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Abstract. The univalent functions in the diagonal Besov space Ap, where
1 < p <1, are characterized in terms of the distance from the boundary of a point
in the image domain. Here A2 is the Dirichlet space. A consequence is that there
exist functions in Ap; p > 2, for which the area of the complement of the image of
the unit disc is zero.
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Introduction. The Dirichlet space A2 consists of analytic functions on the disc
whose images, counting multiplicity, have ®nite area. If one relaxes the condition on
f by allowing f to belong to the somewhat larger space, the diagonal Besov space
Ap � A1=p

pp with p > 2, what can one say about the area of the image of f? In this note
we show that for such a function, the complement of the image of the unit disc may
have zero area.

Let 1 < p <1. Denote by Ap the space of functions f �z� that are analytic on the
open unit disc D � fz : jzj < 1g, and satisfyZ

D

j f 0�z�jp�1ÿ jzj2�pÿ2 dA�z� <1:

The spaces Ap are called the diagonal Besov spaces to distinguish them from the
more general class of Besov spaces As

pq, where s > 0; 1 < p; q <1. See [2]. If we set
s � 1=p, q � p we obtain the space we call Ap. If p < r, then Ap � Ar, while A2 is the
Dirichlet space. On letting p tend to in®nity we may identify A1 as the space of
analytic functions f satisfying

�1ÿ jzj2�j f 0�z�j � O�1� as jzj ! 1ÿ :

This is the Bloch space B. The subspace of B, consisting of functions f for which

�1ÿ jzj2�j f 0�z�j ! 0 as jzj ! 1ÿ;

is denoted by B0, and called the little Bloch space.

The distance function d�w�. An analytic function f on D which is one to one is
said to be univalent. For a point w � f �z� in the image domain an important notion
is that of distance to the boundary:

d�w� � inffjwÿ �j; � 2 @f �D�g:

We state the following corollary of Koebe's Distortion Theorem [3].
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Theorem A. Suppose that f is univalent in D. Then

1

4
d�w� � �1ÿ jzj2�j f 0�z�j � d�w�:

Thus for univalent f, we have

(i) f 2 B if and only if sup
w

d�w� <1,

(ii) f 2 B0 if and only if lim
jzj!1

d�w� � 0.

We can extend this result to Ap.

Theorem 1. Let f be univalent in D and 1 < p <1. Then f 2 Ap if and only ifZ
f �D�

d�w�pÿ2 dA�w� <1:

Proof. From Theorem A we have, for p > 2,

1

4pÿ2
d�w�pÿ2 � �1ÿ jzj2�pÿ2j f 0�z�jpÿ2 � d�w�pÿ2:

We observe that dA�w� � j f 0�z�j2 dA�z�. Integrating the inequality above with
respect to the measure dA�w� over the image domain f �D�, we get

1

4pÿ2

Z
f �D�

d�w�pÿ2 dA�w� �
Z
D

�1ÿ jzj2�pÿ2j f 0�z�jp dA�z� �
Z
f �D�

d�w�pÿ2 dA�w�:

For 1 < p < 2, the inequalities are reversed. The result follows.

This simple result has useful consequences which we shall see in a moment.
Pommerenke [4] has given a condition whereby a non-vanishing univalent function g
in D has the property that log g belongs to B0 (and consequently also to the space
VMOA).

As above, for w � g�z� we let d�w� � inffjwÿ �j; � 2 @g�D�g. Then

log g 2 B0 if and only if
d�w�
jwj ! 0 as jwj ! 0;1:

We can extend this result to Ap.

Theorem 2. Suppose that g is univalent and non-vanishing in D, where
1 < p <1, and let f �z� � log g�z�. Then

f 2 Ap if and only if

Z
g�D�

d�w�pÿ2
jwjp dA�w� <1:
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Proof. As before, for p > 2, we have

1

4pÿ2
d�w�pÿ2 � �1ÿ jzj2�pÿ2jg0�z�jpÿ2 � d�w�pÿ2:

This gives

1

4pÿ2
d�w�pÿ2
jwjp dA�w� � �1ÿ jzj2�pÿ2 jg

0�z�jp
jg�z�jp dA�z� � d�w�pÿ2

jwjp dA�w�:

Observing that the middle term is �1ÿ jzj2�pÿ2j f 0�z�jp dA�z� we get the result by
integration. Again, for 1 < p < 2 the inequalities are reversed.

Two applications of Theorem 1. According to a theorem of Richter and Shields
[5], every function f in the Dirichlet space A2 can be written as the quotient of two
bounded functions in A2. This result depends on the fact that there is a compact set
K having positive two-dimensional Lebesgue measure lying in the complement of
f �D�. Their proof is such that if we could prove the last statement above for any
f 2 Ap, then an analogue of their conclusion would hold: if f 2 Ap then f � g=h,
where g; h 2 Ap \H1. We need only take p > 2 since if p � 2 the area of f �D� is
®nite. However we shall now show that there exists a univalent function f 2 Ap

such that the complement of the image f �D� has zero two-dimensional Lebesgue
measure.

The following construction uses an idea from an unpublished manuscript of
Douglas M. Campbell. Consider for each integer m � 0, the half-strip

Sm;1 � fx� iy : m < x < m� 1; 0 < y <1g:

We perform a countable number of operations the nth of which is the removal
from Sm;1 of 2nÿ1 in®nite vertical slits whose initial points are
2�in=�m� 1�2 � k=2n �m; �k � 1; 3; . . . 2n ÿ 1�. In the lower half strip

Sm;2 � fx� iy : m < x < m� 1; ÿ1 < y < 0g;

we carry out operations which are the mirror image of those above; that is we per-
form a countable number of operations the nth of which is the removal from Sm;2 of
2nÿ1 in®nite vertical slits whose initial points are ÿ2�in=�m� 1�2 � k=2n �m;
�k � 1; 3; . . . 2n ÿ 1�. We have now made a countable number of slits in the right half
plane. Finally we extend the slitting procedure to the left half plane by re¯ection in
the y axis. We denote the resulting simply connected domain by G. Note that 0 2 G
and also each line <z � m for each integer m. Now let f be the conformal mapping
of D onto G with f �0� � 0; f 0�0� > 0.

We shall now show that
R
G d�w�pÿ2dA�w� <1 and invoke Theorem 1, thereby

showing that f 2 Ap. We may con®ne attention to the ®rst quadrant. Consider the
half-strip Sm;1 and, for n � 1, consider the subset

L�m; n� � fw 2 Sm;1 : 2�n=�m� 1�2 < =w < 2��n� 1�=�m� 1�2g
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with area 2�=�m� 1�2. It is easy to see that d�w� < 1=2n for each w 2 L�m; n�. It
follows that Z

Sm;1

d�w�pÿ2dA�w� �
X1
n�0

1

2n�pÿ2�
2�

�m� 1�2 � 2�Cp=�m� 1�2:

Summing over m now gives the desired result. It is clear that the area of the com-
plement of f �D� is zero.

Remark. Under the assumption 2 � p <1; 0 < q <1 and 0 < s < 1=2, K.
Dyakonov [1] has shown that every function in As

pq is the ratio of two bounded
functions in As

pq. We noted above that if 1 < p < 2 then the proof of Richter and
Shields can be adapted to give the result for Ap. Thus the conclusion holds for Ap,
for all p > 1.

For a second application suppose that f is a bounded univalent function on D.
Clearly f 2 A2, since the area of f �D� is ®nite. We show that f need not belong to Ap

for any p < 2. Consider the open unit square Q � f�x; y� : 0 < x < 1; 0 < y < 1g.
For each n � 1 we make 2nÿ1 vertical slits in Q each of height 1=�n� 1� with base
points �k=2n; k � 1; 3; . . . 2n ÿ 1�. The resulting simply connected domain is called
G. Let f be a conformal map of D onto G and let w � u� iv be a point in G. Con-
sider the points w of G lying in a strip 1

n�2 < v < 1
n�1. We readily check that

d�w� � 1=2n�1 for all points w in the strip. Choose p < 2. It follows that

Z
G

d�w�pÿ2dA�w� � 22ÿp
X1
n�1

2�2ÿp�n

�n� 1��n� 2� � 1;

which implies by Theorem 1 that f is not in Ap.
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