
In a recent article McArdle and Prescott (2005)
showed how simultaneous estimation of the bio-

metric parameters can be easily programmed using
current mixed-effects modeling programs (e.g., SAS
PROC MIXED). This article extends these concepts to
deal with mixed-effect modeling of longitudinal twin
data. The biometric basis of a polynomial growth
curve model was used by Vandenberg and Falkner
(1965) and this general class of longitudinal models
was represented in structural equation form as a
latent curve model by McArdle (1986). The new
mixed-effects modeling approach presented here
makes it easy to analyze longitudinal growth-decline
models with biometric components based on stan-
dard maximum likelihood estimation and standard
indices of goodness-of-fit (i.e., χ2, df, εa). The validity
of this approach is first checked by the creation of
simulated longitudinal twin data followed by numeri-
cal analysis using different computer programs (i.e.,
Mplus, Mx, MIXED, NLMIXED). The practical utility of
this approach is examined through the application of
these techniques to real longitudinal data from the
Swedish Adoption/Twin Study of Aging (Pedersen et
al., 2002). This approach generally allows researchers
to explore the genetic and nongenetic basis of the
latent status and latent changes in longitudinal scores
in the absence of measurement error. These results
show the mixed-effects approach easily accounts for
complex patterns of incomplete longitudinal or twin
pair data. The results also show this approach easily
allows a variety of complex latent basis curves, such
as the use of age-at-testing instead of wave-of-
testing. Natural extensions of this mixed-effects
longitudinal approach include more intensive studies
of the available data, the analysis of categorical longi-
tudinal data, and mixtures of latent growth-survival/
frailty models.

Much of the recent statistical literature in behavioral
science uses mixed-effects multilevel algorithms
(MEMA; e.g., Bryk & Raudenbush, 1992; Goldstein,
1995; McArdle & Hamagami, 1996). The MEMA
calculation can be seen as a variance components
approach with the added potential of a restricted

structure on the means (i.e., as in repeated measures
ANOVA). In a recent paper Guo and Wang (2002)
described some interesting behavior genetic type
applications of MEMA, including modeling with mul-
tivariable family data (using SAS PROC MIXED).
However, simultaneous estimates of the key parame-
ters representing genetic and nongenetic sources of
variation among individuals from twin data were not
included in their approach. Subsequently, McArdle
and Prescott (2005) showed how simultaneous esti-
mation of the biometric parameters can be easily
programmed using current MEMA programs (e.g.,
SAS PROC MIXED). The communalities among path
analysis models (PAM) and variance component
models (VCM) fitted using structural equation model-
ing algorithms (SEMA) suggested ways standard
MEMA programs could be constructed to yield iden-
tical statistical information and substantive
inferences. This offered an easy way to include mea-
sured covariates, observed variable interactions, and
multiple relatives within each family. Available soft-
ware such as Mplus (Muthén & Muthén, 2002;
Prescott, 2004), Mx (Neale et al., 1999), and PROC
MIXED (Littell et al., 1996; SAS, 1991) were com-
pared for programming complex models, including
the flexibility of data input, treatment of missing
data, inclusion of covariates, and ease of accommo-
dating varying numbers of observations (per family or
individual). This convergence of techniques showed
alternative ways researchers using behavior genetic
designs can choose alternative models and programs,
and suggested different options would be useful for
different kind of problems.

This article extends these biometric concepts and
deals with mixed-effect multilevel modeling concepts
for longitudinal twin data. The biometric basis of a
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polynomial growth curve model was used by
Vandenberg and Falkner (1965) and this general class
of longitudinal models was represented as a latent
curve model (LCM) by McArdle (1986). The benefits
of writing the LCM as structural equation modeling
(SEM) include the use of available SEMA software
(e.g., LISREL by Jöreskog & Sörbom, 1984), and
computing of standard maximum likelihood estima-
tion (MLE) and standard indices of goodness-of-fit
(i.e., χ2, df, εa). Over the past 20 years there have been
several substantive applications of this LCM-twin
approach (e.g., Finkel at al., 2003; Johansson et al.,
2004; McArdle et al., 1998; McGue & Christensen,
2002; Reynolds et al., 2005), and further methodolog-
ical research (e.g., McArdle & Hamagami, 2003;
Neale & McArdle, 2000). Other longitudinal SEM
based primarily on autoregressive structures have been
considered as well (Baker et al., 1983; Boomsma et al.,
1989; Dolan et al., 1991).

In the first section of this article we overview the
basic MEMA equations for twin data, show how the
standard longitudinal LCM can be reparameterized in
terms of orthogonal variance components, and then
combine both approaches into a LCM-twin model. This
clarifies how we can interpret and make inferences about
the biometric components of change in longitudinal twin
analysis. Simulated longitudinal twin data are used to
illustrate the required programming (scripts available)
and examine the numerical outcomes of different com-
puter programs (i.e., Mplus, MIXED, NLMIXED).

In the second section we demonstrate the utility of
these models by applying this approach to longitudi-
nal data from the Swedish Adoption/Twin Study of

Aging (SATSA; Pedersen et al., 2002). The kinds of
problems considered here are illustrated in the plots of
Figure 1 using SATSA data. To simplify these plots we
only present a 50% random sample of families and
only one person from each family. The first Figure 1a is
a cross-sectional scatter plot of the scores on Age and
Information scores at the first wave for a sample of
persons (mean age 71.8, range 65–88). A simple linear
regression line is included to show a small age decline
found in the Information score at these ages (but R2 ~
.02). In contrast, Figure 1b is a longitudinal trajectory
plot of the Information score at the age of measurement
across up to five waves of testing. These data are col-
lected over five waves of testing but these individual
trajectories are plotted over age-of-testing to match the
cross-sectional age regression (see McArdle & Bell,
2000; McArdle et al., 2005). This shows a wide range
of scores at most ages, a tendency for the decline over
age, and many different individual trajectories with a
limited number of scores for any individual.

This real and complex data collection poses many
challenges for longitudinal and behavior genetic
research. The purpose of this article is to show how
many common longitudinal twin problems can be easily
handled using a biometric mixed-effects approach. One
problem is dealing with incomplete longitudinal or twin
pair data, and here attrition over time and within pairs is
dealt with using missing-at-random (MAR) techniques
for incomplete and sampling bias correction (e.g.,
McArdle et al., 1998; cf., Pedersen et al., 2003). This
mixed-effects approach is flexible and permits the exami-
nation of a wide variety of incomplete latent basis
curves, including the use of the age-at-testing as the
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Figure 1a
A plot of cross-sectional data of the Information Subscale at Wave 1 in
SATSA (age ≥ 65, one person per family).

Figure 1b
A plot of longitudinal trajectories of the Information Subscale over five
waves in SATSA (50% random sample, one person per family).
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basis for each individual (e.g., Finkel et al., 2003;
McArdle et al., 1998). Since SATSA includes twins
reared apart, we considering additional biometric com-
ponents for rearing environments. A final practical
problem is the calculation and interpretation of level
and slope parameters over age, and one such approach
(after McArdle et al., 1998) is automated by standard
computer scripts (SAS).

Mixed Effects and Longitudinal Twin Models
Mixed-Effect Biometric Variance Component

Models

In traditional biometric theory we write the observed
score (Yn) for any person (n = 1 to N). Here we
include different families (f = 1 to F) and different
individuals (I = 1 to If) within the family. We then
write a structural equation model for any pair of
persons as

Yf,1 = µ + Af,1 + Sf + Ef,1

= µ + σa af1 + σs sf +σe ef1, and
Yf,2 = µ + Af,2 + Sf + Ef,2

= µ + σa af2 + σs sf + σe ef2, with [1]
E{a1, a2} = ρa.

In this classic expression we include the mean (µ) and
three independent sources of the deviations around the
mean. These are deviations due to additive genetic dif-
ferences (A), deviations that are nongenetic but shared
by family members (S), and deviations due to non-
genetic factors specific to the individual (E). (Note:
We use the term S here because we reserve C to define
‘common’ components in many subsequent models.)
These deviations can also be written with unobserved
scores scaled to unit variance (E{a,a}= E{s,s}=
E{e,e}=1) so the coefficients (σj) represent the standard
deviation of each component, and the genetic correla-
tion is assigned based on the genetic relationship of
the pair (e.g., for monozygotic [MZ] pairs, ρa= 1,
whereas for dizygotic [DZ] pairs, ρa = 1/2). In the sim-
plest version of biometric theory we assume these
components are all uncorrelated within a person.
More complex versions of this model include compo-
nents to represent special environments, nonadditivity
(e.g., dominance deviations), correlations among com-
ponents (e.g., ρ{A, E} ≠ 0), and interactions among
components (e.g., A by E).

The standard model for a pair of relatives is
drawn as a latent variable path diagram using the
notation of Figure 2a. Most features of this path
diagram are familiar, but it is useful to point out that
in this particular diagram: (a) all paths that are not
explicitly labeled are equal to unity; (b) the variance
terms are represented as standard deviations on
paths, (c) the means are one-headed arrows from the
unit constant and are set equal over all persons, (d)
the variances are two-headed arrows on a variable and
are fixed at 1, and (e) the covariances are two-headed

arrows connecting two variables and may differ for
different groups of relatives.

In the mixed-effects approach used by McArdle
and Prescott (2005) all paths are known values for
each person. We can rewrite Equations 1 for a pair of
persons within the same family as

Yf,1 = µ + Af1 + Sf + Ef1,with Af1 = wacACf + wau AUf1,
and [2]
Yf,2 = µ + Af2 + Sf + Ef2 , with Af2 = wacACf + wau AUf2,

where the additive genetic deviation is separated into
two deviation scores: ACf is common for members of the
same family, and AUfi is unique to the individual. In this
expression the weights (W) are fixed at values which
indicate the proportion of the additive genetic deviation
shared between relatives. This general variance compo-
nents model is drawn following Equations 2 as a nested
or higher-order latent variable path diagram in Figure
2b. It can also be written in reduced form by substitut-
ing the equation for Af back in the equation for Yf .

The reparameterization of Equations 1 into the
equivalent model in Equations 2 is based on the repre-
sentation of two correlated factors as a single shared
factor with two unique factors. The move from stan-
dard path model (1a) to mixed-effect path model (1b) is
based on the classical separation of the additive genetic
variability for each individual (A1 and A2) into two
parts — one part that is common to both members of
the pair (AC) and the one part that is unique to each
individual (AU1 and AU2). In theory, this separation of
additive genetic deviations into common and unique
components reflects the result of transmission of
parental alleles to offspring. Under standard assump-
tions of assortative mating, each of these two new
components is assigned the same genetic variance (σa

2),
we assume these two scores are uncorrelated
(ρ{AC, AU} = 0), and the weights (W) are separated
into those which are common to the family (wac) and
specific to the individual (wau). In this formulation, the
typical additive genetic correlation (ra) is not included
and there are no resulting covariance terms.

The computational approach suggested by McArdle
and Prescott (2005; termed Script 1) was based on this
reparameterization of the usual path model (Figure 2a)
so the paths (coefficients) are all fixed weights defined
by the application (Figure 2b). To ensure these weights
add no extra impacts on the estimation of the variance
terms, they are scaled so their sum of squares is unity
(wac

2 + wau
2 = 1). Since the two individuals in any MZ

pair are assumed to share the same genotypes, we sim-
plify the model for an MZ pair by fixing wac = 1 and
wau = 0 (in Equations 2). In contrast, the assumption of
no assortative mating implies that members of DZ pairs
share half of their genotypes (due to segregation of
alleles), and this implication can be represented as fixed
weights of wac = √

__
1/2 and wau =  √

__
1/2 (in Equations 2).

In order to estimate genetic dominance we add two
new latent scores, Df,i for each individual, decomposed
into common DC and unique DUfi, with both assigned
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equal variance (i.e., σd
2). The analysis of MZ-DZ

twins would require corresponding weights of 1 and 0
in MZ pairs and weights of √

__
1/4 and √

__
3/4 and for DC

and unique DUfi respectively. Similar terms can be
added to deal with special features of the data collec-
tion design (e.g., rearing, adoption; see Cattell, 1982;
McArdle & Prescott, 2005).

Latent Curves as Mixed-Effects Models

We now extend the path analysis and variance compo-
nents models to a longitudinal curve model for twin
data. In these analyses we are interested in the trajec-
tory over time as well as the nested structure of the
correlations among relatives, so we present the model
needed to estimate all the parameters of the model —
both longitudinal and biometric. One generic form of
a LCM based on a trajectory over time for observed
variables is written as

Y[t]n = G0n + α[t] G1n + U[t]n , [3]

where for any individual (n = 1 to N) we write three
unobserved latent variables: (1) G0 are termed the
initial level scores, (2) G1 are termed the slope scores,
and (3) U[t] are unobserved and independent unique
errors for measurements at each occasion. The basis

coefficients α[t] are weights used to represents some
function of the timing of the observations. In some
cases the elements of this vector are assigned α[1] = 0,
α[2] = 1, α[3] = 2, and α[4] = 3, to represent a linear
trend over the waves of measurement. In more complex
cases we can fix α[t] = f{Age[t]} to represent the age at
the time of the observation (as in McArdle et al., 1998).

The typical application of this latent growth model
further presumes that

G0n = β0 + D0n ,
G1n = β0 + D1n , and [4]
E{D0 , D1} = σ01

so the initial level and slopes are assumed to be random
variables with ‘fixed’ means (β0, β1) but with unobserved
deviations (D0 , D1) that have ‘random’ variances
(σ0

2, σ1
2) and covariance (σ01). The path diagram of

Figure 3a is a standard representation of this kind of
latent growth model. Model parameters representing
‘fixed’ or ‘group’ coefficients are drawn as one-headed
arrows while ‘random’ or ‘individual’ features are drawn
as two-headed arrows. The unique error terms are
assumed to be normally distributed with mean zero and
constant variance (σu

2) and uncorrelated with all other
components. It is now well known that these models can
be fitted using either standard SEM path analysis
approach (McArdle & Bell, 2000) or using standard
mixed-effects approach (e.g., see Script 3a; Verbeke &
Molenberghs, 2000; Pinheiro & Bates, 2000). Some dif-
ferences between two approaches have been found in the
practical ease of representing different basis functions
(i.e., exact ages, nonlinear curves, free basis parameters).

The covariance of the initial level and slope is an
important parameter in the typical LCM because it
permits the placement of the initial level at any position
without restricting model fit and substantive interpreta-
tion. This covariance can equivalently be represented as
a regression of slope on level β10) or level on slope (β01).
However, it is possible to rewrite these standard LCM
assumptions in the somewhat nonstandard form of

G0n = β0 + C01n + U0n

G1n = β1 + C01n + U1n , and [5]
E{U0, U1} = 0.

In this expression we add a new latent score C01,
which is interpreted as a common factor of level and
slope, with uncorrelated unique scores (U0, U1). Now
by simple substitution, we can rewrite the reduced
form of the basic growth model (3) as

Y[t]n= (C01n + U0n) + α[t] (C01n + U1n ) + U[t]n

= U0n + α[t] U1n + C01n + α[t] C01n + U[t]n [6]
= U0n + α[t] U1n + (1+ α[t] ) C01n + U[t]n .

This expresses this LCM as a sum of four independent
components. There are now two basis coefficients (α[t]
and 1 + α[t]) but all the model components (C01, U0,
U1, U[t]) are presumed to be uncorrelated. Most
critically, this reduced form of the LCM equation
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Figure 2a
A standard path diagram of a twin model including means.
Note: Parameters not labeled are fixed at 1; ra = 1 for MZ pairs and ra = .5 for DZ pairs.

Figure 2b
SEM representation of the computational basis of a mixed-effects 
multilevel model based on orthogonal variance components
(from McArdle & Prescott, 2005).
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creates a set of orthogonal variance components and
this is drawn in Figure 3b.

As it turns out, the LGM written as Equation 6 is
especially practical for programming correlated latent
variables as orthogonal variance components (e.g., see
Script 3b). As in earlier models, the variance of any
component is the sum of the variance that is common
and the variance that is unique. For example, we can
now reconstruct any of the standard unstructured
variance and covariance parameters simply by writing

σ0
2 = σc01

2 + σu0
2,

σ1
2 = σc01

2 + σu1
2, [7]

σ01 = σc01
2, and

σY[t]
2 = σu0

2 + α[t]2 σu1
2 + (1 + α[t])2 σco1

2 + σu[t]
2.

This orthogonal decomposition is one way to express
the complex contribution of the correlation of the
level and the slope to the variation at any time point.

This also means that negative variance components
(e.g., σc01

2 < 0) should be informative in some cases.
The use of an orthogonal-reduced form of the basic

growth model (Equations 3 to 7) is a general approach
that can be used with any form of latent growth curve.
For example, any LCM with a second basis function
can be used for quadratic polynomials or the inclusion
of practice effects (e.g., McArdle & Woodcock, 1997).
To add a second basis coefficients we write

Y[t]n = G0n + α[t] G1n + γ[t] G2n + U[t]n ,
= (C01n + C02n + U0n) + α[t] (C01n + C12n + U1n)

+ γ[t] (C02n + C12n + U2n) + U[t]n

= U0n + α[t]U1n + γ[t]U2n + C01n + α[t] C01n [8]
+ C02n + γ[t] C02n + α[t]C12n + γ[t]C12n + U[t]n

= U0n + α[t] U1n + γ[t] U2n + (1+ α[t]) C01n

+ (1 + γ[t]) C02n + (α[t] + γ[t]) C12n + U[t]n .

This reduced form expresses a dual basis LCM with
two correlated components (G0, G1) and one unique
term (u[t]) as a sum of seven orthogonal components
(U0, U1, U2, C01, C02, C12, and U[t]). Of course,
instead of two sets of basis coefficients (α[t] and γ[t])
this model requires five sets of related basis coefficients
(α[t], 1 + α[t], γ[t], 1 + γ[t], and α[t] + γ[t]). If the basis
coefficients are set at known values the setup of these
five basis functions is a trivial programming problem. If
we further restrict the second basis to be a function of
the first, we can obtain models such as an orthogonal
form of the classic quadratic polynomial model (e.g.,
γ[t] = 1/2 α[t]2; Finkel et al., 2003; Reynolds et al.,
2005; Vandenberg & Falkner, 1965). In all cases, the
reconstruction of the variance and covariances from the
orthogonal variance components is carried out in the
same simple additive fashion (e.g., Equations 7b).

Longitudinal Biometric Variance 
Component Models

We next represent the biometric decomposition of the
latent components of level and slope following
McArdle (1986). First, we assume the longitudinal
growth representation of Equation 5 is appropriate for
all individuals. Next, using pairs of relatives, we con-
sider the initial level to be decomposable as

G0f,1 = β0 + A01 + S0f + E01,
G0f,2 = β0 + A02 + S0f + E02 , and [9]
E {A01, A02} = ρaσ0a

2

where three new latent variables are added within each
person (A0n, S0f, E0n) and where the genetic correlation
is assigned for the group (e.g., ρa = 1 or ρa = 1/2). In this
way, the biometric parameters (σ0a

2, σ0s
2, σ0e

2) indicate
features of the latent initial level variance. We write the
same model for the latent slopes across pairs as

G1f,1 = β1 + A11 + S1f + E11,
G1f,2 = β1 + A12 + S1f + E12, and [10] 
E {A11, A12} = raσ1a

2.
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Figure 3a
A latent growth model represented in path analysis form (after
McArdle, 1986).

Figure 3b
A path diagram of the latent curve model for longitudinal data represented
as orthogonal variance components (all nonlabeled paths fixed at 1).
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To decompose the covariance we can rewrite the score
model (5) to include a regression on the initial level
latent variables, although we recognize this choice of
the ‘slope as an outcome’ is usually arbitrary (as in
McArdle et al., 1998). A path analysis diagram of this
model is presented in Figure 4a and, as shown in
many other research reports, this model can be fitted
as a structural equation model with multiple groups.
One intentional limitation of this approach is that the
means over time represent age changes at the pheno-
typic level while the deviations around these means
represent the influences of genetic and nongenetic
sources (cf., Dolan et al., 1991).

To fit this same model using MEMA techniques we
can adapt the orthogonal variance components
approach established in Equation 6. We now repara-
meterize both common and unique parts of these
components as

Y[t]f,i = U0i + α[t] U1 + (1+ α[t]) C01i + U[t]i,
U0f,i = β0 + A0i + S0f + E0i ,
U1f,i = β1 + A1i + S1f + E1i , and

[11]

C01f,I = A01i + S01f + E01i .

To be consistent with the previous latent curve twin
path model, we do not permit a mean for the
common factor C01, and we do not attempt to
decompose the residual error variance (σu

2, within a
person at a specific occasion). To specify the model
as a set of orthogonal variance components, we
rewrite Equation 11 in terms of fixed weights and in
the reduced form of

Y[t]f,i = U0i + α[t] U1 + (1+ α[t]) C01i + U[t]i ,
U0f,i = β0 + Au0f,i + Su0f + Eu0i ,
Au0f,i = wac ACu0f + wau AUu0i ,
U1f,i = β1 + Au1f,i + Su1f + Eu1i,, [12]
Au1f,i = wac ACu1f + wau AUu1i , and
C01f,i = A01f,i + S01f + E01i ,
A01f,i = wacAC01f + wau AU01i.

In this model the additive genetic weights (wac and wau)
are defined based on the genetic resemblance of the
pairs (e.g., Wmz = [1,0], Wdz= [√

__
1/2, √

__
1/2]), we estimate

two means, one error variance, and nine orthogonal
variance components (three which represent covari-
ance information). The higher-order version of the
orthogonal model is portrayed in Figure 4b. Of
course, this is an unusual looking path diagram, but it
attempts to represent Equation 12 exactly. This
includes having the means for the unique components
(but not the C01) although if we put the means on the
level and slope the model expectations would be the
same. Most importantly, this SEM offers a direct way
to fit a longitudinal twin model using standard mixed-
effects MEMA techniques (see Script 4).

Proportions of variance are often calculated in bio-
metric genetic analyses, but this can be a complex
problem when dealing with different variables or time
points. One issue that needs to be considered is the

changing baseline of expected variance at each age.
Another issue is to consider how the addition of the
independent and common components of the slope
combine to form the change variance (see McArdle &
Woodcock, 1997). One way to deal with this longitu-
dinal problem is to compare the changes in the
expected variances at specific ages (as done in
McArdle, 1986; McArdle & Hamagami, 2003;
McArdle et al., 1998). Using the basic terms presented
in the earlier models we can now write the variance at
any time point in terms of orthogonal components

σu0
2 = σau0

2 + σsu0
2 + σeu0

2,
σu1

2 = σau1
2 + σsu1

2 + σeu1
2, [13]

σc01
2 = σa01

2 + σs01
2 + σe01

2, and
σY[t]

2 = σu0
2 + α[t]2 σu1

2 + (1 + α[t] )2 σco1
2 + σu[t]

2.

Once again, this orthogonal decomposition is a simple
way to express the otherwise complex contribution of
the correlation of the level and the slope to the varia-
tion at any time point, and this is easy to program (see
Script 4). It is now possible to investigate the relative
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Figure 4a
A one-group path diagram of an latent curve model for longitudinal
twin data (e.g., McArdle, 1986; McArdle et al., 1998).

Figure 4b
A path diagram of the latent curve model for longitudinal pairs 
represented as orthogonal variance components (one person only,
all nonlabeled paths fixed at 1, all weights w determined by pair
relationships).
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contributions of the biometric parameters to any spe-
cific aspect of the total variation.

Programming Longitudinal Biometric 
Mixed-Effect Models

To compare the applications of the approaches
described above we generated a set of longitudinal
twin data based on a population model with the fol-
lowing structure:

1. Phenotypic Components: T = 5, β0 = 25, β1 = 10,
σu

2 = 50;

2. Biometric Structure of Initial Level: σau0
2 = 50,

σsu0
2 = 0, σeu0

2 = 50;

3. Biometric Structure of Linear Slope: σau1
2 = 0,

σsu1
2 = 5, σeu1

2= 5;

4. Biometric Structure of Level-Slope Covariation:
σa01

2 = 0, σs01
2 = 0, σe01

2= 0;

5. Sample Sizes: N = 1001 MZ and DZ pairs, so with
T = 5 occasions, D = 20,020 points.

This population structure is intended to mimic some
aspects of a realistic longitudinal data collection, but it
has far less complexity than real life data collections
(i.e., linear slopes, no covariation, no incomplete data,
and so on).

The biometric LCMs were fit to these data using
SAS MIXED (Scripts 3 and 4) and NLMIXED pro-
grams in VCM form. The same models were fit using
the latest versions of the Mplus and Mx programs in
both PAM and VCM form. More complete computer
scripts and the numerical results are presented in the
Online Appendix, and a summary of results follows:

SEMA-PAM. The Mplus (and Mx) programs worked
well and closely recovered all model parameters. The
generating values were zero for some parameters, but
sample values were often nonzero, and in some cases
boundary restrictions on a variance term created a
numerical problem. Even with these restrictions, the
programs correctly characterize the population mecha-
nism, and clearly point out the zero effects and the
equally balanced effects. One obvious limitation of this
SEMA programming is the lengthy code required (~100
command lines). In Mplus, the use of the RANDOM
command with TSCORE options made the coding
simple, but extra code was devoted to overcoming the
Mplus defaults (e.g., latent variables are correlated).

SEMA-VCM. This approach required very few
changes from the Mplus (and Mx) programs, and has
similar practical consequences. It was not necessary to
use the reduced form equations to program this model
because higher-order models can be programmed
directly (i.e., Figure 4b). A simple combination of the
basic equation and the common factor made this an
easy alteration to the previous code. However, because
the SEMA-VCM approach does not automatically
create nonnegative (i.e., square root) variance restric-
tions, some negative variances were estimated for
population parameters set at zero. In this case the

MLE are slightly closer to the population values than
the SEMA-PAM versions. Other than the extensive
and repetitive code required, this is also a reasonable
way to fit these models.

MEMA-MIXED. Assuming the correct weighting
scheme has been used (as in any univariate model, see
Script 1), this was easily the most compact code to
create and manipulate (Script 2). Furthermore, the
MLE results are exactly identical to the SEM-VCM
results, and the standard errors are extremely close.
The fit (–2LL) is identical as well, and statistical deci-
sions about the resulting ‘significance of effects’ does
not differ from either SEM approach. There are
several alternative ways of programming this model in
SAS MIXED, and some of these require less computer
memory (DDFM = SATTERTH; see Script 3b). The
use of the Output Delivery System (SAS-ODS) allowed
reasonably easy access to the estimated parameters,
and facilitated subsequent calculation and plotting of
parameter functions (Script 4).

MEMA-NLMIXED. These commands offered the
most transparent and didactically appealing program
script, and the easiest to extend to other more
complex problems (e.g., McArdle et al., 2005).
Unfortunately, this program did not appear to be
able to converge in a reasonable amount of time. The
preliminary results (after many hours) are not listed
here, but the use of fast approximations (e.g.,
QPOINTS = 1 or FIRO) may be necessary. Although
this program worked well for the univariate cases (in
McArdle & Prescott, 2005), the practical utility of
this way to program longitudinal models of reason-
able complexity is not completely known.

Application to Real Longitudinal Twin Data
Selected SATSA Data

The data used here includes nondemented twins from
the SATSA (see Pedersen et al., 2002), a subset of twins
from the population-based Swedish Twin Registry
(Lichtenstein et al., 2002). The SATSA sample comprises
all pairs of twins who indicated that they had been
reared apart and separated before the age of 11 and a
sample of twins reared together matched to the reared-
apart group on gender, date and country of birth.

The SATSA data collection includes information on
individuals at any time they were willing to participate.
This leads to incomplete data over time for both com-
plete and incomplete twin pairs. Individuals who met
current diagnostic criteria for a diagnosis of dementia at
any time during their participation in SATSA were
excluded from this analysis (see Gatz et al., 1997). The
data used here includes up to five waves of in-person
testing covering a possible span of 16 years. Other
studies (e.g., Finkel et al., 2003) have found substantial
nonlinearity in some cognitive measures, especially
before and after the age of 65. To simplify these analy-
ses, only data on individuals who were at least 65 years
of age during their participation in SATSA are used.
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Many cognitive domains are represented in the
SATSA cognitive test battery (see Finkel et al., 2003),
but only scores on the tests of Information are used
here. This score indicated a factor of General
Knowledge or Crystallized Intelligence and has not
been found to decline rapidly over the adult life span
(Horn, 1991). For ease of presentation this cognitive
measure was rescaled to per cent correct of the total
possible points (McArdle, 1988). Summary statistics for
the SATSA data on chronological age and these

Information scores are presented in Table 1, and this is
the same information presented earlier in Figure 1.

Cross-Sectional Biometric Results
The first series of analyses were based only on the
cross-sectional data at Wave 1 on Information for
N = 186 twin pairs (Age[1] > 65). The individual level
data are not complete across twin pairs, so this analysis
includes NMZ = 68 persons with DMZ = 125 scores, and
NDZ = 118 persons with DDZ = 216 scores. Biometric
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Table 1

Longitudinal Summary Statistics for the Information Subscale From the SATSA Data 

Means and deviations
Variable N Mean Std Dev Minimum Maximum

Age[1] 345 71.8 4.9 65.0 88.0
Age[2] 339 72.3 5.3 65.0 91.0
Age[3] 396 73.8 5.8 65.0 94.0
Age[4] 354 76.3 6.8 65.0 96.4
Age[5] 327 76.3 7.0 65.0 95.2

Info[1] 344 67.2 20.0 13.6 100.0
Info[2] 329 70.0 19.0 2.3 100.0
Info[3] 385 70.2 19.0 0 100.0
Info[4] 353 69.7 22.3 0 100.0
Info[5] 327 74.2 20.2 0 100.0

Scale intercorrelations (and pairwise sample sizes)
Info[1] Info[2] Info[3] Info[4] Info[5]

Info[1] 1.000
(344)

Info[2] .890 1.000
(234) (329)

Info[3] .870 .881 1.000
(225) (281) (385)

Info[4] .689 .777 .807 1.000
(129) (171) (239) (353)

Info[5] .591 .742 .773 .819 1.000
(85) (116) (172) (266) (327)

Note: Age[t] ≥ 65; T = 4 and T = 5 were measured at the 5th and 6th visits.

Table 2

Initial Biometric Models for the Information Subscale From the SATSA Data 

Biometric (a) Full biometric decomposition (b) Revised biometric decomposition (b) Revised biometric decomposition
parameters (–2ll = 2962, df = 341–6) (–2ll = 2964, df = 341–5) (–2ll = 2964, df = 341–4)

Fixed effects MLE (z value) MLE (z value) MLE (z value)
Y intercept @65 β0 73.3 (35.)  72.8 (34.) 72.9 (34.)
Y slope/decade β1 –8.3 (–3.3) –8.0 (–3.1) –8.0 (–3.1)

Random effects
A-additive σ0a

2 211.0 (2.3) 209.1 (2.3) 225.3 (5.7)
S-shared σ0s

2 55.7 (0.7) 14.5 (0.2) = 0 (—)
R-rearing σ0r

2 –76.2 (–1.2) = 0 (—) = 0 (—)
E-environ. σ0e

2 159.3 (5.7) 160.7 (5.3) 158.3 (5.8)

Note: Age[t] ≥ 65 at Wave T = 1 only, Np = 186 pairs. D = 341 data points, Script 1 + 2.
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parameters were estimated from the basic mixed-effects
model (2) applied to all twin pairs at Wave 1 following
the univariate coding presented in McArdle & Prescott
(2005, Script 1). One alteration of the biometric model
made here was to take advantage of the SATSA design
and add a parameter for the variance due to rearing
environment (σr

2). This new parameter was easily
included in our input (see Script 1) by coding a new
score (WeightR) with binary values reflecting individual
rearing (i.e., 1 = reared together and 0 = reared apart).
Since there are initial age differences between families,
we also include age at the time of the first testing to
account for this shared variation.

The numerical results are presented in Table 2 and
Figure 5a. In the first model (2a) all parameters were
fitted and these results show some negative variance
estimates (negative estimates were allowed using the
NOBOUND option). In a second model (2b) the
rearing environment parameter was deleted without
much loss of fit (χ2 = 2 on df = 1). In a third model (2c)
the shared family component was deleted without
much loss of fit (χ2 = 0 on df = 1). The fixed parameters
listed here include an intercept at Age 65 (β0 = 72.9),
and a linear decline with age (σ1 = –8.0 per decade).
The variance parameters include the contribution of
additive genetic effects (σa

2 = 225.3, 59%), no nonage
related shared family genetic effects (σs

2 = 0), and
substantial independent nonshared family genetic
effects (σe

2 = 158.3, 41%). These estimates do not
include the common age related variance (~2%), and
the nonshared variance is probably overestimated
because it also includes all measurement error
(McArdle & Goldsmith, 1990).

Longitudinal Growth Model Results

Both the standard and orthogonal form of the LCM
(see Figures 3) were fitted using SAS PROC MIXED
software. This analysis included all only one twin
from each family (N = 331) but raw data (D = 865)
on as many time points available. The results pre-
sented in Table 3 are based on a mixed-effects
algorithm with MLE, so they are considered optimal
under standard MAR assumptions about the incom-
plete cases (e.g., Cnaan et al., 1997; McArdle &
Hamagami, 1992; Verbeke & Molenberghs, 2000).

The first model (3a) includes parameters represent-
ing independent level and slope parameters (see Script
3a) and all parameters are accurate (at the α = .05 test
level). The fixed parameters include the expected
mean at age 65 (β0 = 75.8) and the linear decline per
decade (β1 = –6.1). The first three variance compo-
nents (σu0

2 = 332.0, σu1
2 = 171.5, σc01

2 = –44.5) are
allowed to be negative (using NOBOUND) and these
values are all reasonable. Following Equations 7, the
results of the unrestricted growth model (Script 2a)
can be calculated from the orthogonal model (σ0

2 =
[332.0 –44.5],σ1

2 = [171.5 –44.5], σ01 = –44.5). The
unique error variance (σu

2 = 49.0) indicates sources
of within time variance which are orthogonal over

time. This estimation of the nonsystematic unique
variance is the key feature which moves this other-
wise simple linear model into the class of latent
variable models and, and this estimate can be used
to calculate the theoretical change in reliability of
the growth measurement (see Equations 7;
McArdle, 1986).

In the second model (3b) the two variance parame-
ters associated with the slope (σu1

2, σc01
2) have been set

to zero to yield a restricted model with individual dif-
ferences in levels but not changes over time. These
restrictions lead to a substantial loss of fit (χ2 = 127 on
df = 2). In the third model (4c) the mean associated with
the slope has been set to zero (β1 = 0) and this leads to
another substantial loss of fit (χ2 = 74 on df = 1). Using
this final model as a baseline, these results suggest
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Figure 5a
Summary of biometric modeling results for Information from all twin
data at Wave 1 (Nf = 186; D = 341).

Figure 5b
Summary results for final biometric-longitudinal results from the twin
latent curve model for Information over five occasions (N = 360 pairs;
Age ≥ 65; D = 1717).
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there is substantial group and individual linear
declines over age in Information scores.

Longitudinal Biometric Latent Curve Results

The longitudinal LCM was fitted to all twin data
using mixed-effect techniques using SAS PROC
MIXED software (see Figure 4b, Script 3). This
analysis included all participants with any data at
any time on either member of the pair. This selection
resulted in 1717 data points of valid Information

scores coming from NMZ = 123 pairs with DMZ = 620
scores, and NDZ = 208 pairs with DDZ = 1097 scores.
The algorithm again used the MLE criterion, so these
results are only appropriate under MAR assumptions
about the incomplete cases for occasions and pairs.
The numerical results are listed for three models in
Table 4 and summarized in Figure 5b.

The first model (4a) is a full model with all MLE
values estimated. While most of the parameters are
meaningful, the lack of boundary conditions allowed
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Table 3

Initial Longitudinal Models for the Information Scale From the SATSA Data 

Parameter (a) Intercept and linear slope model (b) Intercept and linear mean model (b) Intercept only model
(–2ll = 6916, df = 865–6) (–2ll = 7043, df = 865–4) (–2ll = 7117, df = 865–3)

Fixed effects MLE (z value) MLE (z value) MLE (z value)
G0-intercept @65 β0 75.8 (68.) 75.0 (65.) 70.0 (68.)
G1-slope/decade β1 –6.1 (–6.) –6.2     (–9.) = (—)

Random effects
U0-intercept σ0

2 332.0 (7.) 291. (11.) 308.5 (11.)
U1-slope σ1

2 171.5 (4.9) = 0 (—) = 0 (—)
U01-covar. σ01

2 –44.5 (–2.2 ) = 0 (—) = 0 (—)
U[t]-unique σu

2 49.0 (13.) 87.9 (16.) 97.0 (16.)

Note: Age[t] ≥ 65; N = 331 individuals for up to T = 5 and D = 865; Script 3.

Table 4

Results of Longitudinal Biometric Modeling Using the Information Subscale Scores From SATSA Twins 

Parameter (a) Biometric intercept (b) Revised biometric intercept  (c) Revised biometric intercept 
and linear slope model and linear slope model) and linear slope

(–2ll = 13642, df = 1717–15) (–2ll = 13647, df = 1717–12) (–2ll = 13647, df = 1717–9)

Fixed effects MLE (z value) MLE (z value) MLE (z value)
G0-intercept @65 β0 76.5 (87.) 76. (89.) 76.6 (87.)
G1-slope/decade β1 –6.7 (–9) –6.7 (–9.) –6.8 (–9.)

Random effects
U[t]-Unique Error σu

2 53.5 (18.) 53.3 (18.) 53.3 (18.)
Additive genetic
components

AU0-additive σ0a
2 343.4 (2.3) 166.2 (2.0) 184.6 (3.2)

AU1-additive σ1a
2 227.5 (1.9) 65.4 (1.0) 78.1 (1.6)

A01-additive σ01a
2 –100.2 (–1.5) 2.0 (0.1) –5.9 (–0.2)

Shared environmental
SU0-shared σ0s

2 –139.3 (–1.3) = 0 (—) = 0 (—)
SU1-shared σ1s

2 –133.3 (–1.4) = 0 (—) = 0 (—)
S01-shared σ01s

2 89.1 (1.8) = 0 (—) = 0 (—)
Rearing environmental

RU0-rearing σ0r
2 29.0 (0.5) 19.0 (0.3) = 0 (—)

RU1-rearing σ1r
2 22.1 (0.5) 11.7 (0.2) = 0 (—)

R01-rearing σ01r
2 32.4 (0.8) –7.8 (–0.3) = 0 (—)

Unique environmental
EU0-environ. σ0e

2 81.2 (1.5) 126.3 (2.1) 118.8 (2.2)
EU1-environ. σ1e

2 32.4 (0.8) 68.7 (1.4) 63.3 (1.5)
E01-environ. σ01e

2 –8.0 (–0.3) –30.1 (–1.1) –26.9 (–1.3)

Note: N = 360 pairs for up to T = 5 and D = 1717; Script 1 + 4.
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several variance components to be large and negative.
Even after the combination of the unique and
common parts (as in Equations 7) some expected vari-
ances are negative, especially the shared environment
parameters. In the second model (4b) the shared envi-
ronment parameters have been removed with only
minor loss of fit (χ2 = 5 on df = 3). In the third model
(4c) the small parameters associated with the rearing
environment were set to zero and again there is no
loss of fit (χ2 = 0 on df = 3). The parameters for the

additive genetic and unique environment components
are relatively large and cannot be removed without
major loss of fit. Unlike the previous cross-sectional
model (Table 2), here the unique environment terms
contribute variance to the latent level and slope scores
even after we account for the nonsystematic unique or
error component (σu

2 = 53.3).
It is difficult to obtain a complete understanding of

the results of any biometric growth model only from
these parameter estimates, and it is not appropriate to
make inferences about the structure of the changes from
tests based on any single parameter. To reinforce an old
point, the parameter representing the ‘variance of the
slope’ is not equivalent to the resulting ‘slope of the vari-
ance’ (see McArdle, 1986; McArdle & Hamagami,
2003; McArdle et al., 1998). One way we have dealt
with this basic problem in prior research is to compare
the changes in the expected variances at specific ages.
This representation requires calculations such as
Equation 13, and this was done using the simple SAS
script (see Script 4). A table of the values resulting from
these kinds of calculations is plotted in Figure 6.

The expected means (µ[t]) and deviations (σ[t]) of
the pheonotypic model parameters are plotted in Figure
6a and exhibit a declining mean with an increasing
deviation. By adding the constant unique error term
(σu

2) we can also calculate and plot as the portion of the
variance of the common scores at any time (η[t]). The
phenotypic reliability is seen to rise over age.

The expectations for the biometric contributions
can be used to calculate deviations for additive genetic
(σa[t]), shared environments (σs[t]), and unique envi-
ronments (σe[t]). Since the shared environment
parameter was fixed to zero for both the level and the
slope, this remains at zero. In contrast, both the addi-
tive and environmental deviations are nonzero and
increase over age (due to the slope and covariance).
The additive component is a bit larger and gains a bit
more. In turn, this implies the calculation of the per-
centage of variances within age has an increasing
contribution of additive sources (ηa[t]

2 = .66 to .75)
and a necessarily decreasing contribution of environ-
mental sources (η e [ t ]

2 = .34 to .25). Since the
phenotypic variance over time is not constant, the per-
centage of variances over age may be misleading.

Discussion
The purpose of this article was to present a new way
of considering LCMs for longitudinal twin data. These
initial simulation results demonstrate the adequacy
and accuracy of the programming for MEMA and
SEMA for well-structured longitudinal LCM twin
analyses (except for NLMIXED). This is not surpris-
ing as McArdle and Prescott (2005) examined a wider
range of bioimetric population models and found
equivalent performances (also, see Ferrer et al., 2004).
In order to further investigate the practical problems
some of the simulated data were deleted using two dif-
ferent selection mechanisms: random dropout and
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Figure 6a
Model based phenotypic curve expectations.

Figure 6b
Model based biometric curve model expectations.
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nonrandom dropout (after McArdle & Hamagami,
1992). In cases with incomplete data, both SEM and
MEMA computer programs again produced identical
estimates and fit to each other. In accordance with sta-
tistical theory, the selective loss of individuals and
pairs was found to have major impacts on the results
obtained, and extreme biases were found when only
the complete cases were used. In this sense, the current
programs work very well but cannot be expected to
solve all contemporary longitudinal problems.

Other comparative aspects of these programs show
advantages to using the MEMA approach. For
example, to gain some idea about the changes to expect
in the longitudinal models, we might be routinely inter-
ested in carrying out a form of repeated cross-sectional
analysis. The same biometric cross-sectional analysis
used here (Table 2) can be repeated for many different
waves or for groups of similar age. Groups can be
formed around specific ages, or age ranges, or even
based sampling weights. To accomplish this in the
MEMA framework, we can easily invoke the SAS
Macro language and place a DO-Loop around the SAS
PROC MIXED code. This repeated cross-sectional
analysis is conceptually simple, but it is time consuming
and practically difficult to run using SEM software not
designed for general data analysis problems.

The substantive example based on SATSA
Information scores showed approximately linear
decline over this age range (age > 65). While the
Information means decrease over age, the observed
variance and genetic and environmental variance
increased over age producing increasing heritability
estimates. In more extensive SATSA research,
Reynolds et al. (2002) and Finkel et al. (1998, 2003)
examined sources of individual differences in cognitive
levels and rate of change over time for three cognitive
tests representing fluid ability, memory and perceptual
speed domains. The general findings indicated larger
genetic influences for the initial level while rate of
change over time was influenced primarily by environ-
mental factors not shared by twins. Similar findings
have been suggested for general cognitive ability in
Danish twins 70 years and older (Christensen et al.,
2003; McGue & Christensen, 2002). In contrast,
McArdle et al. (1998) and McArdle and Hamagami
(2003) report evidence of moderate to strong heri-
tabilitities for change in Vocabulary and Block Design
from the archival New York Twin study (NYT). One
key difference in these studies is that the model fit was
a model of change across waves-of-testing rather than
age-of-testing as illustrated here. It is important to
consider that wave-of-testing is often used as it is
easier for SEM programs than age-at-testing.
However, the results of LCMs based on time, even
with linear slopes and baseline age as a predictor, are
not strictly equivalent to LCM of age (McArdle et al.,
2002). The MEMA approach presented here allows
both approaches, so the investigator can makes this

choice based on substantive reasons rather than prac-
tical limitations.

The MEMA approach can be extended for use
with categorical outcomes (see McArdle & Prescott,
2005), and this can be important in the context of lon-
gitudinal studies (see Yashin & Iachine, 1995).
Although not emphasized here, sample loss due to
attrition (death and dysfunction) are likely to have led
to initial underestimation of the genetic variance.
Current SATSA research focuses on subgroup differ-
ences and accounting for dementia and other survival
functions. MEMA models combining latent growth
and survival models have been proposed (e.g., Faucett
& Thomas, 1996; Lin et al., 2002) and now standard
software can be used for such analyses (i.e.,
NLMIXED, winBugs; see Eaves & Erkanli, 2003; Guo
& Carlin, 2004; McArdle et al., 2005). Using these
shared parameter models, future research will be able
to examine the leading indicators of these cognitive
transitions, including scores on cognitive tests admin-
istered at earlier ages, or indicators based on the latent
level and latent slope of the key outcomes.

These MEMA approach presented here was
designed to demonstrate a functionally useful method-
ological integration of developmental, genetic, and
statistical concerns. While we must recognize the limi-
tations of the standard LCM presented here, this
approach easily generalizes to any longitudinal bio-
metric analyses focused on the direct modeling of
changes over time. For example, many useful nonlin-
ear functions are fairly easy to consider under this
framework (e.g., Equations 8; Pinheiro & Bates, 2000;
Cudeck & Klebe, 2002). But much more can be
accomplished within longitudinal twin and family
analyses, including studies of incompleteness, consid-
erations of latent classes, and the clarification of key
hypotheses about sequential coupling (McArdle &
Hamagami, 2003). If we hope to achieve an improved
understanding of individual and family development,
then the last 20 years of work on the longitudinal twin
analyses now need to evolve into new dynamic data
collections and more substantively driven dynamic
models. The MEMA approach presented here is only a
small step in this direction.
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Appendix A

Input Scripts for Longitudinal Biometric Analysis With SAS MIXED

see http://www.usc.edu and search for ‘McArdle’
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Script 1: SAS DATA script to Create Appropriate Weights for each Pair Type

TITLE2 ' Script 1: Building the relational weights for the MEML approach';
DATA sim_rel; /* assuming pairs are output as separate records */

SET sim_twin; /* assuming pairs are input on the same record */
** MZ twin 1 and 2 weights *;
IF(mzdzid = 1) THEN DO;

weightAC=1; weightAU1=0; weightAU2=0; END;
** DZ twin 1 weights**;
IF(mzdzid = 0) THEN DO;

weightAC=sqrt(.5); weightAU1=sqrt(.5); weightAU2=0; END;
** assign & output values for twin 1 (MZ and DZ) **;
y_score = y1_score; person=(famid*10)+1; twinid=1;
OUTPUT;
** DZ twin 2 weights**;
IF(mzdzid = 0) THEN DO;

weightAC=sqrt(.5); weightAU1=0; weightAU2=sqrt(.5); END;
** assign & output values for twin 2 (MZ and DZ) **;
y_score = y2_score; person=(famid*10)+2; twinid=2;
OUTPUT;

KEEP person famid mzdzid twinid
weightAC weightAU1 weightAU2 weightE1 weightE2 y_score; RUN;

Script 2: SAS PROC MIXED script to Calculate Biometric Model Estimates

TITLE2 'Script 2: Biometric VC Approach 1 - Twinid and Famid approach with NOBOUNDS';

PROC MIXED NOCLPRINT COVTEST METHOD=ML; CLASS twinid famid ;

MODEL yt = / SOLUTION DDFM= DDFM=SATTERTH CHISQ ; /* Mean and E Variance for y0 */

RANDOM INTERCEPT / SUBJECT=famid TYPE=VC; /* C for y0 */

RANDOM weightAC weightAU1 weightAU2 / SUBJECT=famid TYPE=TOEP(1); /* A for y0  */

PARMS  / NOBOUND ; RUN;

Script 3: SAS MIXED scripts for the Growth models as Variance Components

TITLE2 'Script 3a: DV=INFORM based on Standard UN-LGM Approach';
DATA new; SET old; Age65dec=(Age-65)/10;
PROC MIXED NOCLPRINT COVTEST METHOD=ML; CLASS famid ;

MODEL INFORM = Age65dec / SOLUTION DDFM=SATTERTH CHISQ ;
/* Mean for y0 and y1 */
RANDOM INTERCEPT Age65dec / SUBJECT=famid TYPE=UN;
/* Variance and Covariance for y0 and y1 */
PARMS (100 10 0 100) / NOBOUND ; RUN;

TITLE2 'Script 3b: DV=INFORM based on the VC-LGM Approach';
DATA new; SET old; Age65dec=(Age-65)/10; Age65p1=Age65dec+1;
PROC MIXED NOCLPRINT COVTEST METHOD=ML; CLASS famid ;

MODEL INFORM = Age65dec  / SOLUTION DDFM=SATTERTH CHISQ ;
/* Mean for y0 and y1 */
RANDOM INTERCEPT Age65dec Age65p1 / SUBJECT=famid TYPE=VC;
/* Variance for u0, u1, co1  */
PARMS  (100 10 0 100) / NOBOUND ; RUN;
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Script 4: SAS MIXED scripts for the Longitudinal-Biometric models

TITLE2 'Script 4a: VC Approach 1 - Twinid and Famid approach with NOBOUNDS';

PROC MIXED DATA=sim_dyn5 NOCLPRINT COVTEST METHOD=ML; CLASS twinid famid ;

MODEL yt = age  / SOLUTION DDFM=SATTERTH CHISQ ;

/* Mean for y0 and y1 */

RANDOM INTERCEPT age agep1 / SUBJECT=famid(twinid) TYPE=VC;

/* E for u0, u1, c01 */

RANDOM INTERCEPT age agep1 / SUBJECT=famid TYPE=VC;

/* C for u0, u1, c01 */

RANDOM weightAC weightAU1 weightAU2 / SUBJECT=famid TYPE=TOEP(1);

/* A for y0  */

RANDOM weightAC*age weightAU1*age weightAU2*age / SUBJECT=famid TYPE=TOEP(1);

/* A for y1 */

RANDOM weightAC*agep1 weightAU1*agep1 weightAU2*agep1 / SUBJECT=famid TYPE=TOEP(1);

/* A for c01 */

PARMS  / NOBOUND ;

RUN;

TITLE2 'Script 4b: VC Approach 3 - Twinid and Famid approach with NOBOUNDS and Restrictions';

PROC MIXED DATA=sim_dyn5 NOCLPRINT COVTEST METHOD=ML; CLASS twinid famid ;

MODEL yt = age  / SOLUTION DDFM= DDFM=SATTERTH CHISQ ;

/* Mean for y0 and y1 */

RANDOM INTERCEPT age agep1 / SUBJECT=famid(twinid) TYPE=VC;

/* E for u0, u1, c01 */

RANDOM INTERCEPT age agep1 / SUBJECT=famid TYPE=VC;

/* C for u0, u1, c01 */

RANDOM weightAC weightAU1 weightAU2 / SUBJECT=famid TYPE=TOEP(1);

/* A for u0  */

RANDOM weightAC*age weightAU1*age weightAU2*age / SUBJECT=famid TYPE=TOEP(1);

/* A for u1 */

RANDOM weightAC*agep1 weightAU1*agep1 weightAU2*agep1 / SUBJECT=famid TYPE=TOEP(1);

/* A for c01 */

PARMS  (100 10 0 0 0 0 100 10 0 100) / EQCONS=4,5,6 NOBOUND ; RUN;
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5. SAS script for adding longitudinal estimates from the Longitudinal-Biometric model

PROC MIXED

<add script 3 here>
ODS OUTPUT FitStatistics=fits; ODS OUTPUT SolutionF=fp;
ODS OUTPUT CovParms=cp; * ODS output for Covariance matrix;
RUN;

TITLE2 ‘Create Revised Random Parameters';
PROC TRANSPOSE DATA=cp OUT=rp;
DATA rp2; SET rp;

RENAME COL1=S2_Eu0; RENAME COL2=S2_Eu1; RENAME COL3=S2_Ec01;
RENAME COL4=S2_Su0; RENAME COL5=S2_Su1; RENAME COL6=S2_Sc01;
RENAME COL7=S2_Au0; RENAME COL8=S2_Au1; RENAME COL9=S2_Ac01;
RENAME COL10=S2_U;
RUN;

DATA rp3; SET rp2; IF (_NAME_ NE 'Estimate') THEN DELETE;
** basic estimates ;
S2_E0=S2_Eu0 + S2_Ec01; S2_E1=S2_Eu1 + S2_Ec01;
S2_S0=S2_Su0 + S2_Sc01; S2_S1=S2_Su1 + S2_Sc01;
S2_A0=S2_Au0 + S2_Ac01; S2_A1=S2_Au1 + S2_Ac01;
** overall level variance ;
S2_y0=S2_E0 + S2_S0 + S2_A0;
Per_E0=S2_E0/S2_y0; Per_S0=S2_S0/S2_y0; Per_A0=S2_A0/S2_y0;
* overall slope variance ;
S2_Y1=S2_E1 + S2_S1 + S2_A1;
Per_E1=S2_E1/S2_y1; Per_S1=S2_S1/S2_y1; Per_A1=S2_A1/S2_y1;

PROC PRINT; RUN;

TITLE2 ‘Create Random Parameters Over Age';
DATA rp4; SET rp3;
t=0;
DO _N_=65 TO 100 BY 5;

age=_N_;
S2_Et= S2_Eu0 + S2_Eu1 * At**2 + S2_Ec01 * (1+At)**2;
S2_St= S2_Su0 + S2_Su1 * At**2 + S2_Sc01 * (1+At)**2;
S2_At= S2_Au0 + S2_Au1 * At**2 + S2_Ac01 * (1+At)**2;
S2_yt = S2_Et + S2_St + S2_At ;
S_Et=SQRT(S2_Et); S_st=SQRT(S2_St); S_At=SQRT(S2_At);

S_yt=SQRT(S2_Yt);
PC_Et= S2_Et/S2_yt; PC_St= S2_St/S2_yt; PC_At= S2_At/S2_yt;
PC_Ht = S2_yt / (S2_yt + S2_U);
OUTPUT;
END;
KEEP Age S2_et -- PC_Ht;

PROC PRINT; RUN;

TITLE2 'DV=INFORM Deviation Components as a function of Age';
PROC GPLOT; PLOT (S_yt S_Et S_St S_At) * Age / OVERLAY;

LABEL S_Yt = 'SD[t]' Age= 'Age of Measurement'; RUN;

TITLE2 'DV=INFORM Proportion of Variance as a function of Age';
PROC GPLOT; PLOT (PC_Et PC_St PC_At PC_Ht) * Age / OVERLAY;

LABEL PC_et = 'PC[t]' Age= 'Age of Measurement'; RUN;

359Twin Research and Human Genetics June 2006

Longitudinal Twin Mixed-Effects Models

https://doi.org/10.1375/twin.9.3.343 Published online by Cambridge University Press

https://doi.org/10.1375/twin.9.3.343

