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Abstract

Google’s ‘Community Mobility Reports’ (CMR) detail changes in activity and mobility occur-
ring in response to COVID-19. They thus offer the unique opportunity to examine the
relationship between mobility and disease incidence. The objective was to examine whether
an association between COVID-19-confirmed case numbers and levels of mobility was appar-
ent, and if so then to examine whether such data enhance disease modelling and prediction.
CMR data for countries worldwide were cross-correlated with corresponding COVID-19-
confirmed case numbers. Models were fitted to explain case numbers of each country’s epi-
demic. Models using numerical date, contemporaneous and distributed lag CMR data were
contrasted using Bayesian Information Criteria. Noticeable were negative correlations
between CMR data and case incidence for prominent industrialised countries of Western
Europe and the North Americas. Continent-wide examination found a negative correlation
for all continents with the exception of South America. When modelling, CMR-expanded
models proved superior to the model without CMR. The predictions made with the distrib-
uted lag model significantly outperformed all other models. The observed relationship
between CMR data and case incidence, and its ability to enhance model quality and predic-
tion suggests data related to community mobility could prove of use in future COVID-19
modelling.

Introduction

COVID-19 is a highly infectious viral infection, and the main route of transmission is thought
to be through respiratory droplets [1, 2]. The level of COVID-19 transmissibility is greater
than for other closely related conditions, such as the SARS virus [3]. Those affected are infec-
tious prior to exhibiting symptoms of illness, or remain unaware of infection because they
experience only mild symptoms or are asymptomatic; factors which promote further transmis-
sion of the disease [2, 4].

Given the highly infectious nature of COVID-19, reducing levels of social interaction and
community movement have been seen as key in reducing the rates of COVID-19 transmission
[5, 6]. Recommendations have included the practising of social distancing, self-isolation
or quarantine, and increasing levels of personal hygiene [7–9]. Such recommendations were
followed by more formal, more stringent and often legally imposed governmental restrictions
on personal movement which have included ‘stay at home’ orders, closure of non-essential
retail units and schools, and banning of sports and entertainment gatherings [10].

The implementation of such measures in response to infectious disease outbreaks is not
new; methods aiming to reduce social contact and limit mobility being used for centuries
[11–13]. More recently, measures restricting social interaction and movement have been used
in response to the SARS and MERS epidemics which occurred in the last decades [11, 14–16].
That movement affects disease transmission and incidence has been shown in numerous
studies [e.g. 17, 18]. However, although the connection between mobility and disease has
been known for centuries, the detailed quantitative study of this relationship has been difficult.
Measuring and quantifying the levels of social interaction and mobility, over large geographical
areas, and for large populations is often not feasible.

However, over the last 20 years, technological progress has meant that potential new sources
of data providing information on population-wide movement patterns have become available.
During this time, mobile phone and Internet usage has become almost ubiquitous. Recording
of user behaviour, often also including locational information, has provided detailed new sources
of data relating to mobility [19]. Epidemiologists have been eager to utilise such datasets for dis-
ease monitoring and surveillance [20]. Notable studies using such data sources include
Wesolowski et al. [21], who modelled the spread of malaria in Kenya using the records from
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15 million mobile phone users. Finger et al. were able to use mobile
phone records to monitor the effect mass gatherings had on cholera
outbreaks [22]. Other diseases similarly studied include cholera [23]
and dengue fever [24].

In response to the COVID-19 outbreak, Google released data
collated from those accessing its applications using mobile and
handheld devices. These Google ‘Community Mobility Reports’
(CMR) [25] show changes in activity and mobility at different
location types, compared to before the spread of COVID-19 glo-
bally. These datasets are a useful, and global, measure of social
activity and movement. Uniquely, they allow comparison between
countries. These reports provide the opportunity to study the rela-
tionship between social activity and mobility and COVID-19 inci-
dence. In the absence of other global sources of data for these
factors, Google’s CMR data provide a good indication of the effect
health recommendations and governmental restrictions have had
on social activity and movement.

The main aim of this study was thus to examine the rela-
tionship between mobility and confirmed case numbers for
COVID-19 globally, and to ascertain whether cross-country pat-
terns in this relationship were apparent. Such patterns could
reflect the range of movement restrictions implemented [10],
but could also be due to other cultural or socio-economic differ-
ences [26, 27]. Another aim was to integrate CMR data into dis-
ease models, to assess whether it could enhance model quality and
prediction. The experimental hypothesis is that as COVID-19 case
occurrence increases, related reductions in mobility will occur;
such patterns are expected internationally due to the increasingly
globalised nature of communication channels.

Methods

Google Community Mobility Reports

These were accessed on 23 June 2020 and data for 135 countries
downloaded, spanning the period from 15 February 2020 until 19
June 2020 [25]. Google’s CMR collates data from those accessing
Google applications with smartphones or handheld devices who
allow recording of ‘location history’ [28]. Individual user presence
and time spent at specific location categories is collated to indicate
activity. Data are categorised into six discrete categories, which
can be summarised as ‘retail and recreation’, ‘parks’, ‘groceries
and pharmacies’, ‘workplaces’, transport ‘transit’ hubs and ‘resi-
dential’ areas. Increases in the categories ‘parks’ and ‘residential’
are indicative of decreased mobility, as they suggest increased
activity in locations around the home environment. The other
four categories are more indicative of general mobility as they
are related to activity around workplaces, retail outlets and use
of public transportation.

CMR provides the percentage change in activity at each loca-
tion category compared to that on baseline days before the advent
of COVID-19 (a 5-week period running from 3 January 2020 to 6
February 2020). Daily activity changes are compared to the corre-
sponding baseline figure day, with for example, data on a Monday
being compared to corresponding data from the baseline series for
a Monday. Baseline day figures are calculated for each day of the
week for each country, and are calculated as the median value
[25]. The values thus represent the relative change in percentages
compared to baseline days, not absolute number of visitors.
Missing values were returned if activity was too low upon a spe-
cific day and thus failed to achieve the anonymity threshold set by
Google.

COVID-19-confirmed cases

Corresponding data on the daily number of confirmed COVID-19
cases were downloaded on 13 July 2020 from the John Hopkins
COVID-19 data repository situated on github [29].

Cross-correlation analyses

Correlation analyses were performed using Kendall’s τ due to the
non-parametric nature of the data. Kendall’s τ correlations were
performed using a ±28-day lag. The τ value representing the
strongest negative or positive correlation, and the corresponding
lag in days were tabulated and illustrated as heat-map coded
world maps for each CMR category.

Expected was a negative correlation between case numbers and
activity in those categories indicative of mobility (‘retail and recre-
ation’, ‘grocery and pharmacy’, ‘transit’, ‘workplace’), and a posi-
tive correlation for those two categories (‘parks’, ‘residential’)
indicative of sedentary behaviour. A ±28-day lag was chosen in
order to encompass the incubation period for COVID-19, some
studies reporting that it can extend to 15 days [30]. Examining
data using such a lag also takes into account that testing for infec-
tion often only occurs some time post-symptom onset, and also
the delays occurring between testing, confirmation of infection
and updating of official figures.

Results were summarised and tabulated on the country
(Supplementary material S1) and on the continent-wide level
(Tables 1 and 2). Multiple group comparisons were done with
the Kruskal–Wallis test, pairwise comparisons with the Dunn
test (with Holm correction to multiple testing) on the
continent-level data. Model-based clustering was performed
on the scaled data excluding missing variables. We used the
mclust package [31] to select the optimal model based on
Bayesian Information Criteria (BIC) for EM algorithm initia-
lised by hierarchical clustering for parameterised Gaussian mix-
ture models.

Modelling

CMR data were integrated into models based upon each country’s
case incidence.

Mixed-effects random intercept generalised additive models
were fitted to the data using incident case numbers as the
explained variable to all subsets of data using a Tweedie distribu-
tion type. Countries were added as random intercepts. This mod-
elling technique was chosen because of the data structure, with
their being repeated measurement values, and a high number of
grouping factor levels. Similar mixed-effects approaches were
used by other authors including Kraemer et al. and Chan et al.
[32–34]. However, in contrast to these studies, here, we used
smoothed variables and distributed lag models with a multilevel
generalised additive modelling approach.

Three models were established. First, the smoothed numerical
date was used as the explanatory variable. Second, smoothed data
for five of the CMR location categories were additionally added as
explanatory variables. Change in ‘parks’ mobility was omitted
from modelling; increases in ‘park’ activity was expected for nor-
thern hemisphere countries during this spring period. Third, the
smoothed numerical date was applied as the explanatory variable,
but instead of adding data for the five CMR location categories, a
spline-described lag of ±14 days for each category was created and
used in the distributed lag model.

2 M. Sulyok and M. Walker

https://doi.org/10.1017/S0950268820002757 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268820002757


Table 1. Continent-level summaries of maximum Kendal’s τ correlations

Africa Asia Europe Oceania South America North America
Adjusted
P-value

Retail and
recreation

−0.35 (−0.47 to −0.24) −0.46 (−0.59 to −0.33) −0.63 (−0.73 to −0.55) −0.51 (−0.66 to −0.33) 0.33 (−0.43 to 0.37) −0.38 (−0.52 to −0.25) 0.012

Grocery and
pharmacy

−0.31 (−0.42 to −0.16) −0.40 (−0.51 to 0.24) −0.51 (−0.56 to −0.38) −0.46 (−0.57 to −0.32) 0.29 (−0.40 to 0.36) −0.38 (−0.50 to −0.26) 0.084

Parks −0.39 (−0.48 to −0.23) −0.49 (−0.63 to 0.30) −0.34 (−0.48 to 0.33) −0.40 (−0.59 to −0.07) −0.02 (−0.52 to 0.33) −0.38 (−0.46 to −0.33) 0.698

Transit stations −0.35 (−0.46 to −0.23) −0.42 (−0.62 to 0.28) −0.65 (−0.72 to −0.59) −0.51 (−0.68 to −0.32) 0.37 (−0.22 to 0.45) −0.37 (−0.51 to −0.28) 0.012

Workplaces −0.32 (−0.44 to −0.18) −0.47 (−0.63 to −0.16) −0.58 (−0.66 to −0.50) −0.50 (−0.67 to −0.31) 0.34 (0.31–0.47) −0.37 (−0.47 to −0.23) 0.012

Residential 0.40 (0.26–0.49) 0.53 (−0.30 to 0.66) 0.57 (0.54–0.66) 0.42 (0.06–0.65) −0.31 (−0.42 to 0.35) 0.36 (0.28–0.48) 0.014

Continent-level aggregate summaries of Kendall’s τ analyses between confirmed case numbers and Google CMR data. Results show the τ-values corresponding to the strongest correlations. Median values. IQR (in brackets).

Table 2. Continent-level summaries of cross-correlations

Africa Asia Europe Oceania South America North America
Adjusted
P-value

Number of
countries

24 32 36 4 10 16

Retail and
recreation

−22.50 (−27.25 to 1.00) −2.00 (−24.25 to 12.00) 2.00 (−4.00 to 4.75) 8.50 (6.75–11.25) 27.00 (−4.25 to 28.00) 1.50 (−11.25 to 16.25) 0.078

Grocery and
pharmacy

−19.00 (−26.00 to 1.00) −1.00 (−24.25 to 13.25) 3.00 (−3.25 to 4.00) 9.00 (2.50–12.00) 27.00 (−2.00 to 28.00) −3.00 (−14.75 to 11.50) 0.195

Parks −1.50 (−24.25 to 12.00) −12.00 (−26.50 to 7.00) −0.50 (−15.50 to 23.50) 9.00 (−2.50 to 12.50) 14.00 (−20.25 to 27.00) −7.00 (−19.25 to 11.25) 0.698

Transit
stations

−4.00 (−25.25 to 2.50) 2.50 (−19.00 to 15.50) 1.50 (−3.00 to 5.00) 8.00 (5.75–11.50) 27.50 (8.25–28.00) −5.50 (−27.25 to 10.75) 0.078

Workplaces −16.50 (−24.25 to 1.75) −2.00 (−23.25 to 14.00) 3.50 (−2.00 to 6.00) 9.00 (6.50–12.50) 28.00 (27.25–28.00) −3.00 (−12.50 to 14.50) 0.012

Residential −15.00 (−27.25 to 1.75) −4.00 (−24.25 to 12.50) −0.50 (−2.25 to 6.00) 5.00 (−4.00 to 8.75) 26.50 (0.25–28.00) 1.00 (−17.25 to 16.25) 0.012

Continent-level aggregate summaries of Kendall’s τ cross-correlation analyses between confirmed case numbers and Google CMR data. Results show the number of days case numbers were lagged which resulted in the strongest correlations. Median
values. IQR (in brackets).
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Model comparison and validation

Model performance was compared using the BIC. Then each
model was compared to each other (Supplementary material
S2). To validate the models, we made predictions of the incident
case numbers for the time interval from 19 June 2020 to 08
September 2020. Data were obtained on 13 September 2020 as
described previously. To compare the predictive performance of
the models, we calculated root-mean-square-errors (RMSE) of
the different predictions by comparing the predicted values with
the reported ones. Comparisons of predictions were also made
by using the two-sided Diebold–Mariano test.

Observations with missing values were omitted from calcula-
tions. All calculations were performed in R version 3.6.3 using
the dlnm, mgcv and lme4 packages. The statistical code together
with the data is provided in Supplementary material S1.

Results

Cross-correlation analyses

Figure 1 shows the strongest level of correlation, as Kendall’s τ,
that was found between the COVID-19 case incidence for each
country and daily percentage change in activity for each location
category. A positive correlation indicates that as COVID-19 case
numbers increased, there was an increase in activity indicated
by data on that location category. A negative correlation indicates
that while COVID-19 case numbers rose, there was a decline in
activity in that location category or vica versa.

Particularly strong negative correlations are apparent for
prominent countries of Western Europe, across the North
Americas, Russia and Australia, for location categories ‘retail
and recreation’, ‘grocery and pharmacy’, ‘workplace’ and ‘transit’
activity. This indicates that as disease incidence rose, activity levels
declined. However, weaker, or even positive correlations, can be
observed for these categories for countries across South
America, in Eastern Europe and for India. The reverse pattern
was observed for ‘parks’ and ‘residential’ categories; at these loca-
tions, an increase in activity would be expected if there was an
increase in time spent close to habitation.

Distinct geographical patterns are noticeable from the map,
with broad trends being apparent across large geographical
areas. Thus, as well as on a country-wide basis, results were col-
lated and examined on a continent-wide basis, as provided in
Tables 1 and 2. As illustrated in the accompanying boxplots,
when aggregating data this way, negative correlations between
‘retail and recreation’, ‘grocery and pharmacy’, ‘workplace’ and
‘transit’ activity with disease incidence occurred across all conti-
nents, except South America. Again, the opposite was observed
for ‘parks’ and ‘residential’ activity.

Figure 2 shows the number of days of lagging, which resulted
in the strongest correlation for each location category, for each
individual country. Considerable negative time lags result in the
strongest correlations for prominent countries across all categor-
ies, including the USA, Canada and Russia, and countries of
Western Europe. The exception to this pattern is for ‘parks’,
where a positive lag results in the strongest correlation for Russia.

Conversely, the strongest correlations are obtained with posi-
tive time lags for countries of South America and for Australia
across all categories. The exception is ‘parks’ activity for countries
of South America where negative lagging results in the strongest
correlations; this is apparent from the accompanying boxplots
which aggregate data continent wise. Significant differences

were found for all six parameters (the lags in days producing
the strongest correlation, and the τ value representing the correl-
ation for all six CMR categories (Table 1 and 2)).

Clustering analysis was used to group countries on the basis of
maximum absolute τ values and the corresponding lags. This
identified four groups; the first where low lags resulted in greatest
correlation (mainly Asian and Eastern European; e.g. India,
Pakistan, Afghanistan, Russia, Belarus; but Brazil and Sweden
also belong to this group). These countries showed weak levels
of correlation, obtained with lags of around 0 or only weakly posi-
tive (median lags 3–10 days).

The second cluster contained mainly industrialised westernised
countries such as the UK, Germany, Italy, Spain, the USA, Canada
and Australia. This cluster had strong negative τ values, obtained
using lags of only a few days (median −2 to 3.5). Group three (typ-
ically African and Asian countries; e.g. South Africa, Nigeria, Saudi
Arabia, but also Mexico) had strong negative correlations obtained
with strong negative lags (median −27 to −28). The final group
(Eastern European and South American countries, such as
Ukraine, Poland, Venezuela, Colombia) had strong positive corre-
lations, and a high number of positive lags (27–28 days median).
Detailed country-level values and cluster-level summary are pro-
vided in Supplementary material S2 and S3.

Pairwise comparisons with multiple testing correction found
significant differences between Africa and South America in the
lag producing the maximum correlation for ‘workplace’ data (Z:
−4.74; adjusted P-value: <0.001) and between the Kendall’s τ
value for ‘retail and recreation’ between Africa and EU (Z: 4.049,
adjusted P-value: 0.0045), the Kendall’s τ value for ‘transit’ stations
between EU and South America (Z:−4.253, adjusted P-value:
0.0019), and the Kendall’s τ value for ‘residential’ data between
the EU and South America (Z: 3.55, adjusted P-value: <0.001).

Modelling: The contemporaneous CMR-expanded model
proved superior (BIC: 79096.29) to the numerical date-only
model (BIC: 79802.47) and expanded model with distributed
lag CMR (BIC: 80286.14). In the contemporaneous
CMR-expanded model, the significant independent fixed-effects
covariates were the numerical date and ‘retail and recreation’
(negative estimate) change compared with baseline mobility
data. Summaries of the contemporaneous CMR-expanded
model are shown in Table 3.

When we validated the models, the results showed a somewhat
different hierarchy of the models than based on the previous qual-
ity measures: the best performing model was the one with all vari-
ables with distributed lags (RMSE:6690.44). This was followed by
the model without distributed lags (RMSE:6794.99). The worst
predictive performance was identified with the model without
the mobility data (RMSE:6840.16). Difference in predictive per-
formance was significant between all models (pairwise two-sided
Diebold–Mariano test, in all comparisons P < 0.001).

Discussion

Here, clear correlations between COVID-19 case incidence and
levels of mobility, as represented by Google’s CMR data, were
found. Distinct patterns were discernible over broad geographical
areas, with clear negative relationships between disease occurrence
and mobility being particularly apparent across North America,
Western Europe, Russia and Australia. Reductions in those
CMR categories indicating levels of social activity and mobility,
‘retail and recreation’, ‘grocery and pharmacy’, ‘workplace’ and
‘transit’ were apparent in these areas as COVID-19 case incidence
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rose. ‘Parks’ and ‘residential’ activity increased in line with
COVID-19 incidence, suggesting increased time spent in a loca-
tion close to home as case numbers rose. Thus, as COVID-19 epi-
demics developed, levels of mobility and movement declined.

That the relationship is clear for these areas may be related to
the progression of the COVID-19 epidemic globally. COVID-19

was first identified in China, before spreading to Western
European and North America; it is in these areas where the
expected negative correlations are strongest and most apparent
[35]. The results from clustering analysis, with the identification
of distinct groups of countries, illustrate that similar patterns
are observed by countries close together, or situated on the

Fig. 1. Maximum absolute τ values. Results of
Kendall’s τ cross-correlation between
COVID-19-confirmed case number and measures of
community activity. Strong continent-wide regional
patterns are apparent. Generally for the four categor-
ies indicative of mobility (‘retail and recreation’, ‘gro-
cery and pharmacy’, ‘workplace’ and ‘transit’) strong
negative correlations were observed across countries
of North America, Russia, Australia, India and
Western Europe. Positive relationships are seen in the
South Americas, Eastern Europe, India and Southern
Africa. For ‘residential’ activity, which is indicative of
increased sedentary behaviour, the opposite was gen-
erally observed. For ‘parks’ the picture was mixed, pos-
sibly reflecting the difference nature of legal
restrictions on a country by country basis; some coun-
tries implemented lockdown while others did not,
some permitted outdoors exercise, others not [10].
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same continent. This lends support to the idea that patterns in
disease progression occurred on a continent-wide level. The
broad similarities apparent over continents also support this idea.

Another explanation for these patterns is that country-specific
socio-economic or cultural factors may be influencing mobility
levels in response to the disease outbreak. Although a

generalisation, those countries where strongly negative correla-
tions were most apparent, are those often categorised as being
‘developed’ nations; they possess well-established communication
and media outlets, effective governmental control and host popu-
lations possibly more compliant with governmental restrictions.
Knowledge and understanding about COVID-19 may have been

Fig. 2. Lags to maximum correlations. Amount of time
lagging in days resulting in the maximum Kendall’s τ
between COVID-19 for confirmed case number and
measures of community activity (colour online only).
Interesting are that the strongest correlations were
when case numbers were negatively lagged by
amounts of −20 days or greater for large areas across
North America, Western Europe, Central Asia and
Russia for the four categories indicative of mobility.
This suggests that reductions in mobility in such
areas occurred substantially prior to corresponding
increases in COVID-19 case numbers. This is thus likely
to have been substantially prior to formal legislation
imposing movement restrictions coming into place.
This indicated that personal behavioural choices and
perceived risk perception may have played a greater
role in driving movement patterns than legal
restrictions.

6 M. Sulyok and M. Walker
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more widely disseminated and accessible in these countries, influ-
encing personal perceptions of risk, and thus personal movement
decisions.

The results from the cross-correlation analyses suggest that
mobility reductions occurred sometime prior to corresponding
increases in COVID-19 cases in many countries where negative
correlations were observed. This may be because of delays in dis-
ease identification and reporting which meant that data on con-
firmed cases did not reflect actual disease incidence. It may be
related to the spread of COVID-19 globally, and similar patterns
may become more apparent for other areas of the globe once the
full progression of the COVID-19 epidemic is understood; further
examination at a later date may prove productive. However, these
patterns in lagging could also be related to population attributes
of those countries. Other studies have found that behavioural
characteristics shared by those in nation states influence attitude
to risk and subsequent behaviour [34]. Those populations at
where the strongest negative correlations are observed may be
more risk averse.

Although legally enforced restrictions on mobility are the most
obvious factor causing a reduction in population mobility, poten-
tially more important are personal behavioural choices made in
response to the threat posed by infectious disease [36, 37]. For
example, surveying of Americans found they avoided public gath-
erings, such as sporting events, malls and public transport in
response to fears of H1N1 [38]. Following the SARS epidemic
of 2002, large reductions in travel into and out of Hong Kong
are reported [15]. Surveys found a reluctance to travel and engage
in social activities in communities where there was a perceived
risk from SARS infection [36].

Studies examining personal risk perception and its relationship
with movement during the COVID-19 outbreak show that per-
sonal behavioural and psychological traits may be important in
influencing the levels of mobility. Chan et al. studied nationwide
personality traits along with Google CMR data, finding that coun-
tries with agreeable and conscientious personality traits showed
greater levels of mobility reduction than countries exhibiting
more openness [34]. Another study examined survey data on
nationwide risk-taking attitudes, finding that this affected mobil-
ity; it also reported a clear effect on the mobility of the WHO pan-
demic announcement [33]. In another work, the importance of

freedom of assembly and association was identified as the most
important predictor of COVID-19 doubling time among cultural
norms [26]. The factors affecting personal movement decisions
are complex and inter-related; including the personal perceived
risk of infection, socio-economic factors and peer group behav-
iour [27].

The examination of mobility and disease occurrence, and its
use in disease modelling has been examined for recent disease epi-
demics. The 2009 H1N1 influenza pandemic provides a good
recent parallel for the current COVID-19 pandemic. Much of
the H1N1 infection was spread globally through international
air travel [39, 40]. Modelling studies have shown how human
movement and mobility patterns influenced the geographic
spread and timing of this epidemic [41, 42]. Bajardi et al. mod-
elled disease spread using travel data, concluding that restrictions
on international travel played little role in controlling the spread
of this epidemic globally [43].

The potential use of mobility data, and its potential use in
COVID-19 modelling, was identified early [44]. Oliver et al.
review the potential use of mobile phone data in COVID-19 mod-
elling [45]. Studies using such data are rapidly appearing. Notable
studies include Jia et al. who used data collated from mobile
phone records showing population outflows from Wuhan, to
assess the impact quarantining had on mobility, and to predict
the frequency and distribution of COVID-19 infections across
China [46]. Another recent study modelled the spread of
COVID-19 using mobile phone data, modelling the effect of dif-
ferent movement control measures on COVID-19 incidence [47].
Kraemer et al. used travel-related data from the website Baidu to
show patterns in COVID-19 establishment; a relationship
between the frequency of travel out of Wuhan accounted for pat-
terns in disease across China [32]. Non-Chinese-based studies
include that of Badr et al., which modelled the relationship
between mobility and confirmed case numbers for individual
US counties, and related these to state-wide restrictions on move-
ment [48]. In Italy, Bonaccorsi et al. examined the economic
effect of mobility restrictions finding that the mobility effects
were greater in areas with greater fiscal capacity. In contrast to
other studies [49], Chinazzi et al., who studied the travel restric-
tions in China, concluded that they played little effect in halting
the spread of the infection [50]. Many of these studies examine
mobility patterns in individual countries; however, Google’s
CMR is also being used to model COVID-19 across broader geo-
graphical ranges. Zhu et al. have used CMR to gauge future case
numbers and the reproductive number of COVID-19 across
South American countries [51].

Epidemiologists are constantly seeking new sources of data
sources with the potential to enhance existing disease forecasting
and modelling. The initial attempts made here to use data from
Google’s CMR in disease modelling are promising. Integrating
contemporaneous mobility data into models of case incidence
resulted in models providing better quality measures than those
utilising lagged-distributed data. Other similar datasets, such as
Apple’s Mobility Trends data [52], could be examined and com-
pared to see if similar relationships as found here are apparent.
Particularly interesting is that Google’s CMR could also offer
the potential to examine movement at the local scale rather,
meaning more precise and locally based understanding of disease
dynamics could be gained.

A disadvantage of using Google’s CMR is that the data do not
directly equate to some COVID-19 control measures. For
example, ‘social distancing’ has been widely promoted as a

Table 3. Model summaries

Smoothed fixed-effect
predictors Estimate

Standard
error P-value

Date 14.88 0.67 <0.001

Retail and recreation
percent change from
baseline

−1.34 0.59 0.025

Grocery and pharmacy
percent change from
baseline

0.33 0.36 0.358

Transit stations percent
change from baseline

−0.33 0.36 0.368

Workplaces percent change
from baseline

−0.42 0.51 0.415

Standard deviation of the
random intercept term

2.151

Model summary statistics using contemporaneous CMR data.
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measure to reduce the transmission of COVID-19 [53]. Valenti
et al. [54] used CMR data as an estimate of social distancing in
the modelling of deaths in Brazil. However, CMR data indicate
only general activity at specific location types, and provide no dir-
ect indication of adherence to such rules. Another disadvantage is
that users of Google technology may not be representative of a
country’s population as a whole. Demographic groups particularly
affected by COVID-19, such as the elderly, who may be more cau-
tious, may be underrepresented in such data. Age, economic and
sexual differences in the make-up of Google users may occur
between countries, and thus affect country comparisons. One of
the disadvantages of this study is that such country-specific rea-
sons are not considered; such research requires further study
and consideration of other socio-economic, behavioural and psy-
chological factors. The method used here, examining associations
between mobility and case number, provides no insight into the
causative factors driving such patterns.

A strength of this study was that it examined broader global
trends using CMR. Distinct patterns were observed by examining
data on a continent-level scale; most studies examine mobility
data only at a national scale, meaning such patterns may be
missed. Despite political wish thinking, the spread of infectious
disease occurs regardless of notional national boundaries, mean-
ing such examination is pertinent. The format of data provided
by CMR means easy cross-country comparison is possible.
Another strength of the study was that the modelling method
used extended that of previous work; smoothing of variables
was applied with GAM modelling to deal with non-linearities.
Lagging was made by applying spline-described values to achieve
a distributed lag model instead of adding each and every lagged
value to reduce complexity and to avoid overfitting.

As already highlighted, a limitation here is that the reasons
underlying the patterns observed in mobility were not examined.
No attempt to examine the sociological issues affecting mobility
was made. Chan et al. [33] note that reductions in mobility coin-
cided with the WHO announcement of a global pandemic in
January 2020; further modelling could integrate this into future
work. Individual country correlations were not compared directly
with each other. Further work could also examine the timing of
disease progression in each country, relating it directly to actual
changes in activity data. We speculated that economic develop-
ment status may account for patterns observed here; examination
of GDP data, which reflects such status, and its relationship with
mobility may be of interest.

In summary, a relationship between levels of social activity and
community movement with disease incidence was found for
countries globally using Google’s CMR. As COVID-19 became
established globally, levels of mobility declined, this may be either
because of government recommendations and imposed legal
restrictions, or through personal behavioural changes resulting
from fear of disease. Google’s CMR illustrates the effect these
measures had on community movement. Interesting is that reduc-
tions in mobility appeared to occur substantially prior to the
implementation of legal restrictions on movement in many coun-
tries, suggesting the importance of personal perceived risk of
infection and personal behavioural modifications rather than gov-
ernment edict. Further study to ascertain how countries differ in
their adherence to such measures, and whether this is apparent in
CMR, would be most interesting. An understanding of the cul-
tural, social and economic factors possibly accounting for some
of the differences observed between countries could be
productive.

In conclusion, the observed relationship between CMR data
and case incidence, and its ability to enhance model quality and
prediction suggests data related to community mobility could
prove of use in future COVID-19 modelling.
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