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Abstract
In this paper, we present a model characterizing the interaction of a radiative shock (RS) with a solid material, as
described in a recent paper (Koenig et al., Phys. Plasmas, 24, 082707 (2017)), the new model is then related to recent
experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a
solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes
occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion,
which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required
for the model have been obtained from experiments. Good agreement between experimental data and the model is found
when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters
from experimental data (such as the shock temperature), and also to design future experiments.

Keywords: high energy density physics; laser–plasmas interaction; modelling; plasmas astrophysics; plasma physics; radiative
hydrodynamics; radiative shock

1. Introduction

Radiative shocks (RSs) are ubiquitous in astrophysics. They
can be found in many phenomena, such as cataclysmic
variables[1], supernovae or young stellar objects[2]. When
a shock propagates above a threshold velocity, its radiation
becomes so intense that it modifies its structure and the
upstream electron density of the medium. This threshold
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velocity depends on the propagation medium properties,
especially its equation of state and opacity. RSs are complex
to model or to simulate due to, for example, the multiple
length scales (from microscopic mean free paths to hydro-
dynamics lengths) involved. Moreover, direct astronomical
observations do not give data on the RS dynamics. Today,
RS can be generated in the laboratory with high-energy
laser facilities, providing a better understanding of their
properties.

In addition, the high radiative flux emitted by the shock
can mimic radiation from O-stars near molecular clouds.
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Hence, the molecular cloud is ionized and photo-evaporates,
creating ablation fronts that are difficult to model [3–6]. As a
consequence, we introduce an obstacle a few mm away from
the RS front, in order to experimentally study its ablation by
a high radiative flux.

To ensure that the generated shocks are radiative, one
must calculate two dimensionless numbers for the given
experimental conditions: the Boltzmann number Bo, which
is the ratio between the thermal flux and the radiative flux,
and the Mihalas number R, which is the ratio between the
thermal energy and the radiative energy[7]. Thermal flux,
radiative flux, as well as thermal energy and radiative energy
are defined in Ref. [7] or [8]. Often in the astrophysical
case, Bo� 1, and hence high shock velocities are necessary
in the laboratory in order to compare to the astrophysical
case. Having Bo < 1 implies that the shock velocity is
above a given threshold. This threshold velocity depends on
the mass density and the atomic number of the propagation
medium[9]. Indeed, in order to have the RS velocity comfort-
ably such that Bo < 1, the propagation medium needs to be
a high-Z low density material such as a gas. When Bo < 1,
radiation emitted by the shock is absorbed in the upstream
medium, the temperature rises and the material is ionized,
inducing an increase in the electron density. This region,
relative to a thick–thin shock, called the radiative precursor,
has a smooth temperature gradient when it is optically thin
(a temperature plateau when optically thick), and is thus very
different from the pure hydrodynamical case. However, for
the mass density, the usual sharp discontinuity at the shock
front remains as the radiative energy is too low to modify its
structure. Indeed, only when R < 1 can a continuous mass
density around the shock front occurs[9]. More generally,
such a regime would change the whole hydrodynamics in
the system.

Studies at the LULI2000 facility have observed the radia-
tive precursor[10, 11], as well as fundamental parameters of
RS generated in the laboratory (temperature, radial expan-
sion, electron density, shock and precursor velocity). Other
effects have been studied by the University of Michigan
group on the OMEGA laser facility (Ref. [12] and references
therein). In particular, a radiative collapse of a shock
has been observed, as well as the strong interaction of
radiation with the tube walls containing the gas where the
RS propagated[13, 14].

The experiments performed in this paper were on GEKKO
XII (Osaka, Japan), allowing the creation of a strong RS
(velocities up to 160 km/s). An obstacle was introduced a
few mm away from the initial shock front to observe the
interaction between the RS and the obstacle. The main
purpose of this design is to make sure that the RS parameters
(especially its emission) are well understood and controlled,
by studying the obstacle as a probe. It is also a way to
characterize matter ablation due to the high radiative flux
absorbed by the solid obstacle, increasing its temperature and

inducing its expansion in the propagating medium. First,
the experimental setup is described. In the second part, an
analytical model to simulate the expansion of the obstacle
as a function of time is proposed. This model is then used
to compare numerical simulations and experimental data,
showing that the model is an efficient way to describe the
processes involved. Finally, the model is put forward as
a quick and easy tool to design upcoming experiments, in
complement to numerical simulations.

2. Experimental setup

We recently performed an experiment on the GEKKO XII
HIPER laser facility in Osaka, Japan[15], generating a strong
RS showing its interaction with a 20 µm aluminium foil.
In a newer experiment, a quartz microballoon (provided by
General Atomics) was utilized as the obstacle, being closer
to the astrophysical case than a planar obstacle, in order to
analyse its shape evolution. To generate the strong shock, the
9 beams of GEKKO XII are used with an energy of 1.2 kJ, a
pulse duration of 500 ps at the wavelength of 351 nm and a
400 µm diameter Gaussian focal spot, giving an intensity of
2× 1015 W · cm−2.

The laser beams irradiate a multilayer target (CH/Au/Ti)
where the gold layer acts as a hard X-ray shield to prevent
preheating. The solid target operates as the strong shock
generator that will break out and then propagate into a gas
contained in a cell. In front of the shock, one may find a
radiative precursor depending on the propagating medium
(see above). The cell is filled with a high-Z low density
gas (in our case, xenon at 31 mbar) to enhance the radiative
effects as mentioned above. The quartz microballoon, having
a 1 mm diameter and 10 µm wall thickness, is situated 2 mm
away from the multilayer target, within the Xe cell.

The multilayer target was designed in order to block
hard X-ray (above 1 keV) from corona plasma[15]. As a
consequence, the obstacle is still cold (much below 1 eV)
when the shock breaks out of the solid target into the gas
avoiding unwanted effects on the obstacle.

In the experiment, a large array of visible diagnostics is
implemented in order to study the RS, its propagation, the
radiative precursor and the obstacle behaviour. Figure 1
shows the experimental setup and the associated diagnos-
tics. Transverse shadowgraphy (and interferometry) mea-
surements were taken using a probe beam (few mJ, 532 nm
and 10 ns duration), coupled with a gated optical imager
(GOI), with an exposure time of 120 ps, as well as with
streaked cameras. Plasma at a density over 1020 cm−3 ap-
pears opaque on the shadowgraphy diagnostic (Figure 2(a)).
Emission of the RS is characterized by a self-emission
diagnostic. These diagnostics (presented in Figure 1) made
it possible to determine several fundamental RS variables: its
velocity, its upstream density and its temperature[16].
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Figure 1. General setup of the experiment including all visible diagnostics.

Figure 2. Shadowgraphy of the RS moving towards the obstacle. (a) A 2D snapshot obtained 10 ns after the drive beams; (b) streaked image that follows the
position of the absorbing surface with time.

Figure 2(a) shows a 2D shadowgraphy snapshot obtained
with a GOI. The RS propagates from left to right, towards
a quartz microballoon used as the obstacle. The balloon no
longer appears spherical, as it expands towards the RS due
to radiation. To track the obstacle expansion versus time, the
streaked shadowgraphy is used to follow the obstacle edge
as a function of time (Figure 2(b)).

In this experiment, the obstacle’s expanding overdense
surface is the relevant parameter to determine and compare
to the model. After presenting the general principles of the
model, it is compared to the experimental data shown in
Figure 2(b), by tracking the obstacle edge position. One has
to note that the shadow in Figure 2(b) corresponds to electron
density above 1020 cm−3.

3. Model for the obstacle expansion

3.1. Principles of the modelling

The aim of the model is to quantify the obstacle expansion,
due to its ablation by the strong radiation coming from the
shock front.

The distance between the shock and the obstacle is D(t) =
D0 − us t , where D0 is the initial distance, us the shock
velocity and t the time. We assume that us is constant, a
valid assumption as the shock launched in the gas is almost
ballistic due to the low density of the medium.

The shock can be either planar or hemi-spherical, depend-
ing on the geometry, with a radius Rs and a post-shock region
that is fully opaque. We assume that the shock front radiates
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Figure 3. Schematic of the shock moving towards the obstacle.

as a black body, with a surface power φe = σT 4
s , where Ts is

the shock temperature and σ = 5.67× 10−8 W ·m−2
· K−4

the Stefan–Boltzmann constant. This assumption is valid
because the optical depth in the shocked region satisfies the
equation τ � 1, as the photons’ mean free path is around
1 µm, much smaller than the hydrodynamic scale.

The obstacle can be either a 20 µm thick aluminium
foil[15] or a quartz microballoon. The expansion process is
the following: the obstacle absorbs radiation coming from
the shock, and its temperature rises as energy is deposited.
The heated obstacle then expands towards the shock.

In the model presented here, we assume that the radiation
energy is homogeneously absorbed by the obstacle at a dis-
tance (along the shock direction) Labs. One notes that Labs
depends on the radiation wavelength. However, we assume
here that the radiation is due to a single wavelength at an
energy of 2.81× Ts [eV], which is the energy corresponding
to the maximum power emitted by a black body (Wien’s
law). This is for the ease of simplicity without changing
the main results. At a given wavelength and for a given
material, the typical absorption length Labs, which depends
on the obstacle temperature T and mass density ρ, can be
easily calculated. Cold opacities (as provided by The Center
for X-Ray Optics X-ray interactions with matter calculator
website (CXRO)) are used, as the obstacle is not heated by
a significant amount. This gives the attenuation length of a
radiation into a material at a given energy in eV.

However, in the modelling, the obstacle opacity (ρLabs)
−1

is the only relevant parameter (see below), and has a low
dependency on the temperature and density. In this paper, we
consider ρLabs to be constant during the obstacle expansion,
as we assume a 1D expansion at the centre of the obstacle on
the RS propagation axis. This is a valid assumption here as
the expansion length is much smaller than the balloon diam-
eter. If the obstacle expands on a length comparable to the
obstacle diameter, then 2D effects implying a modification
of ρLabs must be taken into account. Moreover, we do not
take into account the obstacle ionization effects, which can
modify the quartz opacity. We assume Labs = 100 nm and

ρ = 2.65 g · cm−3 in our experimental context. The obstacle
is considered as a perfect gas, regarding its temperature,
and it follows an isothermal expansion. This assumption
is useful to link the absorbed energy and the temperature,
the expansion velocity to the sound speed, leading to an
expansion velocity varying as a function of T .

Indeed, we have

vexp(t) =

√
γ kB T (t)
µm H

(1)

with kB the Boltzmann constant, µm H the reduced mass and
γ the adiabatic index. The temperature evolution is given by

dE =
3RρLabsS

2M
· dT (2)

with dE the incoming energy in the obstacle, dT its tem-
perature variation, R the ideal gas constant, M the molar
mass and S the expanding surface. Equation (2) shows that
calculating the incident energy on the obstacle as a function
of time leads to the determination both of its temperature and
of its expansion velocity (Equation (1)).

3.2. Planar shock

Here, we consider a planar shock propagating towards the
obstacle (Figure 3). Every surface element of coordinates
(r, θ) emits a power of

dφe = σT 4
s × r drdθ. (3)

This radiation is isotropic, and radiates everywhere. Here,
we focus on the radiation absorbed at the centre of the
obstacle, on the RS axis. Indeed, this is where radiation is the
most important so it will expand faster than anywhere else.
It is also where the RS is imaged onto the streak camera slit.

The surface S at the centre of the obstacle absorbs a ratio
Ω/2π of all the power dφe emitted by a surface element of
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Figure 4. Spherical shock moving towards the obstacle.

coordinates (r, θ) (see above). Here, Ω = S/(D(t)2 + r2)

is the solid angle of the absorbing surface seen from the
emitting surface element. After integrating on the planar RS
surface, we get

φr (t) =
σT 4

s

2
ln

[
1+

(
Rs

D(t)

)2
]
. (4)

Equation (4) gives the energy absorbed by the obstacle
during a given time. By using Equation (2) and integrating it
between 0 and t , one can show that

T (t) = T0 +
σT 4

s µm H

3γ kBρLabs

{
D0

us
ln

[
1+

(
Rs

D0

)2
]

−

(
D0

us
− t
)

ln

[
1+

(
Rs

D0 − us t

)2
]

+ 2
Rs

us
arctan

[
Rsus t

R2
s + D0(D0 − us t)

]}
. (5)

Combining this with Equation (1), we get

v2
exp(t) =

σT 4
s

3ρLabs

{
D0

us
ln

[
1+

(
Rs

D0

)2
]

−

(
D0

us
− t
)

ln

[
1+

(
Rs

D0 − us t

)2
]

+ 2
Rs

us
arctan

[
Rsus t

R2
s + D0(D0 − us t)

]}
. (6)

We arrive at an analytical formula giving the expansion
velocity as a function of time and a function of several
variables. Most of these variables are known experimentally
with accuracy. Indeed, D0, us , and Rs are determined
through 2D or streaked shadowgraphy. Thanks to self-
emission diagnostics, a relative shock temperature may be
determined, but due to a lack of calibration, its absolute value
is not attainable. Experimentally, it can only be determined

that Ts ∈ [20 eV; 40 eV]. Thus, we assume that Ts =

30 eV, which is also justified by 2D radiative hydrodynamics
FLASH simulations (see below).

One can note that the expansion velocity grows rapidly
with the shock temperature (T 4

s ). Moreover, the obstacle
expands faster if its surface mass (ρLabs) is smaller. Finally,
the expansion velocity increases with time, as we assume
here a constant energy flux radiated by the shock front.

This model, in planar geometry, can provide accurate
expansion velocity of the obstacle when the experiment or
astrophysical situations can be approximated to this par-
ticular geometry. However, this is rarely the case, so we
have developed a dedicated model for a spherical shock,
being more complex, but more suited to experiments or
astrophysics.

3.3. Spherical shock

The motivation for this section is to compare the spherical
shock to the planar shock referring to the obstacle expansion
velocity as the main parameter. Indeed, if the expansion
velocity is similar for both cases, then the planar shock
analytical formula can be used to compare to data, and to
fit experimental results, as the model is much simpler than
the spherical case.

The model in the spherical case is more complex to estab-
lish, but is more consistent with experiment (cf. Figure 2(a)).

First, given the cylindrical symmetry, one needs to calcu-
late the total emission from the ring on the RS characterized
by the coordinates [α;α + dα] (all notation are explained
on Figure 4). The surface of this ring is 2πhdl, where
h = L sinα.

Moreover, we get dl from pure geometrical arguments.
Indeed,

dl = Rsdβ, (7)

and

L sinα = Rs sinβ. (8)
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Figure 5. Comparison between a spherical and a planar shock. The shock velocity is 140 km/s at 30 eV, Rs = 500 µm.

In addition

L sin(α + dα) = Rs cos(β + dβ). (9)

Assuming that cos(dα) = cos(dβ) = 1, sin(dα) = dα,
sin(dβ) = dβ and using Equations (7) and (8) yields

dl = L
cosα√

1− ( L
Rs
)2 sin2 α

dα. (10)

Finally, the total emitted power from the ring is

dφe = σT 4
s × 2πL2 cosα sinα√

1− ( L
Rs
)2 sin2 α

dα. (11)

Thus, only a ratio Ω(α)/2π is absorbed by the surface S
at the centre of the obstacle compared to the total emission
from the ring, where Ω = S/L(α)2 is the solid angle of the
absorbing surface seen from the emitting surface element,
similar to the planar case.

One can now write the flux density power φr received by
the obstacle:

φr (t) = σT 4
s

∫ αmax (t)

0

cosα sinα√
1− ( L(α,t)

Rs
)2 sin2 α

dα, (12)

with L(α) = (Rs + D) cosα +√
(Rs + D)2 cos2 α − D(2Rs + D) and αmax =

arcsin( Rs
Rs+D ).

Now that one has the flux density power received by the
obstacle, Equations (2) and (1) can be used to get the

obstacle expansion velocity, just like in the planar case:

vexp(t) =

√
2

3ρLabs

∫ t

0
φr (t ′)dt ′. (13)

Our analytical model provides the obstacle expansion
velocity as a function of time, with respect to several param-
eters, for both planar and spherical cases. It is now possible
to compare these two geometries, plotting the obstacle edge
position, as this parameter can be easily determined in the
experiments (see Figure 2(b)).

In Figure 5, we compare the spatial expansion of the
obstacle for an RS velocity of 140 km/s having a temperature
of 30 eV and a shock front radius of 500 µm interacting with
an aluminium foil situated at 2 mm at t = 0.

First, we observe that the two models show a similar
behaviour, with a total expansion around 400 µm after 12 ns.
However, in the planar case, it expands 100 µm more com-
pared to the spherical case, an observation that is compatible
with the conservation of energy in the total system.

Thus, the model predicts an expansion velocity of the
order of 30 km/s compatible with our experimental results
(see Figure 2(b) showing a final velocity of around 35 km/s
in the last 2 ns) and with previous results[15].

However, as mentioned in the Introduction, when the
shock is highly radiative (in our experiments, using xenon
gas at 31 mbar), the electron density in the upstream region
increases due to a radiative flux emitted by the shock front
much higher than the thermal one. To be consistent with
the physics situation, this process also needs to be taken into
account in the calculation of all radiation absorbed by the
obstacle leading to its expansion.
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3.4. Radiative precursor in the model

Depending on the xenon density, part of the radiation emitted
by the shock is absorbed by the gas, and cannot reach the
obstacle at all unless the radiation mean free path is large
enough. Therefore, the radiative precursor can be highly
heated and emits some further thermal radiation. According
to Ref. [17], the radiative density flux at the abscissa z2 as a
function of the density flux at z1 can be written as

I (z2) = I (z1)e−(z2−z1)/Lprec

+ L−1
prec

∫ z2

z1

B(z)e−(z−z1)/Lprecdz, (14)

where Lprec is the medium absorption length (here, linked to
the precursor length and experimentally equal to 600 µm)
and B(z) is the emission at z which is, in the precursor,
a fraction of the Planck function for black body emission.
To take the precursor into account, Equation (14) needs
to be plugged into Equation (13) by modifying the flux
irradiating the obstacle. Instead of taking into account the
geometrical dilution only, Equation (14) is used with z1
the emission surface abscissa and z2 the absorption surface
abscissa. We assume a temperature profile following T (z) =
Ts(1 − z

Lprec
) as in an optically thin medium, corresponding

to our experimental case. One can note that for higher xenon
pressure (few hundreds of mbar), this assumption cannot be
made and the model is not valid anymore. For this case, we
would need to assume a temperature profile in the precursor
following T (z)= Ts×tanh(z/Lprec), but the method remains
the same. Without going into full details, this effect is part
of the model and is taken into account for the results below.
The precursor significantly affects the results, as the obstacle
interacts less with the RS at first (as the precursor absorbs a
non-negligible part of the power emitted by the RS), but at
the end is heated by both the RS and the precursor. Finally,
the obstacle expansion velocity as a function of time is more
convex when the radiative precursor is taken into account.

4. Results

In this section, we discuss the obstacle expansion either
from experimental data, from simulations or from the model
presented above, in the spherical case and with a radiative
precursor.

4.1. Model validation

In order to validate our model, we make a detailed compari-
son between the experimental data, our model and hydrody-
namics simulations. For this last case, we use two different
radiation-hydrodynamics codes to be compared to the model
described above: MULTI, which is a 1D Lagrangian code[18],

and FLASH, a 2D/3D AMR code, solving the radiation
equations with the diffusion approximation[19]. In order to
compare experimental data and simulation results for a given
shot, the code is constrained to reproduce the measured RS
velocity. As a consequence, for all comparisons done in this
paper, the shock velocity will remain us = 140 km/s. For
both codes, we use the laser–matter interaction module to
reproduce the experimental conditions. The energy groups
in this multigroup simulation are also well refined near the
shock temperature for the gas, near the pusher K-alpha edge.
The non-LTE is also taken into account for coronal plasma.

Moreover, experimental data such as the shock diameter,
the radiative precursor length, and the distance between
the target and the obstacle will be the input parameters
in our model, and are very well known from transverse
diagnostics (Figures 2(a) and 2(b)). Regarding the shock
temperature (which is a very important parameter to infer
the obstacle expansion), we were able to determine it in the
range [20 eV; 40 eV], as an absolute precise calibration was
not possible as mentioned previously.

Figure 6 shows the obstacle expansion as a function of
time related to one single shot, from experimental data
(Figure 2), simulations and our model.

First, we can clearly see that all methods used to evaluate
the obstacle expansion show the same behaviour regarding
the obstacle expansion. Second, we observe that this expan-
sion velocity increases with time leading to a final value of
several hundreds of microns.

Regarding the simulations, the expansion inferred from the
1D code MULTI is higher than the one calculated from the
model as well as the one measured experimentally. Indeed,
as expected in a 1D code, temperature of the shock is
overestimated, radiation losses not being properly taken into
account[20].

In the 2D case, FLASH seems to under-estimate the
expansion. It can be explained by a poor accuracy in the
opacity table for xenon, a low number of groups in the
multigroup approach around 100 eV, or a limited radiation
module of FLASH (diffusion limit) compared to analytical
solution which is obtained for the complete radiative transfer
equation.

Finally, the obstacle expansion given by our model seems
to reproduce accurately the experimental data. The compati-
bility between the inferred expansion with our model and the
experimental one shows that all physical processes occurring
in the experiment are well described.

One has to note that most of the parameters are exper-
imentally well known (us , Rs , D0, etc.), except the shock
temperature Ts , which ranges between 20 eV and 40 eV. As
a consequence, in the following, we characterize how this
variable affects our model regarding the obstacle expansion.
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Figure 6. Comparison between model, experiment, and simulations. The model parameters, related to the experiment, are Ts = 30 eV, us = 140 km/s, a
precursor length of 600 µm and a shock diameter of 1 mm.

Figure 7. Same as Figure 6, with experimental data and model expansion with three temperatures (20 eV, 30 eV and 40 eV).

4.2. Effect of temperature

To determine the influence of the shock temperature on the
obstacle expansion, we plot on Figure 7 the calculated expan-
sion for three different shock temperatures, still comparing it
with the experimental data.

As expected, when the shock temperature is higher, the
obstacle temperature increases as the radiative flux is en-
hanced; the consequence is that the expansion velocity,
closely related to the sound velocity, increases as well. One
can also observe in Figure 7 that the shock temperature
must be close to 30 eV to fit with the experimental data,
the curve at 20 eV or 40 eV being too far from the results.
As a consequence, thanks to our model, we can possibly
discriminate the temperature in an RS experiment in the
presence of an obstacle, confirming that the temperature is

close to 30 eV in our shot. One can also note that the
temperature given by the FLASH simulation presented above
is also close to 30 eV.

Another possibility to infer the exact temperature would
be to use SESAME tables at a given xenon density and
shock velocity[21]. However, the SESAME equation of
state does not take into account the radiative losses and,
as a consequence, over-estimates the shock temperature
compared to the experimental one. Finally, an absolute and
precise calibration of the self-emission diagnostic can be a
way to determine the experimental temperature, technique
that will be adopted in future experiments.

However, it must also be noted that this model is not
only useful to determine some parameters (such as the
shock temperature) after an experiment, but also to design
upcoming experiments in order to optimize the obstacle
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Figure 8. Same as Figure 7, with three different initial distances between the target and the obstacle (1 mm, 2 mm, 3 mm).

expansion. Unfortunately, the direct application of this
particular model to a strictly astrophysical context is of
limited use. Indeed, astrophysical RSs which propagate in
the interstellar medium (made of hydrogen) are generally
fully ionized, unlike laboratory experiments where the RS
structure greatly depends on the xenon opacity (opacity
mainly due to bound–bound and bound-free transition).
These two behaviours are not in agreement with scaling laws
application[22]. This hypothesis is not valid in our model
however.

4.3. Future experiments

Some upcoming RS experiments need to be prepared, espe-
cially at GEKKO XII and at LMJ. In all these experiments,
the RS itself will be studied (for example, the presence of
a radiative precursor, velocity, shape, . . . ), as well as the
interaction with an obstacle.

In order to improve the experimental design, we intend to
quantify the effect of the initial distance between the RS and
the obstacle D0.

Figure 8 shows the edge position calculated with our
model for different initial distances between the RS and the
obstacle. The other parameters are the same as exposed in
Figure 6.

We can see that for longer distances, the obstacle expands
farther: due to longer initial distances, the obstacle is irradi-
ated for a longer time by the RS.

However, the expansion is faster at initial time for D0 =

1 mm than for D0 = 3 mm. Indeed, the radiative flux irra-
diating the obstacle is higher, inducing a higher temperature.
After a while, for a long initial distance, the RS keeps heating
the obstacle, so its temperature still increases as the RS gets

closer to the obstacle. As a consequence, the final velocity
becomes similar to the 1 mm case.

Indeed, we do note that the final velocity is almost the
same for the three different cases (from 36 km/s for D0 =

1 mm to 40 km/s for D0 = 3 mm). In our case, the radiative
precursor absorbs about 70% of the incoming flux emitted by
the RS front. As a consequence, the obstacle is mostly heated
when it interacts with the radiative precursor, i.e., when the
RS is at a distance Lprec from the obstacle.

In our RS experiments, we aim to observe a maximum
expansion length, lasting for longer time, rather than the
fastest expansion, as it is easier to determine its dynamics.

As a consequence, for future GEKKO experiments, we
will put the obstacle at 3 mm from the target, because a larger
expansion than the one observed in our shot shown in this
paper will occur. This distance will allow the development
of the RS on a longer distance, and thus the radiative effects
will be easier to observe.

Thus, our model is a useful tool to aid in the preparation of
upcoming experiments, being able to anticipate the obstacle
expansion, and is therefore a quick and easy complementary
tool together with 2D simulations.

5. Conclusion

In the context of RS experiments, we have developed an
analytical model explaining an obstacle expansion situated
at a given initial distance from a propagating RS. We have
shown that this model, without any free parameters, predicts
an expansion very close to the experimental data, showing
the obstacle expansion process is well described. To achieve
the consistency between experiment and modelling, the
RS temperature is found to be around 30 eV, which is
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compatible with the temperature measured experimentally
(Ts ∈ [20 eV; 40 eV]) and the one given by 2D radiative
hydrodynamic simulations using the FLASH code. How-
ever, one has to note that the temperature here is seen as
an initial condition and not as a predicted result. Finally,
we have shown that our model can be easily used to plan
experiments, as a quick complement to full 2D simulations.

This model can also be improved, by considering, for
example, the obstacle shape (i.e, calculate the expansion all
over the obstacle surface). A continuous spectrum for the
shock emission and therefore the total energy absorbed by
the obstacle for each wavelength emitted by the shock, can
also be introduced.

In future experimental campaigns, we anticipate having
access to the experimental temperature thanks to a precise
calibration of self-emission diagnostics. As a consequence,
an even more precise comparison between the model results
and experimental data can be performed. Moreover, we
will ensure that the designed initial distance, chosen via our
model, will lead to a larger expansion. This detailed study of
the obstacle expansion will help with better understanding of
the RS itself, for example, to quantify the shock temperature
as a function of the shock velocity by taking into account the
radiative losses at the same time.
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