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ABSTRACT. Forced ice-shelf vibration modeling is performed using a full 3-D finite-difference elastic
model, which also takes into account sub-ice seawater flow. The sea water flow is described by the
wave equation. Ice-shelf flexure therefore results from hydrostatic pressure perturbations in the sub-
ice seawater layer. Numerical experiments were undertaken for idealized rectangular ice-shelf geom-
etry. The ice-plate vibrations were modeled for harmonic incoming pressure perturbations and for a
wide range of incoming wave frequencies. The spectra showed distinct resonant peaks, which demon-
strate the ability of the model to simulate a resonant-like motion. The spectra obtained by the full 3-D
model are compared with exact solutions for the elastic thin plate with two fixed edges and two free
edges. The spectra are also compared with the spectra modeled by the thin-plate Holdsworth and
Glynn model (1978).
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INTRODUCTION
Tides and ocean swell produce ice-shelf flexure, and thus,
can initiate break-up of ice in those ice shelves and encour-
age ice-shelf rift propagation (Holdsworth and Glynn, 1978;
Goodman and others, 1980; Wadhams, 1986; Squire and
others, 1995; Meylan and others, 1997; Bromirski and
others, 2009). No strong correlation between rift propagation
rate and ocean swell has been revealed so far (Bassis and
others, 2008), and it is not clear to what degree the rift propa-
gation can be triggered by tides and ocean swell.
Nevertheless, the impact of tides and ocean swell is a signifi-
cant fraction of the total force (Bassis and others, 2008) that
produces ice calving in ice shelves (MacAyeal and others,
2006). Moreover, the resonant-like motion that can occur
under suitable conditions of long-term swell forcing (sus-
tained impact over many swell periods) can cause fracture
in the ice-shelf (Holdsworth and Glynn, 1978). Thus,
insight into the process of vibration in ice shelves is important
for understanding ice-sheet–ocean interactions and ice-shelf
stability.

Models of ice-shelf flexure and vibrations have been pro-
posed (e.g. Robin, 1958; Holdsworth, 1977; Hughes, 1977;
Holdsworth and Glynn, 1978; Goodman and others, 1980;
Lingle and others, 1981; Stephenson, 1984; Wadhams,
1986; Smith, 1991; Vaughan, 1995; Schmeltz and others,
2001; Turcotte and Schubert, 2002), based on elastic thin-
plate/elastic-beam approximations. These models provide
simulations of ice-shelf deformations, calculate the
bending stresses due to the vibrations and assess possible
effects of tides and ocean swell impacts on the calving
process.

Further development of elastic-beam models for the
description of ice-shelf flexure used visco-elastic rheological
models. In particular, tidal flexures of an ice-shelf were
obtained using the linear visco-elastic Burgers model (Reeh
and others, 2003; Walker and others, 2013), and the non-
linear 3-D visco-elastic full-Stokes model (Rosier and

others, 2014). An analytical approach, in which flexural
motions of ice cover were described by the Timoshenko–
Mindlin equation, was undertaken by Balmforth and
Craster (1999), whereas Sergienko (2010) derived exact ana-
lytical solutions that describe ice-shelf deformation and stress
induced by long ocean waves in an idealized ice/ocean
geometry (in a non-resonant case).

Here, the modeling of forced vibrations of a buoyant,
uniform, elastic ice tongue, floating in shallow water of
variable depth, is developed. Simulations of ice-shelf
flexure are performed by a full 3-D finite-difference
elastic model. The model features a combination of bound-
ary conditions applied to the ice plate, which are linear
combinations of the typical form of boundary conditions
with those developed in Konovalov (2015, 2016). The
main objective of this study is to obtain the amplitude
spectra for the floating ice-shelf using the full finite-differ-
ence elastic model, focusing on the eigenvalue problem
for ice-shelf vibrations in 3-D elastic models. In this
study, the term ‘eigenvalue’ is employed in the same
meaning as in a Sturm–Liouville Eigenvalue Problem (e.g.
Tikhonov and Samarskii, 1963).

In nature, the probability of random wave events arriving
at an ice-shelf with a specific (fixed) frequency is equal to
zero (wave arrivals always display a range of frequencies
which vary continuously with arrival time). There is,
however, a non-zero probability that the random wave
event will cover a range of frequency that contains specific
frequencies to which the ice-shelf/ocean system is sensitive.
The specific resonant frequencies for ice-shelf/ocean systems
determined alone, without information about how the
response of the ice-shelf/ocean system varies within a small
range of frequency surrounding the resonance is thus not
fully sufficient. By determining the width of ice-shelf/ocean
resonance spectra surrounding the exact resonance fre-
quency, the ‘compatibility’ of the system to be excited by
random wave events is thus better determined.
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FIELD EQUATIONS

Basic equations
The 3-D elastic model is based on the well-known momen-
tum equations (e.g. Landau and Lifshitz, 1986; Lamb, 1994):
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where (XYZ) is a rectangular coordinate system with X axis
along the central line, and Z axis is pointing vertically
upward; U,V and W are two horizontal and one vertical ice
displacements, respectively; σ is the stress tensor; and ρ is
the ice density. The ice-shelf is of length L along the central
line. The geometry of the ice-shelf is assumed to be given by
lateral boundary functions y1,2(x) at sides labeled 1 and 2
and functions for the surface and base elevation, hs,b(x, y),
denoted by subscripts s and b, respectively. Thus, the
domain on which Eqn (1) is solved is Ω= {0 < x < L, y1(x)
< y < y2(x), hb(x, y) < z < hs(x, y)}.

Sub-ice water is assumed to be an incompressible invis-
cid fluid of uniform density. Another assumption is that
the water depth in the cavity below the ice-shelf changes
gradually in the horizontal directions. Thus, the ice front
and other such features are not considered here.
Moreover, the ice is considered to be a continuous solid
elastic plate. Under these three assumptions, sub-ice water
flow is independent of z in a vertical column.
Manipulating the governing equations of the shallow sub-
ice water layer yields the wave equation (Holdsworth and
Glynn, 1978):
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where ρw is the sea water density; d0(x, y) is the depth of the
sub-ice water layer; Wb(x, y, t) is the vertical deflection of
the ice-shelf base and Wb(x, y, t)=W(x, y, hb(x, y), t); and
P′(x, y, t) is the deviation of the sub-ice water pressure
from the hydrostatic value.

Boundary conditions
The boundary conditions are: (i) a stress-free ice surface; (ii)
the normal stress exerted by seawater at the ice-shelf-free

edges and at the ice-shelf base; and (iii) rigidly fixed edges
at the grounding line of the ice-shelf.

In this model, the boundary conditions are considered in
the form of the linear combination

α1 FiðU;V ;WÞ þ α2 ΦiðU;V ;WÞ ¼ 0; i ¼ 1;2;3; ð3Þ

where:

(i) Fi(U, V, W)= 0 is the typical and a well-known form of
the boundary conditions where, e.g. the condition on
the ice-shelf surface is expressed as σik nk= 0 (~n is the
unit vector normal to the surface);

(ii) Φi(U, V, W)= 0 is the approximation developed in
Konovalov (2015, 2016); and

(iii) the coefficients α1 and α2 satisfy the condition α1 + α2= 1.

Thus, these boundary conditions (3) are the superposition of
the typical boundary conditions and those developed in
Konovalov (2015, 2016). The boundary conditions formu-
lated here are notable because they are ‘mixed’, i.e. they
represent what is typically seen in the previous studies
adjusted for the physical considerations presented in
Konovalov (2015, 2016).

Discretization of the model
The numerical solutions were obtained by a finite-difference
method, which is based on the standard coordinate trans-
formation

x; y; z ! x; η ¼ y � y1
y2 � y1

; ξ ¼ ðhs � zÞ=H;

where H is the ice thickness (H= hs− hb). The coordinate
transformation maps the ice domain Ω into the
rectangular parallelepiped Π= {0≤ x≤ L;0≤ η≤ 1;0≤
ξ≤ 1}, which presents simplification to the numerical
discretization.

Equations for ice-shelf displacements
Constitutive relationships between stress tensor components
and displacements correspond to Hook’s law (e.g. Landau
and Lifshitz, 1986; Lurie, 2005):

σ ij ¼ E
1þ n

uij þ n

1� 2n
ullδ ij

� �
; ð4Þ

where uij are the strain components.
Substitution of these relationships into Eqn (1) gives final

equations of the model:
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Ice-shelf harmonic vibrations: the eigenvalue problem
It is assumed that for harmonic vibrations, all variables are
periodic in time, with the periodicity of the incident wave
(of the forcing) given by the frequency ω, i.e.

~ςðx; y; z; tÞ ¼ ςðx; y; zÞ eiωt; ð6Þ

where ~ς ¼ fU;V ;W ; σ ijg, where we are interested in the
real part of the variables expressed in a complex form.

This assumption also implies that the full solution of the
linear partial differential Eqns (2) and (5) is a sum of the solu-
tion for the steady-state flexure of the ice-shelf and solution (6)
for the time-dependent problem. In other words, solution (6)
implies that the deformation due to the gravitational forcing
can be separated from the vibration problem, i.e. the term
ρg as well as the appropriate terms in the boundary conditions
(3) are absent from the final equations formulated for the
vibration problem, because a time-independent solution
accounting for them applies and is not of interest in this study.

The separation of variables in Eqn (6) and its substitution
into Eqns (2) and (5) yields the same equations, but with
the operator ∂2/∂ t2 replaced with the constant − ω2, i.e. we
obtain equation for ςðx; y; zÞ:

L ς ¼ �ω2ς; ð7Þ

where L is a linear partial differential operator.
The numerical solution of Eqn (7) at different values of ω

yields the dependence of ς on the frequency of the forcing
ω. When the frequency of the forcing converges to the eigen-
frequency of the system, we observe the typical rapid
increase of deformation/stresses in the spectra in the form
of the resonant peaks.

Note that here, the term ‘eigenvalue’ refers to the eigenfre-
quency (ωn) of the ice/water system or corresponding period-
icity (Tn= (2π/ωn)). As mentioned previously, the term
‘eigenvalue’ is employed in the same meaning like in a
Sturm–Liouville Eigenvalue Problem (e.g. Tikhonov and
Samarskii, 1963). Eigenvalues (where resonant peaks would
be observed) are denoted by the letters ωn or Tn with the sub-
script n (or other), which is an integer, because the array of
the eigenvalues is a countable set.

Letters ω or T without the subscript denote the non-reson-
ant values of frequency or periodicity of the ice/water system.
They are defined by the frequency of the incident wave (of
the forcing).

The eigenvalues can be derived from the equationD(ω)=
0, where D is the determinant of the matrix, which results
from the discretization of Eqn (7) and of the corresponding
boundary conditions. However, the probability of the
appearance of the forcing at any specific frequency is practic-
ally zero. This can be seen when we consider only events
within the frequency range (ωi− Δω, ωi + Δω). The probability
of a forcing that is within the frequency range is non-zero:

pfω ∈ ðωi � Δω; ωi þ ΔωÞg ¼ 2Δω
Ω

; ð8Þ

where Ω is the width of the range in omega space, which
includes all possible frequencies of the forcing. Eqn (8) also
assumes that the events have equal probabilities in different
parts of Ω.

Thus, the probability of the resonant-like motion is higher
when the value Δω, which is defined by the width of the

resonant peak, is higher too. Therefore, the width of the res-
onant peaks is an important parameter, from a practical
standpoint, because it defines the probability of the suitable
resonant-like motion.

Computation of the spectra, such as provided below, thus
provides important information about the width of resonant
peaks within the likely range of forcing frequencies found
in nature. By assessing the widths of such peaks, a better
understanding of the probability that any one specific
forcing event at a specific ω can be assessed.

NUMERICAL RESULTS
The numerical experiments with ice-shelf/tongue forced
vibrations were carried out for a physically idealized ice-
shelf with the geometry of a rectangular parallelepiped as
described above. In the undeformed ice-shelf, the four
edges had coordinates x= 0, x= L, y1= 0, y2= B, where L
is the plate length along the X axis and B is the plate width
along the Y axis (B= y2− y1, see Eqn (1)). Furthermore, the
ice-shelf thickness H= hs(x, y)− hb(x, y) was held constant
in these experiments.

Experiment A
In Experiment A, the ice-shelf had two fixed edges (at x= 0,
y1= 0) and two free edges (at x= L, y2= B) and the water
layer was absent. This geometry represents the limiting
case of an ice-shelf that is in vanishingly shallow water and
which is only partially surrounded by land. In this experi-
ment, the ice-shelf vibrations were generated by pressure
that was uniformly distributed across the ice base and that
periodically changed with time.

Under the given conditions, when two adjacent edges are
fixed and two others are free, the analytical solution can be
obtained by the thin-plate approximation (e.g. Landau and
Lifshitz, 1986). In particular, the eigenfrequencies are
expressed as

ωk;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E H2

12ρ ð1� n2Þ

s
π2

k
L

� �2

þ n
B

� �2
( )

; k;n

¼ 1;2 . . . ð9Þ

Experiment A was undertaken for different values of the
aspect ratio γ=H/L.

Figure 1 shows the amplitude spectra obtained in
Experiment A. Here, ‘amplitude spectrum’ means the
dependence of the deflection amplitude (taken to be the
maximum value across the ice-shelf) on the frequency (of
the incident wave/forcing). The deflection amplitude is nor-
malized by the forcing amplitude. The amplitude spectra pre-
sented in Figure 1 were obtained for three values of the
aspect ratio: (a) γ1= 5 · 10−2 (H= 100 m; Fig. 1a); (b) γ2=
2.5 · 10−2 (H= 50 m; Fig. 1b) and (c) γ3= 2.5 · 10−3 (H=
25 m; Fig. 1c); i.e. the changes in the aspect ratio were pro-
vided by the changing of ice thickness (H). Vertical lines in
Figure 1 are aligned to the eigenfrequencies defined by Eqn
(9). The amplitude spectra were obtained for different
values of α1 and α2 from Eqn (3).

The eigenvalues derived by the full model and the ones
obtained by Eqn (9) are different. However, as for both the
exact solutions (9) and modeled spectra, the changes of the
aspect ratio created similar changes in the spectra in
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agreement with the following ratio

ðTiÞ1
ðTiÞ2

¼ γ2
γ1

; ð10Þ

where (Ti)k is the i-th eigenperiodicity that corresponds to the
aspect ratio γk. In particular, for the exact solutions the ratio
(10) directly follows from Eqn (9), if the changes in the aspect
ratio are provided by varying of ice thickness (H). This is
because of the H2 dependence of the parameters in the
elastic flexure rigidity of the ice-shelf.

Experiment B
As in the previous experiment, in Experiment B the ice plate
had two fixed edges (at x= 0, y1= 0) and two free edges (at
x= L, y2= B), but the water layer was present and the layer
depth was constant. The ice-plate dimensions were L= 20
km, B= 10 km, H= 100 m. The water-layer depth was
d0= 100 m and the aspect ratio γ was equal to 5 · 10−3

(γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððd0HÞ=L2Þp
). Figure 2 shows the amplitude spectra

obtained in Experiment B for different values of α1 and α2
from Eqn (3).

Experiment C
In Experiment C, the ice plate had only one fixed edge (at x=
0), while the other edges (at x= L, y1= 0, y2= B) were free.
This is the special case of an ice-shelf that is also known as
an ‘ice tongue’, which is unconfined by coastlines and
simply flows across a single grounding line (e.g. Holdsworth
and Glynn, 1978). The water-layer depth was a constant
value of 100 m. Ice tongue dimensions were L= 16 km,
B= 800 m, H= 100 m. The aspect ratio γ was equal to
6.25 · 10−3 (γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððd0HÞ=L2Þp

). Figure 3 shows the

Fig. 2. The amplitude spectra obtained in Experiment B. The ice-
shelf dimensions are L= 20 km, B= 10 km, H= 100 m. Sub-ice
water depth is equal to 100 m. Aspect ratio γ= 0.005. Сurves 1–3
are the amplitude spectra derived from the full model: 1 – α1= 1,
α2= 0; 2 – α1= 0.9, α2= 0.1; 3 – α1= 0.8, α2= 0.2. Young’s
modulus E= 9 GPa, Poisson’s ratio ν= 0.33 (Schulson, 1999).

Fig. 1. The amplitude spectra, maximal ice-shelf deflection vs
periodicity of the forcing, obtained in Experiment A. Vertical lines
correspond to the eigenfrequencies defined by Eqn (7). (a) Ice-
plate dimensions are L= 2 km, B= 1 km, H= 100 m. Aspect ratio
γ= 0.05. Сurves 1–4 are the amplitude spectra derived from the
full model: 1 – α1= 1, α2= 0; 2 – α1= 0.8, α2= 0.2; 3 – α1=
0.6, α2= 0.4; 4 – α1= 0, α2= 1. (b) Ice-plate dimensions are
L= 2 km, B= 1 km, H= 50 m. Aspect ratio γ= 0.025. The curve
is the amplitude spectrum derived from the full model. (c) Ice-
plate dimensions are L= 2 km, B= 1 km, H= 25 m. Aspect ratio
γ= 0.0125. The curve is the amplitude spectrum derived from the
full model. Young’s modulus E= 9 GPa, Poisson’s ratio ν= 0.33
(Schulson, 1999).

Fig. 3. The amplitude spectra obtained in Experiment C. Ice tongue
dimensions are L= 16 km, B= 800 m, H= 100 m. Sub-ice water
depth is equal to 100 m. Aspect ratio γ≈ 0.006. Сurves 1–3 are
the amplitude spectra derived from the full model: 1 – α1= 1,
α2= 0; 2 – α1= 0.8, α2= 0.2; 3 – α1= 0.6, α2= 0.4. Curve 4 is
the amplitude spectrum obtained by the Holdsworth and Glynn
model (Holdsworth and Glynn, 1978). Young’s modulus E= 9
GPa, Poisson’s ratio ν= 0.33 (Schulson, 1999).
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amplitude spectra obtained in Experiment C for different
values of α1 and α2 from Eqn (3). In fact, Figure 3 shows the
part of the spectra, which begins with the resonant peak cor-
responding to eigenperiodicity T5. The first eigenperiodicity
T1, derived from the modeled spectra, is ∼2.03 · 104s.
Moreover, Figure 3 shows the amplitude spectrum obtained
in Experiment C with the Holdsworth and Glynn model
(Holdsworth and Glynn, 1978).

DISCUSSION
In Experiment A, the problem of free vibrations of the ice-
shelf has the exact solution obtained in the thin-plate
approximation (e.g. Landau and Lifshitz, 1986). In particular,
the solution contains the plate eigenfrequencies that are
expressed by Eqn (9). The expressions (9) show that the
eigenfrequencies change proportionally to the ice-shelf
thickness variations. These changes occur in agreement
with the ratio (10).

The comparison of the eigenperiodicities obtained from
Eqn (9) with the ones derived from the full model spectra
shows the distinction of the ranges T belonging to (0, T0]
that contain all eigenvalues. In particular, the span of the
range (0, T0] in the full model is ∼2.6 times higher than the
span of the range obtained in the thin-plate approximation
(Fig. 1). However, the spectra obtained by the full model
also reveal the eigenvalues proportionality, which is
described by the ratio (10).

Thus, Experiment A reveals the distinction between the
thin-plate approximation and the full model. Moreover, this
distinction stems from the equations that describe the
elastic deformations of the plate, because the impact of the
water layer is excluded in the Experiment A.

In Experiment B, the range that contains all eigenvalues
of the full model is (0, 4.5 · 104s] (Fig. 2). In the Holdsworth
and Glynn model (1978), the range is (0, 1138s]. These
ranges contain both periodicities of ocean swell and infra-
gravity waves, as well as the periodicities of tsunami
waves. However, the interaction of the ice-shelf with the
water layer yields a significant increase in the difference
between the ranges computed by the full model and by
the thin-plate approximation. In Experiment B, the span
of the range (0, T0] in the full model is ∼40 times higher
than the span of the range obtained in the thin-plate
approximation.

In Experiment C, the range is (0, 2.03 · 104s] in the full
model and the range is (0, 176 s] in the Holdsworth and
Glynn model (1978) (Fig. 3). Thus, in the full model, the
range includes periodicities of ocean swell, infragravity
waves and tsunami waves. However, in the Holdsworth
and Glynn model (1978), the range includes only periodici-
ties of ocean swell and only part of periodicities of infragrav-
ity waves (50…176 s).

Thus, in Experiment C, the span of the range (0, T0] in the
full model is already ∼115 times higher than the span
obtained by the thin-plate approximation. This difference is
∼3 times higher than the difference in Experiment B (115
and 40, respectively).

Essentially, fixing the lateral edge of the plate provides the
decrease of the difference between the ranges in the thin-
plate model (Holdsworth and Glynn, 1978) and in the full
model. However, this difference remains an order of magni-
tude larger than in Experiment A (40 and 2.6, respectively).

The velocity of long gravitational wave propagation is
expressed as (e.g. Landau and Lifshitz, 1987)

Cgw ¼
ffiffiffiffiffiffiffiffiffi
g d0

p
: ð11Þ

The assessment of the wavelength in the channel by Eqn (11)
for d0= 100 m and T= 5 s gives the wavelength λgw≈ 156
m. However, the simulations show that for T= 5 s the wave-
length in the channel bounded by the solid elastic plate (in
Experiment C) is ∼1280 m (Fig. 4).

For an explanation of this high value of the wavelength,
we should account for the velocity of the shear wave propa-
gation in the solid elastic plate. This velocity is defined as (e.
g. Landau and Lifshitz, 1986)

Ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
2 ρ ð1þ nÞ

s
: ð12Þ

Thus, we have Ct≈ 1928 m s−1, and this is significantly
higher than the Cgw= 31 m s−1 from Eqn (11). In particular,
for T= 5 s the shear wavelength is λt=Ct T= 5784 m.
Respectively, in Experiment C, the effective velocity of the
wave propagation in the channel is about Ceff= (λ/T)≈
256 m s−1 and Cgw≪ Ceff≪Ct. Thus, the condition, which
allows to apply Eqn (2) ((d0/λ)≪ 1) is satisfied due to the rigid-
ity of the ice-shelf even for relatively small values of the peri-
odicity (T≥ 2s).

It should be noted that the baseline amplitude provided by
the model is the upper limit of the ice-shelf amplitude. This is
because the viscosity of the fluid in the region below the ice-
shelf is important and will ultimately limit resonant-like
behavior. Moreover, the ice-shelf will ultimately begin to
respond viscoelastically, and this too will limit resonant-
like behavior (Reeh and others, 2003; Walker and others,
2013; Rosier and others, 2014). With these two forms of dis-
sipation (viscosity in the ocean and viscoelasticity in the ice-
shelf), the real response of the system to forcing will be less
than the baseline amplitude described by the modeled
spectra.

CONCLUSIONS
The conclusions of the study presented here are summarized
in the following list.

Fig. 4. Ice-shelf flexure along the central line obtained in
Experiment C (α1= 1, α2= 0). Ice tongue dimensions are L= 16
km, B= 800 m, H= 100 m. Sub-ice water depth is equal to 100
m. The periodicity of the forcing is equal to 5 s.
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1) Essentially, the approximation of the boundary conditions
employing the equations defined by Φi(U, V, W) in Eqn
(3), i.e. when α1= 0, α2= 1, yields roughly the same spec-
trum as the case when α1= 1, α2= 0 (e.g. Fig. 1a). That is,
the transition α1= 1, α2= 0→ α1= 0, α2= 1 does not
excite complementary resonant peaks in the spectrum at
a given range of periodicity T belonging to (t1, T0]
(Fig. 1a). Essentially, we observe only the relatively small
shift of the resonant peaks at a given range (t1, T0] (Fig. 1a).

2) Initially, the approximation given only by Φi(U, V, W)
(α1= 0, α2= 1) was considered for achieving stability
in the numerical solution. Thus, essentially, Φi(U, V, W)
in Eqn (3) plays the role of the stabilizer. The approxima-
tion given only by Φi(U, V, W) suggests the integration of
typical physical conditions into the basic momentum
equations. In fact, the numerical experiments reveal
that, despite a small difference between the output
results (e.g. amplitude spectra and velocity profiles) and
though the typical conditions are implied, they are not
exactly satisfied in the model with α1= 0, α2= 1. For
instance, if we have the condition σxz= 0 at the ice
front, then the shear stress will not equal zero at the
front in the model with α1= 0, α2= 1. The approxima-
tion of the boundary conditions by Eqn (3) allows the
basic/typical boundary conditions to be satisfied with a
given accuracy (for instance, 90% at α1= 0.9, α2= 0.1),
if the solution exists at a given α1, α2.

3) Despite the decrease of the aspect ratio in Experiment A,
the superposition of the modeled spectra with the eigen-
frequencies obtained from Eqn (9) was not observed. An
explanation of the difference is suggested by considering
the eigenvalues as the roots of the equation D(ω)= 0, in
which D(ω) is the determinant of the matrix that resulted
from discretization of the model. The determinant D(ω)
is a polynomial expression and its roots depend on the
number of equations in the model. Since the thin-plate
approximation suggests a reduction of the number of
equations in comparison with the full model (supposing
that σxz= σyz= σzz≈ 0 in the plate), we can anticipate
the decline of the set of roots, and therefore, the decrease
of the array of eigenvalues in the thin-plate model. Thus,
these results suggest that the future investigations of the
problem should focus on the development and intercom-
parison of different full models.

4) The amplitude spectra determined using the approach
derived in this study allow not only the specific resonant
frequencies to be determined, but also the width of the
resonant peaks that define ice-shelf/ocean response in a
frequency ‘neighborhood’ surrounding each specific res-
onance frequency. Essentially, this width defines the
probability of resonant-like amplitudes of the ice-shelf/
ocean system’s response to wave-forcing events, which
typically span a wide neighborhood of frequencies that
can contain the specific resonance frequency. The signifi-
cance of the width is that, when it is larger, there is a
higher probability of resonant-like motions to be excited
from random wave events.
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