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Abstract

It is shown that if G is a finite p-group of coclass 2 with p > 2, then G has a noninner automorphism of
order p.
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1. Introduction

Let G be a finite nonabelian p-group. A longstanding conjecture asserts that G
possesses at least one noninner automorphism of order p (see [13, Problem 4.13]).
This is a sharpened version of a celebrated theorem of Gaschütz [9] which states
that finite nonabelian p-groups have noninner automorphisms of p-power order. By
a result of Deaconescu and Silberberg [7], if a p-group G satisfies CG(Z(Φ(G))) ,
Φ(G), then G admits a noninner automorphism of order p leaving Φ(G) elementwise
fixed. However, the conjecture is still open. Various attempts have been made
to find noninner automorphisms of order p in some classes of finite p-groups (see
[2, 6, 7, 10, 16, 17]). In particular, the conjecture has been proved for finite p-groups
of class 2, class 3 and of maximal class (see [1, 3, 12] and [17, Corollary 2.7]). In
this paper, in light of the importance of classifying p-groups by coclass, we restrict
our attention to p-groups with a certain coclass. The notion of coclass was introduced
by Leedham-Green and Newman [11] and other authors have since investigated this
topic (see for example [8, 14, 15]). In this paper we show the validity of the conjecture
when G is a finite p-group of coclass 2 with p > 2 (see Theorem 2.5). Note that the
nilpotency coclass of a p-group of order pn is n − c, where c is the nilpotency class
of G.

Throughout this paper the following notation is used. Let N be a normal subgroup
of a group G. Then AutN(G) denotes the group of all automorphisms of G normalising
N and centralising G/N, and AutN(G) denotes the group of all automorphisms of G
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centralising N. Moreover AutN
N(G) = AutN(G) ∩ AutN(G). All central automorphisms

of G are denoted by Autc(G). The terms of the upper central series of G are denoted
by Zi(G); note that Z1(G) = Z(G). Also, the terms of the lower central series of G
are denoted by Γi(G). The group of all derivations from G/N to Z(N) is denoted by
Z1(G/N, Z(N)), where G/N acts on Z(N) as aNg = ag for all a ∈ Z(N) and g ∈ G. We
use the notation x ≡ y (mod H) to indicate that Hx = Hy, where H is a subgroup of
a group G and x, y ∈ G. The minimal number of generators of G is denoted by d(G)
and Cn is the cyclic group of order n. All unexplained notation is standard. Also a
nonabelian group G that has no nontrivial abelian direct factor is said to be purely
nonabelian.

2. The main result
In this section, we prove that if G is a p-group of order pn (p > 2) and coclass 2,

then G has a noninner automorphism of order p. To prove this, we find two noncentral
automorphisms of order p and we show that one of these automorphisms is noninner.
Moreover, to define these automorphisms we use derivations. First we may assume
that n ≥ 7 by [6] for p > 3, and for p = 3 by using GAP [18] we see that all groups of
order 3m for m < 7 have a noninner automorphism of order 3. Moreover, we have the
following upper central series for G since G is of coclass 2:

1 < Z1(G) < Z2(G) < · · · < Zn−3(G) < G,
which indicates that pn−3 ≤ |Zn−3(G)| ≤ pn−2, p ≤ |Z(G)| ≤ p2 and p2 ≤ |Z2(G)| ≤ p3.
We note that CG(Z(Φ(G))) = Φ(G) by [7]. Now by [17, Theorem (2)], if Z2(G)/Z(G)
is cyclic, then G has a noninner automorphism of order p. Therefore, we may assume
that |Z(G)| = p, |Z2(G)| = p3 and Z2(G)/Z(G) � Cp × Cp. Also by [17, Theorem (3)],
we deduce that Z2(G) ≤ Z(Φ(G)) and d(G) = 2 since in other cases G has a noninner
automorphism of order p. Now by the above observation we state the following lemma
and we use the assumption and notation of it throughout the paper.

Lemma 2.1. Assume that G is a group of order pn (n ≥ 7, p > 2) and coclass 2 with
|Z(G)| = p, Z2(G)/Z(G) � Cp ×Cp, Z2(G) ≤ Z(Φ(G)) and d(G) = 2. Then:

(i) G is purely nonabelian;
(ii) |Zi(G)| = pi+1 for 2 ≤ i ≤ n − 3 and Zn−3(G) = Φ(G);
(iii) exp(G/Zn−4(G)) = p;
(iv) |Autc(G)| = p2 and Autc(G) ≤ Inn(G);
(v) there exists a normal subgroup N of G such that N < Z2(G), N � Cp × Cp and

CG(N) is a maximal subgroup of G.

Proof. (i) and (ii) are obvious.
(iii) We set G1 = G/Z2(G) and G2 = G1/Γ4(G1). Then G1 and G2 are both of

maximal class having orders pn−3 and p4, respectively. Since p + 1 ≥ 4 it follows that
exp(G2/Γ3(G2)) = p by [5, Theorem 3.2]. However, since Γ3(G2) = Γ3(G1)/Γ4(G1),

G2/Γ3(G2) � G1/Γ3(G1) = (G/Z2(G))/(Zn−4(G)/Z2(G)),
completing the proof.

https://doi.org/10.1017/S0004972714000331 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000331


234 S. Fouladi and R. Orfi [3]

(iv) This follows from (i), [4, Theorem 1] and the fact that Autc(G) ∩ Inn(G) =

Z(Inn(G)).
(v) We see that Z2(G) is a noncyclic abelian group of order p3. If Z2(G) � Cp ×Cp ×

Cp then we may choose N such that N/Z(G) is a subgroup of order p in Z2(G)/Z(G) and
we set N = Ω1(Z2(G)) if Z2(G) � C2

p × Cp. Moreover, G/CG(N) ↪→ GL(2, p), which
completes the proof. �

Lemma 2.2. Assume the same hypotheses as in Lemma 2.1. If b ∈ G \ CG(N), a ∈
CG(N) \ Φ(G) and w ∈ N \ Z(G), then:

(i) G = 〈a, b〉;
(ii) [ar, bs] ≡ [a, b]rs (mod Zn−4(G)), where r and s are integers;
(iii) the map α defined by α(N f a jbi) = wi[w, b]i(i−1)/2 is a derivation from G/N to N,

where f ∈ Φ(G) and i, j ∈ Z;
(iv) the map β defined by β(Nx[a, b]ta jbi) = w j[w, b]i j+t is a derivation from G/N to

N, where x ∈ Zn−4(G) and i, j, t ∈ Z.

Proof. (i) This is clear.
(ii) First assume that r and s are positive. By using induction on r we

see that [ar, b] ≡ [a, b]r (mod Zn−4(G)) since [ar+1, b] = [ar, [a, b]−1][a, b][ar, b] and
[ar, [a, b]−1] ∈ Zn−4(G). Hence, using induction on s, [ar, bs] ≡ [a, b]rs (mod Zn−4(G)).
The rest follows from [a−r, b−s] = [b−sa−r, [ar, bs]−1][ar, bs].

(iii) Since |G/CG(N)| = |CG(N)/Φ(G)| = p, any element of G can be written as
f a jbi, where f ∈ Φ(G) and i, j ∈ Z. First we prove that α is well defined. To see
this, let g1 = f1a j1 bi1 and g2 = f2a j2 bi2 . If Ng1 = Ng2, then CG(N)g1 = CG(N)g2

and so bi2−i1 ∈ CG(N) which implies that i2 = i1 + kp for some k ∈ Z. Therefore,
α(Ng2) = α(Ng1) since |w| = |[w,b]| = p and p is odd. Now we have α(Ng1)g2α(Ng2) =

(wi1 )bi2 wi2 [w, b]i1(i1−1)+i2(i2−1)/2 and (wi1 )bi2
= wi1 [w, b]i1i2 since f2a j2 ∈ CG(N) and

[w, b] ∈ Z(G). Hence α(Ng1)g2α(Ng2) = wi1+i2 [w, b](i1+i2−1)(i1+i2)/2. Moreover, g1g2 ≡

a j1+ j2 bi1+i2 (mod Φ(G)) which completes the proof.
(iv) Since |Φ(G)/Zn−4(G)| = p and [a, b] ∈ Φ(G) \ Zn−4(G), any element of G

can be expressed as x[a, b]ta jbi, where x ∈ Zn−4(G) and i, j, t ∈ Z. First we prove
that β is well defined. To see this let g1 = x1[a, b]t1 a j1 bi1 and g2 = x2[a, b]t2 a j2 bi2 .
If Ng1 = Ng2, then bi2−i1 ∈ CG(N) and so i2 = i1 + kp for some k ∈ Z. This
implies that j2 = j1 + `p for some ` ∈ Z since Φ(G)g1 = Φ(G)g2. Therefore, we
see that t2 = t1 + up for some u ∈ Z by the fact that Zn−4(G)g1 = Zn−4(G)g2 and
Lemma 2.1(iii), which states that exp(G/Zn−4(G)) = p. Hence β is well defined. Now
we have β(Ng1)g2β(Ng2) = w j1+ j2 [w, b]i1 j1+t1+i2 j2+t2+ j1i2 since x2[a, b]t2 a j2 ∈ CG(N) and
[w, b] ∈ Z(G). Moreover, Z(G/Zn−4(G)) = Φ(G)/Zn−4(G) by Lemma 2.1(ii), which
yields that g1g2 ≡ [a, b]t1+t2 a j1 bi1 a j2 bi2 (mod Zn−4(G)). Furthermore, a j1 bi1 a j2 bi2 =

a j1+ j2 [a j2 , b−i1 ]bi1+i2 . Therefore, g1g2 ≡ [a, b]t1+t2−i1 j2 a j1+ j2 bi1+i2 (mod Zn−4(G)) by (ii).
Consequently, β(Ng1Ng2) = β(Ng1)g2β(Ng2). �

We use the following theorem to complete the proof of Theorem 2.5.
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Theorem 2.3. Suppose that N is a normal subgroup of a group G. Then there is a
natural isomorphism ϕ : Z1(G/N,Z(N))→ AutN

N(G) given by gϕ(γ) = gγ(Ng) for g ∈ G
and γ ∈ Z1(G/N,Z(N)).

Proof. See for example [16, Result 1.1]. �

Corollary 2.4. With the assumptions of Lemma 2.2, the maps α∗ and β∗ defined by
aα
∗

= a, bα
∗

= bw and aβ
∗

= aw, bβ
∗

= b are noncentral automorphisms of order p
lying in AutN

N(G).

Proof. This is obvious by Lemma 2.2 and Theorem 2.3. �

Now we give our main theorem.

Theorem 2.5. Let G be a finite p-group of coclass 2 with p > 2. Then G has a noninner
automorphism of order p. Moreover, this noninner automorphism leaves either Φ(G)
or Zn−4(G) fixed elementwise when n ≥ 7.

Proof. First we may assume that n ≥ 7 by [6] for p > 3. Also, for p = 3 by
using GAP [18] we see that all groups of order 3m for m < 7 have a noninner
automorphism of order 3. Moreover, we may assume that G satisfies the hypotheses
of Lemma 2.1 according to the theorem stated in [17, Introduction]. We have
Autc(G) ≤ AutN

N(G) since, if γ ∈ Autc(G), then γ is the inner automorphism induced by
g for some g ∈G by Lemma 2.1(iv), which implies that g ∈ Z2(G) and so γ ∈ AutN(G).
Therefore, Autc(G) ≤ AutN

N(G) ∩ Inn(G) ≤ AutZ2(G)(G) ∩ Inn(G) � Z3(G)/Z(G).Hence
by Corollary 2.4, if α∗ ∈ Inn(G) then AutN

N(G) ∩ Inn(G) = Autc(G)〈α∗〉. Moreover, if
β∗ ∈ Inn(G) then β∗ ∈ Autc(G)〈α∗〉, which is impossible, by considering the image of
β∗ on a. Therefore, α∗ or β∗ is noninner. Furthermore, by Lemma 2.2(iii) and (iv) we
see that α∗ leaves Φ(G) and β∗ leaves Zn−4(G) fixed elementwise, as desired. �
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