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On Sharkovsky’s cycle
coexistence ordering

Peter E. Kloeden

A theorem of Sharkovsky on the coexistence of cycles for one-
dimensional difference equations is generalized to a class of
difference equations of arbitary dimension. The mappings
defining these difference equations are such that the <Zth

component depends only on the first < independent variables.

1. Introduction

In 196k Sharkovsky [4] proved a remarkable theorem on the coexistence
of cycles of different periods for one-dimensional difference equations
defined in terms of continuous mappings from a compact interval into
itself. Recent work on the chaotic behaviour of such difference equations,
in particular the "period three implies chaos'result of Li and Yorke [3],

has given fresh significance to this theorem: see Kloeden, Deakin, Tirkel

£23.

This note considers the generalization of Sharkovsky's Theorem to
difference equations of more than one dimension. First a simple example is
given of a two-dimensional difference equation for which Sharkovsky's
Theorem does not hold. Then attention is restricted to a class of
difference equations which includes all of the above one-dimensional
difference equations and important higher dimensional difference equations
such as the twisted horseshoe difference equation of Guckenheimer, Oster,
and lpaktchi [1], and it is shown that Sharkovsky's Theorem is valid for

all difference equations of any dimension which belong to this class.
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2. Preliminaries

Let I be a compact subset of RN » Where N>=1, and let f :I+1T
be a continuous mapping. Associated with this mapping there is an

N-dimensional first order difference egquation

(2.1) 2™ = ()

which for each xo € I generates an iterative sequence xo, xl, x2,

Such an iterative sequence is said to form a cyele of period k if

xo, xl, cees xk—l are all different and xk = xo . Note that here
0 1 k-1 . . .

X, X, .., X are all fixed points of the kth iterate

fk =fofo...of (k times) of the mapping f .

For a fixed but otherwise arbitrary difference equation (2.1)
Sharkovsky [4] defined an ordering —< on the set of natural numbers N

as

n, —<n, 1f the difference equation (2.1) has a cycle of period

n, whenever it has a cycle of period n

1 3
and he proved the following theorem.

THEOREM (Sharkovsky). For N =1, I a compact interval and
f : I » I a continuous mapping, the ordering ——< satisfies

3—=<5—<T7T—< ... —< 6-—< 10 —< 14k —< ...
—< 3. —< 5. < 7. —< ... — I — A, ee =< 2 —< 1 .
This ordering will in the sequel be called the Sharkovsky ordering.

Sharkovsky's proof of the above theorem involves little more than
repeated use of the Intermediate Value Theorem, but is rather long. For a
succinct, English language version of this proof, with minor corrections,
see Stefan [5].

Now let I ©be a closed disc in R2 centred on the origin and let
f : I+ I be defined by

.‘22,

S

i v
floys ) = [y - Ba,, B

1 - }fxz)
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for all ﬁrl, xe) €I . Then f :I~+1I and f is continuous. Also

every (xl, xz) € I\(0, 0) ©belongs to a cycle of period three, whereas
(0, 0) belongs to a cycle of period one for the difference equation (2.1)
associated with this mapping f . To see this note that using the complex

variable 2z =g + ix the mapping f can be written as

1 2°
flz) = a.z
vhere a = -%+ 17 %; is a complex cubic root of unity. Thus Sharkovsky's
Theorem is not in general valid for N =2 2 . This example also shows that

the "period three implies chaos" result of Li and Yorke [3] is not in

general true for difference equations of more than one dimension.

3. A class of difference equations

Let I be a compact subset of RrY of the form

(3.1) I=TTrI

where Ii is a compact interval for Z =1, 2, ..., N and let f:I~>1T

be a continuous mapping of the form

(3.2) fi(xl, Ty anns iN) = f%(xl, Ty vees xi)

for £ =1, 2, ..., N, that is to say a mapping for which the <th

component f; depends only on the first ¢ independent variables

Ly Xy eees T
1’ T2 >

Conditions (3.1) and (3.2) are satisfied by all one-dimensional
difference equations defined in terms of continuous mappings from a compact
interval into itself. When N = 2 they are also satisfied, for example,

by the twisted horseshoe difference equation of Guckenheimer, Oster and

Ipaktchi [11, for which f = (f,, f)) is defined on I = [0, 112 by

2x for 0==x =%,

n
—~
5
[
—
H
o]
s
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8
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fpleys ) =@ /2 + 2,10 + 5 for all (x), ) €T .

Sharkovsky's Theorem holds for such difference equations.

THEOREM. For any N =1, I <RY a compact set of the form (3.1)
and f : I > I a continuous mapping of the form (3.2), the ordering -—<
ig the Sharkovsky ordering.

To prove this theorem the following lemma is required. In it N = 2 ,

~ N—l A ~
I=i=lIi, f=1, f, ""flv-l) R x=(:z:l, T ""le-l) , and
(3.3) = FEY

where I is of the form (3.1) and f : I + I is a continuous mapping of
the form (3.2).

LEMMA. If forany q =1, 2, 3, ... equation (3.3) has a cycle of
period q , then equation (2.1) also has a cyele of period q .
Proof. For a mapping f of the form (3.2) and =z = (3:, xN) .

equation (2.1) can be written
ontl _ Lanm
7 = f(@Y)

(3.4) ~
:c;"'l = fN[acn, x;)

Let no, ﬁl, cees ﬁq—l be a cycle of period g of equation (3.3),
and define a mapping h : I, > I, by

N N
- ¢ [rq-1 ~g-2 ~0
(3.5) h(z,) = fN[n ; f,v[n s eees fN[n s 2yl .
for all xN € IIV . Then % is a continuous mapping from the compact

interval I, into itself, so it has a fixed point n* = h(n*) in I, .

Define
1 20 0 q-1 nq-2  ~q-2
- * - -
”N‘”’”zv‘fzv[“’”zv)’ e Ny ‘flv[“ sy | -

0 _ & _ ) = ~q-1 g-1
Then Ny =n —h(n)—fN[n > Ny , SO
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0 _f~0 0 1 _(~ 1 g-1 _ [~g-1 g-1
n “ln,nlv)an _[n,nN)’ ""n ‘{n ’nN

is a cycle of period ¢q of equation (3.4), that is of equation (2.1) with
the mapping f of the form (3.2).

Proof of theorem. The theorem is proved by induction on N . By
Sharkovsky's Theorem it is true when # =1 . Suppose that ¥ = 2 and
that the ordering —< for the (N-1)-dimensional difference equation
(3.3) is the Sharkovsky ordering. It will be shown that the ordering —<

for equation (3.4) is then also a Sharkovsky ordering.

Let no, nl, v np_l be a cycle of equation (3.4) of period

~0 Al ~g-1

p = (2k+l)2Z . Then equation (3.3) has a cycle n , N, ..., N of

period q , where g divides p , that is g = (2j+1)2t where
0<j<k, 0=4=1,and 2j +1 divides 2k + 1 . There are two

cases to be considered.
Case 1 (j =0) . Here g = 2" for some 0<i <1 , 50 equation

(3.3) has a cycle of period 2° . As —< is the Sharkovsky ordering for

this difference equation, there are thus cycles of periods

gl —< 22—

for equation (3.3). Hence by the lemma, equation (3.4) also has cycles of

periods

2t~ 2—<1 .

Now let % : I, > I, be defined as in (3.5). As N R

A1 Aq_l

is a cycle of period p of equation (3.4) and as ﬁo, N, .., N is a

cycle of period gq = 2®  of equation (3.3), this means that the one-

dimensional difference equation

(3.6) 2 = nfet)

has a cycle of period (2k+1)21_$ . Hence by Sharkovsky's Theorem,
equation (3.6) has cycles of all periods

(2k+3)z'i —< (2k+5.)21-7;_< e —< M . —<2—<1
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when k =21 or
2l ¢~ 2—1
when k =0 .
Let z2, z- 21 vea cycle of period r for equation (3.6),

and define

8q _ .8
CN _xlv ’

sq+t+l _ At sq+t
Sy f,v[n > Ty ) ,

for 8 =0,1, ..., r-1 and ¢t=0,1, ..., g-1 , where q = 21 . Then

~0 0 ~1 1 ~q-1 q-1 ~0 g ~q-1 . rg-1
[n b CN], [n b CN]’ ey [n 5 CN )’ [n 5 CN), AR ] [n L] CN

is a cycle of period rq = r2t of equation (3.4). Doing this for each r
for which equation (3.6) has a cycle of period r shows that equation

(3.4) has cycles of all periods

(2k+3)2Z —< (2k+5)2Z s 21.+l — 2i
wvhen k=1, or

ol < ot

when k=0.

However from the first paragraph of this case, equation (3.4) also
has cycles of all periods
Fl < —2—1

Hence equation (3.4) has cycles of all periods

(2k+3)22——< (2k+5)2z—< vee —< ot < 2’“"1 — ... —=< 2-—=<1

wvhen k=1, or

L D e D

when k =0 .

Case 2 (j 2 1) . Here k=1 must hold, and equation (3.3) has a
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cycle of period q = (2j+41)2 . As —< is the Sharkovsky ordering for
the (WN-1)-dimensional equation (3.3), this difference equation thus has

cycles of all periods

(2543)2F — ... — (2ks1)2b —< (2k+3)2b — ...
— M= = 2—=<1.
Hence by the lemma, equation (3.l4) also has cycles of all of these periods.

Combining these two cases shows that the ordering —< for the
N-dimensional equation (3.4), or equivalently here (2.1), is the Sharkovsky

ordering. This completes the proof of the theorem.
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