {Xn} a bounded basis for E and
{/„} t ie associated sequence of coefficient functionals. If {/„} is a basis for E* and

E W/»)l < oo for ah <t> £ E**, then

(i) M(E,{Xn}) = c0;
(ii) M(E;{fn}) = e?.

PROOF: (i) Let o £ M(E, {Xn}) and / £ E* be such that /(xn) = an
OO

for all n. Write / = E dn/n (since {/„} is a basis for E*). Then /(xfc) =
n=l

E <*«/«(X") = <** for all k. Now by Theorem 2.7 we have |o»| | |/n| | = ||/(Xn)/»|| =
n=l

E/(x*) /* - n E/ (x t ) / J | -• 0. Also, inf||/n|| > 0 (since 1 = |/»(x»)| <
J b = l k=\ || " n

| | /n| | llXnll), so an -> 0; that is, a <E c0.
OO

Conversely, let c e c0; the series E c»»/n converges in E* by Theorem 2.7 (since
n=l

E l^(/»)l < oo for all ^ £ JB"). Write / = £ <=»/«; then /(X*) = E cn/n(x*) =
n = l n= l k=l

ck. Thus c
(ii) First, observe that the hypothesis above implies that {/„} is bounded. Now,

let a e M(E*, {/„}) and <f> £ E" be such that <j>(fn) = an. To show o £ if, it
OO

suffices to show E &*°* converges for all 6 £ c0. For, let b £ c0 ; then by Theorem 2.7,

OO / OO \ OO OO

E **/* converges to an element of E*. Now ^1 E bkfk I = E bk<f>{fk) = E
t=i \*=i / *=i *=i

OO

so that E ^kO-k converges.
k=\

For the other inclusion, let o £ If. Define <f>: E* -» C by (£(/) = E a * / (x t ) -

Now, |^(/)| < gjaiM/UOl < (supUxnll^EJ^l) 11/11 = («up||x»||) Hi! 11/11;
hence <f> £ E", and ^(/n) = an. Thus o £ M(E\ {/„}). D

THEOREM 2 . 1 2 . Let E be a BanacJi space, {xn} a bounded basis for E and
{/„} t ie associated sequence of coefficient functionals. If there exists a constant M > 0

suci t ia t E I/*(X)I < M Hxll, for all X e E, then M(E, {Xn}) = l°° •
k=l

PROOF: Let o £ i°°. Define / (X) = £ «n/n(x); then / £ JT*. Indeed ||/||
n=l

M (Hl^. Also /(xn) = an for all n. Hence, a £ M(£, {*„}).

https://doi.org/10.1017/S0004972700030148 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030148


[7] The moment spaces 283

R E F E R E N C E S

[1] J.B. Conway, A course in functional analysis (Springer-Verlag, Berlin, Heidelberg, New
York, 1985).

[2] J. Diestel, Sequences and series in Banach spaces (Springer-Verlag, Berlin, Heidelberg,

New York, 1984).

[3] L.V. Kantorovich and G.P. Akilov, Functional analysis: second edition, translated by H.L.
Silcock (Pergamon Press, New York, 1982).

Department of Mathematical Sciences
Umm Al Qura University
PO Box 3711
Makkah
Saudi Arabia

https://doi.org/10.1017/S0004972700030148 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030148

