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Abstract

Purely algebraic objects like abstract groups, coset spaces, and G-modules do not have a notion of
hole as do analytical and topological objects. However, equipping an algebraic object with a global
action reveals holes in it and thanks to the homotopy theory of global actions, the holes can be
described and quantified much as they are in the homotopy theory of topological spaces. Part I of
this article, due to the first author, starts by recalling the notion of a global action and describes
in detail the global actions attached to the general linear, elementary, and Steinberg groups. With
these examples in mind, we describe the elementary homotopy theory of arbitrary global actions,
construct their homotopy groups, and revisit their covering theory. We then equip the set Umn(R)
of all unimodular row vectors of length n over a ring R with a global action. Its homotopy groups
πi (Umn(R)), i > 0 are christened the vector K -theory groups Ki+1(Umn(R)), i > 0 of Umn(R).
It is known that the homotopy groups πi (GLn(R)) of the general linear group GLn(R) viewed as a
global action are the Volodin K -theory groups Ki+1,n(R). The main result of Part I is an algebraic
construction of the simply connected covering map StUmn(R)→ EUmn(R) where EUmn(R) is the
path connected component of the vector (1, 0, . . . , 0) ∈ Umn(R). The result constructs the map as a
specific quotient of the simply connected covering map Stn(R)→ En(R) of the elementary global
action En(R) by the Steinberg global action Stn(R). As expected, K2(Umn(R)) is identified with
Ker(StUmn(R)→ EUmn(R)). Part II of the paper provides an exact sequence relating stability for
the Volodin K -theory groups K1,n(R) and K2,n(R) to vector K -theory groups.

2010 Mathematics Subject Classification: 19D99, 19C99, 19B14 (primary); 19A13, 19B10
(secondary)

1. Introduction

The first goal of this article is to use global actions to construct the vector K -
theory functors KiUmn , i > 0, of rings and to algebraically describe the functors
KiUmn , i = 1, 2. The second goal is to relate vector K -theory to stability in
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Volodin K -theory. The first goal is handled in Part I of the article and the results
are due to the first author. The second goal is handled in Part II.

We describe now the results in Part I.

Part I: Global actions and vector K -theory

The concept global action is a rigorous formulation of the idea that group
actions express motion. Formally, a global action is a set X equipped with a
family of group actions Xα x Gα on subsets Xα of X , subject to a compatibility
condition. The group actions tell us how we can move and deform subsets of X
and thereby construct homotopy groups of X and a homotopy theory of global
actions.

The current paper focuses on two specific global actions. The first is defined
by letting the standard unipotent subgroups of the general linear group GLn(R)
of a ring R act by right multiplication on (all of) GLn(R). The homotopy groups
πi(GLn(R)) of this global action are the Volodin K -theory groups Ki+1,n(R). The
second global action is defined by letting the standard unipotent subgroups above
act by right multiplication on the set Umn(R) of unimodular row vectors of length
n with entries in R. The vector K -theory groups Ki+1,n(R) are by definition the
homotopy groups πi(Umn(R)). Of course π0 is generally just a pointed set.

The main results of Part I are an algebraic description of the vector K -theory
objects Ki,n(R), i = 1, 2, n > 3 and of the simply connected covering of the
path-connected component of the vector (1, 0, . . . , 0) ∈ Umn(R). We state these
results next.

Let R be associative ring with identity. A unimodular row vector of length n
over R is by definition a row vector v = (v1, . . . , vn), having entries vi ∈ R with
the property there is a row vectorw = (w1, . . . , wn),wi ∈ R, such that v ·wt

= 〈v,

w〉 :=
∑

i viwi = 1. Let Umn(R) denote the set of all unimodular row vectors of
length n over R, equipped with the global action above.

A path in Umn(R) is by definition a sequence v, vg1, . . . , vgk of vectors
such that each gi belongs to a standard unipotent subgroup of GLn(R). Since
the standard unipotent subgroups generate the elementary subgroup En(R) of
GLn(R), it follows that the path connected components of Umn(R) are the
orbits Umn(R)/En(R) of the action of En(R) on Umn(R). Thus, by definition,
π0(Umn(R)) = Umn(R)/En(R).

Let e = (1, 0, . . . , 0) be the base point of Umn(R). Let EUmn(R) be the path
connected component of e. Clearly EUmn(R) = eEn(R). eEn(R) has a global
action defined by the action of the standard unipotent subgroups of En(R) on
eEn(R). Let StUmn(R) → eEn(R) be the simply connected covering map of
eEn(R). We algebraically describe this map and K2(Umn(R))where by definition
K2(Umn(R)) = π1(Umn(R)). Let:
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(1) Pn(R) = {σ ∈ GLn(R)|e1σ = e1};

(2) EPn(R) = Pn(R) ∩ En(R).

There is a canonical map En(R)→ eEn(R), ε 7→ eε, which induces a bijection
EPn(R) \ En(R) → eEn(R) of En(R)-sets where E Pn(R) \ En(R) is the set
of right cosets of E Pn(R) in En(R). This map becomes an isomorphism of
global actions as soon as we give E Pn(R) \ En(R) the global action defined by
the canonical right action of the standard unipotent subgroups of En(R) on
E Pn(R) \ En(R). We identify eEn(R) with E Pn(R) \ En(R), using this
isomorphism. Let Stn(R) denote the Steinberg group (recalled in Section 2.2)
and θn : Stn(R) → En(R) the canonical surjective homomorphism. Let Φn be
an index set for the set of all standard unipotent subgroups En(R)α of En(R),
α ∈ Φn . In Section 2.2, it is shown that there is a canonical lifting Stn(R)α of
each En(R)α to the Steinberg group. Let:

(3) P̃n(R) = θ−1
n (EPn(R));

(4) Bn(R) = 〈x−1abx ∈ P̃n(R) | x ∈ Stn(R), a ∈ Stn(R)α, b ∈ Stn(R)β,
α, β ∈ Φn〉.

Let Bn(R) \ Stn(R) denote the set of all right cosets Bn(R)x, x ∈ Stn(R), of
Bn(R) in Stn(R). Let Bn(R) \ P̃n(R) denote the set of all right cosets of Bn(R) in
P̃n(R). Since Bn(R) is clearly normal in P̃n(R), Bn(R) \ P̃n(R) is a group.

The main theorem of Part I is the following.

THEOREM 1.1 (Main theorem). Let Bn(R) \ Stn(R) have the global action
defined by letting the subgroups Stn(R)α, α ∈ Φn , of Stn(R) act by right
multiplication on Bn(R) \ Stn(R). Then the canonical map

Bn(R) \ Stn(R)→ EPn(R) \ En(R),
Bn(R)x 7→ E Pn(R)θn(x)

is a simply connected covering morphism of global actions. Furthermore the
sequence

Bn(R) \ P̃n(R)� Bn(R) \ Stn(R)� EPn(R) \ En(R)

is short exact and
K2(Umn(R)) ∼= Bn(R) \ P̃n(R).

Of course, the isomorphism above can be used as an algebraic definition of
K2(Umn(R). This is analogous to defining K2,n(R) = Ker(Stn(R)→ En(R)).

To conclude Part I, we mention a very general exact sequence which motivates
results in Part II.
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THEOREM 1.2. Let f : (B, b)→ (A, a) be a morphism of pointed global actions.
Then there is an infinite homotopy exact sequence

· · · → πi+1(rel( f ))→ πi+1(B)→ πi+1(A)→ πi(rel( f ))→ · · ·

for all i > 0, terminating at π0(A).

Proof. The proof is carried out mimicking any classical proof of the analogous
result in algebraic topology. Details are left to the reader.

Part II: Stability in algebraic K -theory
and vector K -theory

The goal of this part is to relate stability in Volodin K -theory to vector K -theory
by an exact sequence.

Give GLn(R) the global action obtained by letting the standard unipotent
subgroups of GLn(R) act on it by right multiplication. Define Ki,n(R) =
πi−1(GLn(R)) for all i > 0. There is a canonical morphism f : GLn(R) →
Umn(R), g 7→ eg = firstrow(g) of global actions where e = (1, 0, . . . , 0). By
Theorem 1.2, there is an exact sequence

K2(rel( f ))→ K2,n(R)→ K2(Umn(R))→
K1(rel( f ))→ K1,n(R)→ K1(Umn(R)).

Volodin K -theory computes K2,n(R) and K1,n(R) and the results in Part I
algebraically compute K2(Umn(R)) and K1(Umn(R)). So to understand the exact
sequence above, it suffices to compute K2(rel( f )) and K1(rel( f )) and the missing
maps, namely those going in and out of Ki(rel( f )). Exactness follows for free.

But this is not done in the current paper. Instead, an exact sequence is
constructed ad hoc, based on the fact that there is one to find. So we guess at
objects to replace K2(rel( f )) and K1(rel( f )). They are respectively the group
K2,n(R)2 and the pointed set (K1,n−1(R))2 \ K1,n−1(R). Then maps in and out of
these objects are defined and exactness is proved. The main result is the following.

THEOREM 1.3. There is an 8-term exact sequence

(K2,n(R))2 → K2,n(R)→ π1(EUmn(R))→ (K1,n−1(R))2 \ K1,n−1(R)→
K1,n(R)→ π0(Umn(R))→ K s

0,n−1(R)→ 0

of pointed sets, whose first two maps on the left are group homomorphisms. By
definition,

(K2,n(R))2 = K2,n(R) ∩ Bn(R)
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and contains the
image(K2,n−1(R)→ K2,n(R))

(see Section 4);

(K1,n−1(R))2 = En−1(R) \ (BEPn(R)) ∩ GLn−1(R)),

where

BEPn(R) = 〈ε−1abε ∈ EPn(R) | ε ∈ En(R),
a ∈ En(R)α, b ∈ En(R)β, α, β ∈ Φn〉.

It is clearly a normal subgroup of EPn(R), which contains En−1(R) (see
Section 4).

K s
0,m(R) = set of all isomorphism classes of finitely generated, projective,

left R-modules P such that P ⊕ R ∼= m+1R. The base point of
K s

0,m(R) is the isomorphism class of mR.

The maps in the exact sequence are defined in Section 4.1.

The first three terms of the exact sequence above, starting from the left,
come equipped with group structures and the maps between them are group
homomorphisms. So this much of the sequence is an exact sequence of groups.
Suppose that En−1(R) and En(R) are normal in GLn−1(R) and GLn(R),
respectively. Then K1,n−1(R) and K1,n(R) are groups and it turns out that
(K1,n−1(R))2 is a normal subgroup of Ker(K1,n−1(R) → K1,n(R)) and that
the map π1(Umn(R)) → (K1,n−1(R))2 \ K1,n−1(R) has as image the group
[Ker(K1,n−1(R) → (K1,n−1(R))2 \ K1,n(R))] and is a group homomorphism to
this group. So in this case, the first five terms is an exact sequence of groups. It is
an interesting problem to find group structures on the remaining objects so that
the entire sequence is an exact sequence of groups.

Assuming the ring R is commutative and Noetherian of finite Krull dimension
d and n is sufficiently large relative to d , van der Kallen [10, 11] found a group
structure on π0(Umn(R)), but showed that the map GLn(R) → π0(Umn(R)) is
not always a group homomorphism. On the other hand, Ravi Rao and van der
Kallen [7] found (nontrivial) examples where it is a group homomorphism. In
these examples, we get a 6-term exact sequence of groups. An interesting problem
is to find a group structure on K s

0,n−1(R) such that the map involving this group is
a group homomorphism.

The rest of the paper is organized as follows. In Section 2.1, the definition of
a global action and of a single domain global action are recalled. Section 2.2
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carefully describes important examples of global actions including the single
domain global actions equipping the general linear, elementary, and Steinberg
groups. It concludes with the notion of geometric group which includes as
special cases the single domain global actions above and with the notions of
geometric set and geometric coset space which include as special cases all of
the remaining single domain global actions of the paper. Section 3.1 recalls
the notion of homotopy for arbitrary morphisms of global actions. Section 3.2
recalls the definition of end-point- preserving homotopy of paths (also called
path-homotopy) and defines the fundamental group π1 of a pointed global action.
Section 3.3 defines loop- homotopy of n-loops and the higher homotopy groups
πn of a pointed global action. Section 3.4 equips the set Umn(R) of all unimodular
row vectors of length n with a single domain global action. The notion of covering
and covering morphism is recalled and the Covering Classification Theorem 3.23
is proved. Theorem 1.1 is then deduced as Theorem 3.22, from Theorem 3.23.
Section 4.1 proves Theorem 1.3.

Part I: Global actions and vector K -theory

2. Preliminaries

The results of this section are due to the first author.

2.1. Global actions. In this section, we recall from [1, 2] the definitions of
global action and single domain global action and describe important examples
which are used in the rest of the paper. The section concludes with a concise
conceptualization of all single domain global actions occuring in the paper.

DEFINITION 2.1. Let G be a group and X a set. Then a (right) group action of G
on X is a function X × G → X , denoted by (x, g) 7→ x · g, such that:

(1) x · 1 = x , for all x ∈ X , where 1 is the identity of the group G; and

(2) x · (g1g2) = (x · g1) · g2, for all x ∈ X and g1, g2 ∈ G.

A group action will be denoted by X x G.

DEFINITION 2.2. Let X x G and Y x H be group actions. A morphism of
group actions (ψ, ϕ) : X x G → Y x H consists of a function ψ : X → Y
and a group homomorphism ϕ : G → H such that ψ(x · g) = ψ(x) · ϕ(g). Two
morphisms (ψ, φ), (ψ ′, φ′) : X x G → Y x H are considered the same, if
ψ = ψ ′. In this case, we write (ψ, φ) = (ψ ′, φ′) (The paper [1] defines notions
of global actions which are stronger than the one defined in the current paper and
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require morphisms of group actions whose notion of sameness is stronger than
that defined above, for example two morphisms as above are the same, if ψ = ψ ′

and φ = φ′.)

DEFINITION 2.3. A global action A = (X, Φ,G, θ) consists of a set X called
the underlying set of A, together with:

(1) A set Φ equipped with a reflexive relation 6. Φ is called the index system of
A. (Equivalently, Φ is a directed graph such that there is a directed loop at
each vertex.)

(2) A set {Xα x Gα | α ∈ Φ} of group actions on subsets Xα of X . The groups
Gα are called the local groups of A, the subsets Xα the local sets of A, and
the group actions Xα x Gα the local actions of A.

(3) Compatibility condition. For each relation α 6 β of Φ, the local group Gα

leaves Xα ∩ Xβ invariant and there is stipulated a group homomorphism

θα6β : Gα → Gβ,

called a structure homomorphism such that the map

(ια6β, θα6β) : (Xα ∩ Xβ)x Gα → Xβ x Gβ

is a morphism of group actions where

ια6β : (Xα ∩ Xβ)→ Xβ

is the canonical inclusion of sets.

A global action A = (X, Φ,G, θ) is called a single domain global action, if Xα =

X for all α ∈ Φ.

It is useful to think of the map G : Φ → ((group actions)), α 7→ Xα x Gα,
together with the structure maps (ια6β, θα6β) : (Xα ∩ Xβ)x Gα → Xβ x Gβ as
a notion of prefunctor on the directed graph Φ with values in group actions.

LEMMA 2.4. Let A = (X, Φ,G, θ) be a single domain global action such that
the relation 6 of Φ is reflexive and transitive. Then the prefunctor above is a
functor if and only θα6α : Gα → Gα is the identity homomorphism for all α ∈ Φ
and θβ6γ θα6β = θα6γ for all α 6 β 6 γ ∈ Φ.

Proof. Straightforward.
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We recall the definition of a morphism of global actions. To do this we need the
notion of a local frame.

DEFINITION 2.5. Let A = (X, Φ,G, θ) be a global action. A local frame of A is
a finite set F of elements of X such that for some α ∈ Φ, F ⊆ Xα and F ⊆ an
orbit of Gα.

DEFINITION 2.6. Let A and B be global actions with underlying sets X and Y ,
respectively. A morphism f : A→ B of global actions is a function f : X → Y
which preserves local frames.

EXAMPLE 2.7. Let A be a global action. Then the identity function on the
underlying set of A is a morphism of global actions.

2.2. Important examples of global actions. We give below examples of
global actions by describing their underlying set, index system, local sets, local
groups, local actions, and structure homomorphisms. It is easy to check that the
compatibility condition holds.

• The line action. The line action denoted by L is a global action with underlying
set X = Z and index systemΦ = Z∪{∗}. The relations ofΦ are ∗ 6 ∗, ∗ 6 n,
and n 6 n for all n ∈ Z. The local sets are X∗ = Z and Xn = {n, n + 1} for all
n ∈ Z. The local groups are G∗ = 1 and Gn = Z/2Z for all n ∈ Z. The local
action L x G∗ is the unique one. The local action {n, n+1}x Gn is the unique
nontrivial action. The structure homomorphisms θ∗6∗ : G∗ → G∗ and θ∗6n :

G∗ → Gn are the unique ones for all n ∈ Z. The structure homomorphisms
θn6n : Gn → Gn are the identity for all n ∈ Z.

• The graph global action. The graph global action is a generalization of the
line action. Recall that a graph G = (V, E) is a pair consisting of a set V of
elements called vertices and a reflexive, antisymmetric relation E ⊆ V × V
called edges. If e = (v,w) ∈ E , then one should think of e as an edge between
v and w. Let vert(e) = the set {v,w}. The graph global action of G is the
global action with underlying set V and index system Φ = E ∪ {∗}. Let the
relations of Φ be ∗ 6 ∗, ∗ 6 α, and α 6 α for all α ∈ E . The local sets are
V∗ = V and Vα = {vert(α)} for all α ∈ E . The local groups are G∗ = 1 and
Gα = Z/2Z for all α ∈ E . The local action V x G∗ is the unique one. The
local action Vα x Gα is the unique nontrivial one for all α ∈ E . The structure
homomorphisms θ∗6∗ : G∗→ G∗ and θ∗6α : G∗→ Gα are the unique ones for
all α ∈ E . The structure homomorphisms θα6α : Gα → Gα, α ∈ Φ(G), are the
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identity for all α ∈ E . Abusing notation, we also let G denote the global action
just constructed.

• The general linear global action. If n > 3, let Jn = [1, n] × [1, n]) \ {(i,
i) | 1 6 i 6 n}, that is the Cartesian product of the set {1, 2, . . . , n} with itself
with the diagonal removed. It is worth mentioning that Jn is the root system of
the Chevalley group An−1 over commutative rings.

A subset α ⊆ Jn is called nilpotent if the following conditions hold:

– if (i, j) ∈ α, then ( j, i) /∈ α;
– if (i, j), ( j, k) ∈ α, then (i, k) ∈ α.

Note that the empty set is a nilpotent subset and that the intersection of nilpotent
subsets is nilpotent. Let Φn denote the index system

Φn = {α | α nilpotent subset of Jn}

equipped with the reflexive relation 6 defined by α 6 β ⇔ α ⊆ β. There is a
canonical embedding

Jn � Φn, (i, j) 7→ {(i, j)}

whose image consists of the smallest nonempty nilpotent subsets of Jn .

Let R denote an associative ring with identity. The general linear global action
is a single domain global action with underlying set the general linear group
GLn(R), index systemΦn , and local groups GLn(R)α, α ∈ Φn , consisting of all
matrices whose diagonal entries are 1 and whose nondiagonal entry at position
(i, j) is 0 if (i, j) /∈ α and arbitrary if (i, j) ∈ α. This means that the empty
subset of Φn is assigned the trivial subgroup of GLn(R). The local groups
GLn(R)α act on GLn(R) by right multiplication. The structure homomorphisms
θα6β : GLn(R)α → GLn(R)β are by definition the natural inclusions. Clearly
GLn(R)α ∩ GLn(R)β = GLn(R)α∩β . It follows that the assignment

Φn → subgroups of GLn(R),
α 7→ GLn(R)α

preserves not only partial orderings, that is α 6 β H⇒ GLn(R)α ⊆ GLn(R)β
(and is therefore a functor), but also intersections, that is GLn(R)α∩β =
GLn(R)α ∩ GLn(R)β .

The subgroups GLn(R)α, α ∈ Φn are known in the literature as the standard
unipotent subgroups of GLn(R).

Abusing notion, we also let GLn(R) denote the single domain global action just
constructed.
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We recall the definition of an elementary matrix. If (i, j) ∈ Jn , let ei j denote
the n×n matrix whose (i, j)th entry is 1 and all other entries are 0. For r ∈ R, let
Ei j(r) = In + rei j , where In denotes the n× n identity matrix. Ei j(r) is called an
elementary matrix. The subgroup of GLn(R) generated by all elementary matrices
is called the elementary group and is denoted by En(R).

The map Jn � Φn, (i, j) 7→ {(i, j)}, tells us that any elementary matrix
is contained in some local group GLn(R)α. Conversely it follows from [6,
Lemma 9.14], that any local group GLn(R)α is generated by all elementary
matrices Ei j(r) such that (i, j) ∈ α. For this reason, we introduce the notation

En(R)α = GLn(R)α

and note that En(R) is generated by the groups En(R)α, as α ranges over Φn .

• The elementary global action. The elementary global action is the single
domain global action with underlying set the elementary group En(R). Its index
system Φn , local groups En(R)α, and structure homomorphisms θα6β are the
same as those of the general linear global action. The action of En(R)α on
En(R) is by right multiplication. Abusing notation, we also let En(R) denote
the single domain global action just constructed.

• The special linear global action. Suppose R is commutative. The special
linear global action is the single domain global action with underlying set
the special linear group SLn(R). Its index system Φn , local groups En(R)α,
and structure homomorphisms θα6β are the same as those of the elementary
or general linear global action. The action of En(R)α on SLn(R) is by right
multiplication. Abusing notation as usual, we also let SLn(R) denote the single
domain global action just constructed.

Clearly, the canonical inclusion En(R)→ GLn(R) and when R is commutative,
the canonical maps En(R) → SLn(R) → GLn(R) are morphisms of global
actions.

Before we describe the Steinberg global action, we recall the definition of the
Steinberg group, following [6, Section 5].

Recall that elementary matrices satisfy the following identities:

• Ei j(r) Ei j(s) = Ei j(r + s), for all r, s ∈ R;

• [Ei j(r) Ekl(s)] = 1, if j 6= k, i 6= l, r, s ∈ R;

• [Ei j(r) E jl(s)] = Eil(rs), if i 6= l, r, s ∈ R.

The Steinberg group Stn(R) of a ring R is the free group on the generators
X i j(r), (i, j) ∈ Jn, r ∈ R modulo the normal subgroup generated by substituting
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X i j(r) for Ei j(r) in the relations above. The assignment X i j(r) 7→ Ei j(r)
sends the relations among the generators of Stn(R) into valid identities between
elementary matrices and defines a canonical surjective group homomorphism
Stn(R)→ En(R).

• The Steinberg global action. The Steinberg global action is the single domain
global action with underlying set the Steinberg group Stn(R), index system Φn ,
and local groups Stn(R)α, α ∈ Φn where Stn(R)α is defined as the subgroup of
Stn(R) generated by all X i j(r) such that (i, j) ∈ α and r ∈ R. The action of
Stn(R)α on Stn(R) is by right multiplication. The structure homomorphisms
θα6β are by definition the natural inclusions Stn(R)α ⊆ Stn(R)β . Abusing
notation, we also let Stn(R) denote the single domain global action just
constructed.

Clearly the canonical surjective group homomorphism θn : Stn(R) → En(R)
described above is a morphism of global actions and maps each local group
Stn(R)α onto the corresponding local group En(R)α. The next proposition shows
that the maps of local groups are group isomorphisms and establishes a canonical
isomorphism Stn(R)→ colimα∈Φn En(R)α of global actions.

PROPOSITION 2.8. Let θn : Stn(R) → En(R) denote the canonical
homomorphism. Let E : Φn → Subgr(En(R)), α 7→ E(α) = En(R)α,
and let St : Φn → Subgr(Stn(R)), α 7→ St (α) = Stn(R)α. Clearly, E
and St preserve partial orderings and are functors with values in groups.
Obviously the homomorphism θn defines an inclusion preserving map
θ : Subgr(Stn(R))→ Subgr(En(R)), H 7→ θn(H), such that the diagram

Φn Subgr(Stn(R))

Subgr(En(R))

St

E
θ

commutes and induces a natural transformation τ : St → E of functors defined
by τα : Stn(R)α → En(R)α, x 7→ θn(x). The following holds:

(1) There is an action of the symmetric group Sn onΦn, Stn(R), and En(R) such
that the diagram above is Sn-equivariant.

(2) τ is a natural isomorphism St →̃ E of functors.
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(3) St and E preserve intersections.

(4) Give colimα∈Φn En(R)α its canonical, single domain global action defined
by the right action of each En(R)α on the colimit. Similarly give
colimα∈Φn Stn(R)α its canonical, single domain global action. Then the
canonical group homomorphisms

colim
α∈Φn

En(R)α ←− colim
α∈Φn

Stn(R)α −→ Stn(R)

are group isomorphisms and isomorphisms of global actions.

(5) the canonical map ⋃
α∈Φn

Stn(R)α →
⋃
α∈Φn

En(R)α

is bijective. (From this result, it follows by Definition 3.20 that θn : Stn(R)→
En(R) is a covering morphism of global actions. From here, it is not difficult
to show, for example along the lines of the proof of Corollary 3.24, that θn is
a simply connected covering morphism.)

Proof. (1) Let π =
(

1 2 ... n
(1)π (2)π ... (n)π

)
∈ Sn . To each element π , we associate the

permutation matrix Mπ , whose (i)π th column has zeros in all positions
except the i th position where it has 1.

We let the group Sn act on GLn(R) via conjugation by permutation matrices.
This action leaves En(R) invariant, because Ei j(r)π = Mπ−1 Ei j(r)Mπ =

E(iπ)( jπ) (r). This also shows that the action of Sn on En(R) preserves the
three relations above for elementary matrices. Thus the action of Sn on En(R)
uniquely lifts to an action of Sn on Stn(R) such that the homomorphism θn is
Sn-equivariant. We let Sn act on Jn in the obvious way, namely (i, j)π = (iπ,
jπ). There is clearly an induced action of Sn on Φn . It is obvious that the
maps E and St are Sn-equivariant. This completes the proof of (1).

(2) Let δ denote the nilpotent set

{(i, j) | i < j, 1 6 i, j 6 n} ⊂ Φn.

The set δ is a maximal nilpotent subset. It is easy to check that any nilpotent
subset is contained in a maximal nilpotent subset and that any maximal
nilpotent subset is conjugate under the action of Sn to δ.

To prove that τ is a natural isomorphism St →̃ E of functors, we must show
that for any α ∈ Φn , the surjective canonical homomorphism Stn(R)α →
En(R)α is injective as well. By the previous paragraph, we can assume that
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α ⊆ δ. By [6, Lemma 9.14], the map Stn(R)δ → En(R)δ is bijective. It
follows that the map Stn(R)α → En(R)α is bijective.

(3) Since the map Φn → Subgr(GLn(R)), α 7→ GLn(R)α, preserves
intersections and En(R)α = GLn(R)α, it follows that E preserves
intersections. Thus St preserves intersections, by (2).

(4) It follows immediately from (2) that the group homomorphism
colimα∈Φn En(R)α ←− colimα∈Φn Stn(R)α is an isomorphism. By the
definition of colimit, there is a canonical group homomorphism
colimα∈Φn Stn(R)α −→ Stn(R) and it is obviously surjective. Using the
definition of the Steinberg group by generators and relations, we can
construct straightforward an inverse to this homomorphism, since any
defining relation of Stn(R) is contained in some local subgroup Stn(R)α. It
is obvious that the group isomorphisms just establishes are isomorphisms of
global actions.

(5) Let x ∈ Stn(R)α and y ∈ Stn(R)β . Let γ = α∩β. Suppose θn(x) = θn(y). We
must show x = y. Clearly, θn(x) = θn(y) in En(R)γ . Let z ∈ Stn(R)γ be such
that θn(z) = θn(x). Since Stn(R)γ ⊆ Stn(R)α, it follows that x = z, because
the homomorphism Stn(R)α → En(R)α is bijective. Similarly, y = z.

The 4 single domain global actions above are examples of a geometric group.
It is defined next along with the related concepts of geometric set and geometric
coset space. Together they account for all of the single domain global actions
occurring in the current paper, as well as in the vector K -theory of quadratic and
Hermitian forms and the vector K -theory of Chevalley groups. The new topics
will be covered in separate papers.

DEFINITION 2.9. Let G be a group. LetΦ be an index set for a setΦ(G) = {Gα |

α ∈ Φ} of subgroups Gα of G. We give Φ(G) the reflexive, transitive relation
defined by the natural inclusion of one subgroup in another and Φ the relation
defined by its bijective correspondence with Φ(G). From this data we construct a
single domain global action as follows. Its underlying set is G, its index system is
Φ, its local groups are {Gα | α ∈ Φ} acting on G by right multiplication, and its
structure homomorphisms θα6β are the natural inclusions Gα ⊆ Gβ . We call this
global action a geometric group. If G is acting on a set X on the right, then we
equip X with the single domain global action whose index systemΦ, local groups
Φ(G), and structure homomorphisms θα6β are the same as those above and the
action of each local group Gα on X is the canonical one induced by the action of
G. We call this global action a geometric set of G. Suppose H is a subgroup of
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G. Let H \ G be the set of right cosets {Hg | g ∈ G} of H in G. Then G acts
on H \G on the right by multiplication and the resulting geometric set is called a
geometric coset space of G.

3. Elementary homotopy theory and covering theory

The results of this section are due to the first author.
The section summarizes in a convenient form constructions and results from

the homotopy theory and covering theory of global actions. Emphasis will be on
single domain global actions. The main result on covering theory is Theorem 3.23.
It classifies in a constructive way all connected coverings of a connected single
domain global action. It is used to deduce Theorem 1.1 of the Introduction.

3.1. The notion of homotopy. The most natural notion of homotopy is the
following.

Suppose A and B are global actions with underlying sets X and Y , respectively,
and index systemsΦA andΦB , respectively. If α ∈ ΦA and β ∈ ΦB , let Xα x Gα,
and Xβ x Gβ respectively denote the corresponding local group actions. Define
the product global action A × B as follows: its underlying set is the Cartesian
product X × Y of sets and its index system the Cartesian product ΦA × ΦB with
relation defined by (α, β) 6 (α′, β ′) if and only if α 6 α′ and β 6 β ′. The local
set (X × Y )(α,β) is the Cartesian product Xα × Yβ and the local group G(α,β) is
the product group Gα ×Gβ . Its action on (X × Y )(α,β) is the obvious one, namely
coordinatewise.

Let L denote the line action, see Section 2, with underlying set Z. For n ∈ Z,
let ιn : Y → Y × L , y 7→ (y, n). This assignment clearly defines a morphism
ιn : B → B × L of global actions.

DEFINITION 3.1. Morphisms f, f ′ ∈ Mor(B, A) are called homotopic if there
is a morphism H : B × L → A of global actions and integers n− 6 n+ such
that for all n 6 n−, f = H ιn = H ιn− and for all n+ 6 n, f ′ = H ιn = H ιn+ . The
morphism H is called, as in topology, a homotopy from f to f ′. If f is homotopic
to f ′, we write f ∼ f ′.

In situations such as that of paths, a concept of homotopy which leaves certain
points fixed is needed. We define this for paths next.

3.2. End-point-preserving homotopy of paths and the fundamental group.
The goal of this section is to define end-point-preserving homotopy of paths and
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to define the fundamental group functor π1. We also define the path-connected
component functor π0.

Throughout this section, A and B denote global actions with underlying sets X
and Y , respectively, and L the line action.

The easiest way of defining a path in A is as a finite sequence x0, . . . , xn of
points xi ∈ X such that for each i < n there is an element gi in a local group Gα

of A such that xi ∈ Xα and xi gi = xi+1. However, this definition of path is far too
rigid for our purposes. The following definition has the pliability we need.

DEFINITION 3.2. Let ω : L → A be a morphism. We say that it stabilizes below
or negatively if there is an integer n− such that for all n 6 n−, ω(n) = ω(n−). In
this case, we say that ω stabilizes below or negatively to x = ω(n−). Similarly we
say that ω stabilizes above or positively if there is an integer n+ such that for all
n > n+, ω(n) = ω(n+). In this case, we say that ω stabilizes above or positively to
x = ω(n+). A path is a morphism ω : L → A which stabilizes below and above.
A loop is a path which stabilizes below and above to the same element of X .

A path ω : L → A is called constant if ω(m) = ω(n) for all m, n ∈ Z. If ω is
not constant, then it is always the case that n− < n+. On the other hand, if ω is
constant then n− and n+ can be any integer. For this reason, we exclude constant
paths from the following definition.

DEFINITION 3.3. Let ω denote a nonconstant path. The lower degree of ω is
defined by

`d(ω) = sup{n− ∈ Z | ω(n) = ω(n−) for all n 6 n−}.

The upper degree of ω is defined by

ud(ω) = inf{n+ ∈ Z | ω(n) = ω(n+) for all n > n+}.

Next we define the notion of composition for paths.

DEFINITION 3.4. Let ω and ω′ be paths. Define the initial point (in X ) of a
nonconstant path ω by

in(ω) = ω(`d(ω)).

Define the terminal point of a nonconstant path ω by

ter(ω) = ω(ud(ω)).

Define the initial and terminal points of a constant path ω taking the constant
value x ∈ X by

in(ω) = ter(ω) = x .
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The composition ω · ω′ of paths ω and ω′ exists if ter(ω′) = in(ω) and is defined
as follows:

(ω · ω′) =

{
ω if ω′ is constant
ω′ if ω is constant.

If ω and ω′ are nonconstant then

(ω · ω′)(n) =

{
ω′(n) for all n 6 ud(ω′)
ω(n − ud(ω′)+ `d(ω)) for all n > ud(ω′).

DEFINITION 3.5. Let

P(A) = {ω : L → A | ω a path}.

Under composition of paths, P(A) is an associative, partial magma with local
identities. That is: (i) Let ω,µ, ν ∈ P(A). If either (ω · µ) · ν or ω · (µ · ν) is
defined then both are defined and (ω · µ) · ν = ω · (µ · ν). (ii) The constant paths
are the local identities.

DEFINITION 3.6. Points p, p′ ∈ A are called path-connected, if there is a path
ω ∈ P(A) such that in(ω) = p and ter(ω) = p′. In this case, we write p ∼ p′.
The relation path-connected for ordered pairs of points p, p′ ∈ A is obviously
reflexive and transitive. If ω ∈ P(A), define its inverse (or reverse) path ω−1 by

ω−1(n) = ω(−n).

Clearly in(ω−1) = ter(ω) and ter(ω−1) = in(ω). Thus if p, p′ ∈ A and ω tells us
that p ∼ p′, then ω−1 tells us that p′ ∼ p. Thus the relation path-connected is
symmetric and therefore an equivalence relation on ordered pairs of points of A.
Let

π0(A)

be the set of equivalence classes of ∼. Each equivalence class is called a path-
connected component of ∼. If A is equipped with a base point a, let

π0(A, a) = π0(A)

with base point the path connected component of a.

We turn now to the notion of end-point-preserving homotopy for paths.

DEFINITION 3.7. A homotopy H : L × L → A of paths is called end-point-
preserving or a path-homotopy, if for any n ∈ Z, H ιn is a path and if for all
m, n ∈ Z,

in(H ιm) = in(H ιn) and ter(H ιm) = ter(H ιn).
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Let H : L × L → A be a path-homotopy. Let n− 6 n+ be integers and let ω and
ω′ be paths with the same initial and terminal points such that ω = H ιn for all
n 6 n− and ω′ = H ιn for all n > n+. Then we say that ω is end-point-preserving
homotopic or path-homotopic to ω′ and write ω ∼ ω′.

The notion of homotopy for morphisms and of end-point-preserving homotopy
for paths are generalizations of the notion of path and both notions of homotopy
above have a notion of composition extending that for paths. Whereas a path is
a formal notion for moving a point around in a global action A, the notions of
homotopy and path-homotopy are formal notions for moving around as well as
deforming larger objects inside A.

A homotopy H : B × L → A is called constant, if H ιm = H ιn for all m, n.

DEFINITION 3.8. Let H be a nonconstant homotopy. The lower degree of H is
defined by

`d(H) = sup{n− ∈ Z | H ιn = H ιn−for all n 6 n−}.

The upper degree of H is defined by

ud(H) = inf{n+ ∈ Z | H ιn = H ιn+for all n > n+}.

Next we define the notion of composition of homotopies.

DEFINITION 3.9. Let H : B×L→ A be a homotopy. Define the initial morphism
(in Mor(B, A)) of a nonconstant homotopy H by

in(H) = H ι`d(H).

Define the terminal morphism (in Mor(B, A)) of a nonconstant homotopy H by

ter(H) = H ιud(H).

Define the initial and terminal morphisms of a constant homotopy H taking the
constant value f ∈ Mor(B, A) by

in(H) = ter(H) = f.

If H is an end-point-preserving homotopy of paths then in(H) is called the initial
path and ter(H) the terminal path.
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The composition H · H ′ of homotopies H, H ′ : B × L → A exists if ter(H ′) =
in(H) and is defined as follows:

(H · H ′) =

{
H if H ′ is constant
H ′ if H is constant.

If H and H ′ are nonconstant then

(H · H ′)(b, n) =

{
H ′(b, n) for all n 6 ud(H ′)
H(b, n − ud(H ′)+ `d(H) for all n > ud(H ′).

The composition H ·H ′ of end-point-preserving homotopies H, H ′ : L×L→ A
of paths exists if ter(H ′) = in(H) (this implies that for all m, n, in(H ιm) =
in(H ιn) = in(H ′im) = in(H ′ιn) and ter(H ιm) = ter(H ιn) = ter(H ′ιm) =
ter(H ′ιn)) and is defined as follows:

(H · H ′) =

{
H if H ′ is constant
H ′ if H is constant.

If H and H ′ are nonconstant then

(H · H ′)(b, n) =

{
H ′(b, n) for all n 6 ud(H ′)
H(b, n − ud(H ′)+ `d(H) for all n > ud(H ′).

DEFINITION 3.10. If H : B × L → A is a homotopy or end-point preserving
homotopy of paths (in which case B = L), define the inverse or reverse homotopy
H−1 by

H−1(b, n) = H(b,−n).

Clearly inH−1
= terH and terH−1

= inH . Thus if f, f ′ ∈ Mor(B, A) and H
tells us that f ∼ f ′, then H−1 tells us that f ′ ∼ f . Thus the homotopy relation
on Mor(B, A) is symmetric and therefore an equivalence relation. Similarly the
relation of end-point-preserving homotopy on P(A) is an equivalence relation.

REMARK 3.11. It is obvious that composition of homotopies is a generalization
of that of paths. In fact, we can use the exponential map Hom(B × L , A) →
Hom(L ,Hom(B, A)) of global actions in [1], Section 3, to interpret each
homotopy H : B × L → A as a path ωH ∈ P(Mor(B, A)) and then use
composition of paths to define composition of homotopies.
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DEFINITION 3.12. Let a ∈ A be a base point for A. A loop at a is a path ω ∈
P(A) such that in(ω) = ter(ω) = a. Two loops at a are called loop-homotopic, if
they are end-point preserving homotopic. Define

L(A, a) = {ω ∈ P(A) | ω a loop at a}.

Clearly two loops at a are composable. By Definition 3.5, L(A, a) is a monoid
with identity the constant loop at a. Define the fundamental monoid Π1(A, a) at
a, by

Π1(A, a) = L(A, a).

Mimicking standard arguments in topology, we can show that the equivalence
relation of loop-homotopy for loops at a commutes with composition of loops.
Moreover, for any loop ω at a, its inverse loop ω−1 has the property that ω ·ω−1

∼

ω−1
· ω ∼ the constant loop at a. Thus the loop-homotopy classes of loops at a

form a group
π1(A, a)

under composition called the fundamental group of (A, a). Furthermore the
canonical map Π1(A, a) → π1(A, a) is a surjective monoid homomorphism.
(A, a) is called simply connected, if A is path connected and π1(A, a) = 1.

The following corollary is worth taking note of, although it is not required in
the rest of the paper. Its proof is routine and left to the reader.

COROLLARY 3.13. The path-homotopy classes of paths of P(A) form a groupoid

FG(A)

under composition of paths called the fundamental groupoid of A. It is an
associative partial magma and the canonical surjective map P(A) → FG(A)
is a morphism of associative partial magmas.

3.3. Loop-homotopy of higher loops and higher homotopy groups.
Throughout this subsection, A denotes a global action with base point a.

Let L denote the line action. For 1 6 i 6 n, let L i = L . Set

Ln
= L1 × · · · × Ln.

DEFINITION 3.14. An n-dimensional loop or simply n-loop at a is a morphism
ω : Ln

→ A such that ω(z) = a for almost all z ∈ Ln . Let

Ln(A, a) = {ω | ω an n-loop at a}.

Clearly L1(A, a) = L(A, a) as defined in 3.12.
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We show next how to compose n-loops.

DEFINITION 3.15. Let ω be a nonconstant n-loop at a. The lower degree of ω is
defined by

`d(ω)= sup{(zn)− ∈ Z |ω(z1, . . . , zn)= a for all zn6(zn)− and all z1, . . . , zn−1}.

The upper degree of ω is defined by

ud(ω) = inf{(zn)+ ∈ Z |ω(z1, . . . , zn) = a for all zn>(zn)+ and all z1, . . . , zn−1}.

DEFINITION 3.16. The composition ω · ω′ of n-loops ω,ω′ at a is defined as
follows:

(ω · ω′) =

{
ω if ω′ is constant
ω′ if ω is constant.

If ω and ω′ are nonconstant, then define

(ω · ω′)(z1, . . . , zn) =

{
ω′(z1, . . . , zn) for all n 6 ud(ω′)
ω(z1, . . . , zn−ud(ω′)+`d(ω)) for all n > ud(ω′).

DEFINITION 3.17. We extend the notion of loop-homotopy of 1-loops to n-loops.
A loop-homotopy H : Ln

× L → A is a homotopy such that H ιn is an n-loop
for all n. It follows from Definition 3.10 that loop-homotopy is an equivalence
relation on n-loops at a.

DEFINITION 3.18. By Definition 3.16, n-loops at a are composable. Composition
is trivially associative and has an identity, namely the constant n-loop at a. Thus
Ln(A, a) is a monoid. Define the nth fundamental monoid

Πn(A, a) = Ln(A, a).

Mimicking standard arguments in topology, we can show that the equivalence
relation of loop-homotopy of n-loops at a commutes with composition of n-loops
at a. Moreover, for any n-loop ω, its inverse loop ω−1 defined by

ω−1(z1, . . . , zn−1, zn) = ω(z1, . . . , zn−1,−zn)

has the property that ω · ω−1
∼ ω−1

· ω ∼ the constant loop at a. Thus the loop-
homotopy classes of n-loops at a form a group

πn(A, a)

https://doi.org/10.1017/fms.2019.30 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.30


Global actions and vector K -theory 21

under composition called the nth homotopy group of (A, a). Furthermore the
canonical map Πn(A, a) → πn(A, a) is a surjective monoid homomorphism.
(A, a) is called n-simply connected, if A is path-connected and πi(A, a) = 1 for
all 1 6 i 6 n.

3.4. The unimodular row global action and its simply connected covering.
This subsection draws heavily on [2, Section 11]. We begin by defining the
unimodular row global action and computing its path-connected components.

The unimodular row global action. The unimodular row global action has as
underlying set Umn(R), the set of all R-unimodular row vectors v = (v1, . . . , vn)

of length n, with coefficients vi ∈ R. Recall that v is unimodular means there is a
row vectorw = (w1, . . . , wn) such that v ·wt

=
∑

i viwi = 1, where t denotes the
transpose operator on (not necessarily square) matrices. The general linear group
GLn(R) acts on Umn(R) on the right, in the usual way. The index system Φn and
local groups En(R)α, α ∈ Φn , of the unimodular row global action are the same
as those of the global action GLn(R). Each local set is the whole of Umn(R) and
the right action of each local group En(R)α on Umn(R) is via that of GLn(R) on
Umn(R). Abusing notation, we also let Umn(R) denote the single domain global
action we just described. We give Umn(R) the base point e = (1, 0, . . . , 0). In
the language of Definition 2.9, Umn(R) is a geometric set of the geometric group
GLn(R).

PROPOSITION 3.19. The path-connected component of e in Umn(R) is the orbit
eEn(R) of the right action of En(R) at e. π0(Umn(R)) = Umn(R)/En(R) =
the orbit space of the right action of En(R) on Umn(R). π0(Umn(R), e) =
Umn(R)/En(R) with base point eEn(R).

Proof. We prove that v,w belong to the same path-component of Umn(R) if and
only if there exists ε ∈ En(R) such that vε = w, i.e. if and only if vEn(R) =
wEn(R).

Let v,w ∈ Umn(R) belong to the same path-component and let ω be a path
from v to w. As ω is a morphism of global actions, there exist εi ∈ En(R)αi

,

1 6 i 6 N , such that vε1 · · · εN = w. Then ε :=
∏

i εi ∈ En(R) has the property
that vε = w.

Conversely suppose w = vε, for some ε ∈ En(R). By definition, there exist
elementary matrices E1, . . . , Ek such that ε =

∏
i Ei . As each Ei lies in some

local group, we can trivially define a path from v to w. Thus, π0(Umn(R)) =
Umn(R)/En(R).

From the above it follows that the path-connected component of the base point
e is eEn(R).
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We introduce next a global action structure on the path-connected component
eEn(R) of e.

• The elementary unimodular row global action. Let EUmn(R) = eEn(R).
Clearly EUmn(R) ⊆ Umn(R). The action of each local group En(R)α, α ∈
Φn , on Umn(R) leaves EUmn(R) invariant and induces a single domain action
on EUmn(R), whose index system and local groups are the same as those of
Umn(R). Abusing notation, as usual, we also let EUmn(R) denote this global
action. It is called the elementary unimodular row global action. We give it the
base point e. In the language of Definition 2.9, EUmn(R) is a geometric set of
En(R).

• The Steinberg unimodular row global action. Let Pn(R) denote the subgroup
of GLn(R) which leaves e fixed. Clearly each matrix in Pn(R) takes the form(

1 0
v τ

)
, for some v ∈ Mn−1,1(R), τ ∈ GLn−1(R).

Let EPn(R) = Pn(R) ∩ En(R). Give the right coset space E Pn(R) \ En(R)
a single domain action structure defined by letting each local group En(R)α,
α ∈ Φn, act naturally by right multiplication on E Pn(R) \ En(R). Let
E Pn(R) \ En(R) also denote the resulting single domain global action. In
the language of Definition 2.9, it is a geometric coset space of En(R). Let the
trivial coset E Pn(R) be the base point of E Pn(R) \ En(R). Clearly the map
En(R) → EUmn(R), ε 7→ eε, defines a base point preserving isomorphism
E Pn(R) \ En(R) ∼= EUmn(R) of global actions. We shall construct the
Steinberg unimodular row global action as a global action with a canonical
morphism onto E Pn(R) \ En(R).

Let θn : Stn(R)→ En(R) denote the canonical morphism. Let

Bn(R) = 〈x−1abx ∈ θ−1
n (EPn(R)) | x ∈ Stn(R),

a ∈ Stn(R)α, b ∈ Stn(R)β, α, β ∈ Φn〉.

Give the right coset space Bn(R) \ Stn(R) a single domain action structure
by letting each local group Stn(R)α, α ∈ Φn, act naturally by right
multiplication on Bn(R) \ Stn(R). Let the trivial coset Bn(R) be the base
point of Bn(R) \ Stn(R). Clearly θn induces a canonical base point preserving
morphism Bn(R) \ Stn(R) → E Pn(R) \ En(R) of global actions. Define the
Steinberg unimodular row global action StUmn(R) to be the single domain
global action Bn(R) \ Stn(R) with base point the trivial coset Bn(R). In the
language of Definition 2.9, StUmn(R) is a geometric coset space of Stn(R).

The main result of this subsection is that the canonical map StUmn(R) →
EPn(R) \ En(R) is a simply connected covering morphism. To state and prove
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this result, we need the notion of star global action star(x) at a point x of a global
action and the notion of covering morphism.

DEFINITION 3.20. Let A be a global action with underlying set X , index system
Φ, local actions Xα x Gα, α ∈ Φ, and structure homomorphisms θα6β . If x ∈ X ,
define the star global action star(x) at x as follows: Its index system Φstar(x) =

{α ∈ Φ | x ∈ Xα} equipped with the reflexive relation inherited as a subset of Φ
and its underlying set

Xstar(x) =
⋃

α∈Φstar(x)

x · Gα.

If α ∈ Φstar(x), let (Xstar(x))α = xGα and (Gstar(x))α = Gα. If α 6 β ∈ Φstar(x), let
the structure homomorphism (θstar(x))α6β = θα6β . (Even if A is a single domain
global action, star(x) usually is not.)

DEFINITION 3.21. A morphism f : A → B of global actions is surjective, if it
is a surjective map on the underlying sets. A base point preserving surjective
morphism f : (A, a) → (B, b) of path connected global actions is called a
covering morphism, if for every x ∈ X A, the induced map f : star(x) →
star( f (x)) is an isomorphism of global actions. A covering morphism (A, a)→
(B, b) is called simply connected, if (A, a) is simply connected.

Theorem 1.1 is a trivial consequence of the following result.

THEOREM 3.22. The canonical morphism

Bn(R) \ Stn(R)→ EPn(R) \ En(R)

is a simply connected covering morphism. Let θn : Stn(R) → En(R) denote the
canonical morphism. Let

P̃n(R) = θ−1
n (EPn(R)).

Then Bn(R) ⊆ P̃n(R) as a normal subgroup and there is a short exact sequence

Bn(R) \ P̃n(R)� Bn(R) \ Stn(R)� EPn(R) \ En(R)

of canonical morphisms and a canonical group isomorphism

K2(Umn(R)) ∼= Bn(R) \ P̃n(R).

We deduce the theorem above from a very useful and very general result,
essentially proved in [2], having applications far beyond the scope of the current
paper. The result classifies in a constructive way all connected coverings of a
connected single domain global action.
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THEOREM 3.23. Classification of coverings of connected single domain global
actions (following [2, 11.2]). Let A be a pointed, path-connected single domain
global action. Following the notation of [2], let

G A = colim
α∈Φ

Gα.

Let X be the underlying set of A and let a ∈ X be the base point of A. Thanks to
the compatibility condition of A, there is a canonical action of G A on X. Let

HA

be the subgroup of G A of all elements which leave the base point a fixed. Give
the right coset space HA \G A the single domain global action obtained by letting
each local group Gα, α ∈ Φ, of A act by right multiplication on HA \G A. Let
the trivial coset HA be the base point of HA \G A. The group G A itself is a path
connected, single domain global action, with the same index system Φ as A and
the same local groups Gα, α ∈ Φ, as A, acting by right multiplication on G A. The
canonical morphism G A → X, g 7→ ag, of global actions is surjective because
A is path connected and induces a base point preserving isomorphism

HA \G A
∼= A

of pointed, path connected, global actions. Let

BA = 〈ggαgβg−1
| ggαgβg−1

∈ HA, g ∈ G A, gα ∈ Gα, gβ ∈ Gβ, α, β ∈ Φ〉

and
HA = {H ∈ Subgr(G A) | BA ⊆ H ⊆ HA}.

Clearly BA is a normal subgroup of HA. The assertion of [2, Proposition 11.2] is
that each morphism of {H \G A → HA \G A | H ∈ HA} is a covering morphism
and there is a 1-1 correspondence between the morphisms in the set above and
the isomorphism classes of covering morphisms of (A, a).

Proof. [2, 11.2] defines HA as {H ∈ Subgr(G A) | H ⊆ HA, gHg−1
∩ GαGβ =

gHAg−1
∩ GαGβ,∀g ∈ G A,∀α, β ∈ Φ}. We shall show that the definition of

HA in [2, 11.2], agrees with that given in the theorem above. The conclusion of
the theorem above will then follow trivially from that of [2, Proposition 11.3].
Clearly the condition gHg−1

∩GαGβ = gHAg−1
∩GαGβ holds⇔ the condition

H ∩ g−1αGβg = HA ∩ g−1GαGβg holds. But the latter condition holds ∀g ∈ G A

and ∀α, β ∈ Φ⇔ BA ⊆ H . Thus the definitions of HA in [2, 11.2] and the current
paper coincide.
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The following corollary is alluded to in [2, 11.2].

COROLLARY 3.24. Maintain the hypothesis of the theorem above. Then the
canonical morphism

BA \G A → HA \G A
∼= A

is a simply connected covering morphism and there is a canonical short exact
sequence

π1(A, a)� BA \G A � HA \G A

which identifies the group π1(A, a) with the group BA \ HA.

Proof. By [2, 10.17] and the theorem above, there is an H ∈ HA such that the
canonical morphism H \G A → HA \G A is a simply connected covering. We
shall show BA = H . Since the composite morphism BA \G A → H \G A →

HA \G A is a covering morphism, it follows from [2, Proposition 10.10] that
f : BA \G A → H \G A is also a covering morphism. Since H \G A is simply
connected, there is by [2, Proposition 10.11 and Lemma 10.4] a unique surjective
morphism f̃ : H \G A → BA \G A such that f f̃ = identity map on H \G A.
Suppose BA ( H . Then f has a nontrivial kernel and so f f̃ also has a nontrivial
kernel, because f̃ is surjective. This contradicts that f f̃ = identity. So BA = H .

The short exact sequence follows now from the covering theory of [2,
Section 10].

Proof of Theorem 3.22. By Proposition 2.8.4, the canonical group homomor-
phism colimα∈ΦStn(R)α → Stn(R) is a group isomorphism. It follows trivially
that it is a global action isomorphism. This makes the theorem a special case of
Corollary 3.24.

Part II: Stability in algebraic K -theory
and vector K -theory

4. Stability in K -theory and the fundamental group of the unimodular row
global action

In this section we construct certain K -theoretic (or homotopy theoretic) exact
sequences of pointed sets and prove Theorem 1.3. Under suitable conditions on
the stable rank or dimension of a ring R, some exact sequences of pointed sets
are exact sequences of groups. The sandwiching of π1(EUmn(R)) in an exact
sequence of groups helps us to make conclusions (in certain situations) about the
vanishing of π1(EUmn(R)).
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4.1. A K2, π1, K1, π0, K0 pointed exact sequence. Notation is as in the
Introduction. Let R be a ring. Let K s

0,m(R) be the set of all isomorphism classes
of finitely generated projective left R-modules P such that P ⊕ R ' m+1 R. The
base point of K s

0,m(R) is the isomorphism class of m R.
Groups and coset spaces will have their standard base points, namely the

identity element and the trivial coset, respectively.
Recall that by definition Ki(Umn(R))= πi−1(Umn(R). However, in this section

we shall occasionally write πi−1(Umn(R)) instead of Ki(Umn(R)).

PROPOSITION 4.1. Let R be a ring and n > 3 be an integer. Then, there is an
exact sequence of pointed sets

(K2,n(R))2
δ
−→ K2,n(R)

η
−→ K2(Umn(R))

µ
−→ (K1,n−1(R))2 \ K1,n−1(R)

λ
−→

K1,n(R)
α
−→ K1(Umn(R))

β
−→ K s

0,n−1(R)→ 0

where the base point of K1(Umn(R)) (= π0(Umn(R))) is [e] and by definition,

K2(Umn(R)) = π1(EUmn(R))
(K2,n(R))2 = K2,n(R) ∩ Bn(R)

(K1,n−1(R))2 = En−1(R) \ (GLn−1(R) ∩ (BEPn(R)))

and Bn(R) and BEPn(R) are defined as in the Introduction. The maps in the exact
sequence are defined as exactness is being proved.

Proof. Exactness at K2,n(R). The map δ is the natural inclusion map. Define η :
K2,n(R) → π1(EUmn(R)) by η(Y ) = Bn(R)Y . Exactness at K2(R) is clearly
trivial.

Exactness at K2(Umn(R)) and (K1,n−1(R))2 \ K1,n−1(R). We define the maps λ
and µ, in that order. λ : K1,n−1(R))2 \ K1,n−1(R)→ K1,n(R) is easy. It is induced
by the diagonal inclusion of GLn−1(R)→ GLn(R), σ 7→

(
1 0
0 σ

)
. We define the map

µ : π1(EUmn(R)) → (K1,n−1(R))2 \ K1,n−1(R). Recall that by Theorem 3.22,
π1(EUmn(R)) ' Bn(R) \ P̃n(R). Obviously the canonical homomorphism
θn : Stn(R) → En(R) defines a surjective morphism Bn(R) \ Stn(R) →
BEPn(R) \ En(R), Bn(R)x 7→ BEPn(R)θn(x), of global actions, whose kernel is
Bn(R) \ Bn(R)K2,n(R). Given σ ∈ EPn(R), there exists a unique τ ∈ GLn−1(R)
such that σ =

(
1 0
v τ

)
∈ En(R). Clearly τ ∈ GLn−1(R) ∩ En(R) and defines an

element En−1(R)τ of K1,n−1(R), which we denote by [σrd], the class of the
right diagonal of σ. If x ∈ P̃n(R), let ∆(x) = [θn(x)rd]. It is straightforward to
check that ∆(Bn(R)) = K1,n−1(R)2 and that ∆ induces a morphism, denoted by
µ : Bn(R) \ P̃n(R)→ (K1,n−1(R))2 \ K1,n−1(R) of global actions. Examining µ,
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it is clear that Ker(µ) = K2,n(R)∩Bn(R)). This proves exactness at K2(Umn(R)).
Moreover, image(µ) = K1,n−1(R)2 \ (En−1 \GLn−1(R)∩ En(R)) = Ker(λ). This
proves exactness at K1,n−1(R))2 \ K1,n−1(R).

Exactness at K1,n(R). Let σ ∈ GLn(R) represent the element [σ ] ∈ K1(R). By
definition, α([σ ]) = [eσ ]. Clearly [eσ ] = [e] ⇔ σ ∈ Pn(R)En(R) ⇔ [σ ] ∈
image(λ).

Exactness at K1(Umn(R)). Define α : K1,n(R) → K1(Umn(R)) by [σ ] 7→ eσ.
This map is well defined because, if ε ∈ En(R) then eσε and eσ are in the
same path-connected component. Clearly this map preserves base points. Define
β : K1(Umn(R)) → K s

0,n−1(R) as follows. If v ∈ Umn(R), define the R-linear
map βv : nR → R, w 7→ w · vt

=
∑

i viwi . Since v is unimodular, there is a
w ∈ nR such that βv(w) = 1. Thus βv is surjective and Ker(βv) ∈ K s

0,n−1(R).
Define β(v) = [Ker(βv)]. If σ ∈ GLn(R) then Ker(βvσ ) ∼= Ker(βv). Taking
σ ∈ En(R), we obtain that β is well defined. Clearly β(e) = [n−1 R], so β is base
point preserving. Furthermore, βα(σ) = β(eσ) = β(e) = [n−1 R]. Conversely,
if β(v) ∼= [n−1 R], then there is an element σ ∈ GLn(R) such that vσ = e. This
proves exactness at K1(Umn(R)).

Exactness at K s
0,n−1(R). This is trivial.

We recall some results regarding injective and surjective stability of Volodin
algebraic K-groups of commutative rings.

THEOREM 4.2. Let R be a commutative ring such that the maximal ideal space
of R is a Noetherian space of dimension 6 d (for example R is a commutative,
Noetherian ring of Krull dimension at most d). Then:

(1) The canonical map K1,n(R)→ K1,n+1(R) is a group homomorphism for all
n > 3 and is surjective (respectively bijective), if n > d + 1 (respectively
n > d + 2). ([3], [4] and [9])

(2) The canonical map K2,n(R) → K2,n+1(R) is surjective (respectively
bijective), if n > d+2 (respectively n > d+3). ([4]) If R is a Dedekind ring of
arithmetic type with infinitely many units (as in Bass–Milnor–Serre [5]), then
the map K2,2(R)→ K2,3(R) is surjective and the map K2,3(R)→ K2,4(R)
bijective.

We deduce an interesting corollary of the result above.

COROLLARY 4.3. Let R be a commutative ring such that the maximal ideal space
of R is a Noetherian space of dimension 6 d. Then, K2(Umn(R)) = 1, for all
n > d + 3.
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Proof. Note that n > d+3 implies that K1(Umn(R))= 1. This gives the following
exact sequence of groups:

(K2,n(R))2 → K2,n(R)→ K2(Umn(R))
→ (K1,n−1(R))2 \ K1,n−1(R)→ K1,n(R)→ 1.

Noting that (K2,n(R))2 contains the image(K2,n−1(R)→ K2,n(R)), we have

K2,n(R)
(K2,n(R))2

'
K2,n(R)/image(K2,n−1(R)→ K2,n(R))
(K2,n(R))2/image(K2,n−1(R)→ K2,n(R))

.

Thus,

K2,n(R)
(K2,n(R))2

'
cokernel(K2,n−1(R)→ K2,n(R))

(K2,n(R))2/image(K2,n−1(R)→ K2,n(R))
.

This gives the following exact sequence of groups:

1→
cokernel(K2,n−1(R)→ K2,n(R))

(K2,n(R))2/image(K2,n−1(R)→ K2,n(R))
→ K2(Umn(R))

→
ker(K1,n−1(R)→ K1,n(R))

(K1,n−1(R))2
→ 1.

That K2(Umn(R))(= π1(EUmn(R))) = 1 for all n > d + 3 now follows from
Theorem 4.2.

COROLLARY 4.4. Let R be a Dedekind ring of arithmetic type with infinitely
many units. Then, π1(EUmn(R)) = 1 for all n > 3.

Proof. Follows from the corresponding stability results for Dedekind rings of
arithmetic type with infinitely many units.
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