Canad. Math. Bull. Vol. 50 (1), 2007 pp. 71-84

Polynomials for Kloosterman Sums

S. Gurak

Abstract. Fix an integer m > 1, and set (,, = exp(27i/m). Let % denote the multiplicative inverse of x
modulo m. The Kloosterman sums R(d) = 3, C5rdx 1 < d < m, (d, m) = 1, satisfy the polynomial

() = [ ]G = R(d) = x2"" + 1 x? = by,
d

where the sum and product are taken over a complete system of reduced residues modulo m. Here we
give a natural factorization of f,(x), namely,

fun) =[] £17 ),

where o runs through the square classes of the group Zj, of reduced residues modulo m. Questions
concerning the explicit determination of the factors f,(y,a)(x) (or at least their beginning coefficients),
their reducibility over the rational field Q and duplication among the factors are studied. The treat-
ment is similar to what has been done for period polynomials for finite fields.

1 Introduction

For fixed integers a and m with m > 1 and (a, m) = 1, the Kloosterman sums of order
m are

(1) R(a,d,m) = R(d) = (" 1<d<m,(d,m)=1,

where (,, = exp(2mi/m) and % denotes the multiplicative inverse of x modulo m.
(The sum is over a complete system of reduced residues modulo m.) The Klooster-
man sums (1) satisfy the polynomial

(2) fn(x) = H(x —R(@) = 2" + 0 x”™M 7 b i,
d

where the product is taken over a complete system of reduced residues modulo .
The polynomial f,,(x) is independent of the choice of a, so we will choose a = 1
throughout.

The Kloosterman sums (1) and their generalizations have been widely studied,
particularly their connections to modular forms [9, 13]. Little attention has been
given to the Kloosterman polynomial (2) though, so here we study questions re-
garding the factorization of f,,(x) over the rational field Q, and certain arithmetic
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properties of the n-th power sums associated to its factors. The treatment is similar
to what has been done for period polynomials for finite fields [6, 7, 11].

We begin by stating results known for the case m = p, an odd prime, which
essentially date back to Salie [12]. For m = p, an odd prime, it is known that

(3) fp(x) = fp+(x) . fpi(x)

as a product of two distinct irreducible polynomials, each of degree (p — 1) /2, where

(4) f;(x) — H (x — R(d)) = x(P—l)/Z + Czrx(p—3)/2 N C(+p—1)/2

and

G = [ G-R@) =PI
()=

Salie evaluated the power sums

Sip)= > R@", S, (p)= > R@",
(&) (B

Su(p) = Y R(d)"=S:(p)+S, (p)
(d,p)=1

(6)

for small values of n. Namely,
Si=1, S=p'—p-1, S=(P)p’+2p+1,
1
(7) S4=2p3—3p2—3p—1, ST:E(I"'(_TI)I)L
s*—l( Z-2p—1) s*—1(1—(——1) ) s*—l( P-1)
2 2 P P ) 1 2 P pv 2 2 P ]

where (—) denotes the usual Legendre symbol.
Later, D. Lehmer [10] showed that

Sf=p2p(1+2()A0) o 7= - D+2p

and
Sy =p +2p(1=2(5HA%) or ST =—p’2(5H) + D +2p

as p = lor5 (mod 6), where p = A% + 3B?> when p = 1 (mod 6). But beyond this,
little else is known in the case m = p.
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Of course, from the Newton identities
1
(8) &=—(S+aS -1+ -+c181) forl1 <r<p-—1,
r
one obtains the formulas

1 1
a=-1, o= —E(p2 —p—2), = —g(pz(z(—f) —3)+7p+6),
and similarly,

=30+ (G, d =3P -2(2+(3) -3,
and

= —(5(—71)173 —p*(5+ 12(—71)) —p(28+ (_71)(9+32A2)) —15)
or
G = 4—18(5(—71);;3 +p*(11 - 28(‘71)) — p(28 + (—71)9) —15)
asp=1lor5 (mod 6); and

G =—50- (3P, 6 =50 +25)p -3

and
1

G = 4—8(—5(_71)1)3 —5p%+ p((5) (9 +324%) — 16) — 15)
or

ﬁ( 550" + (11 +16(5)) — p(16 - 9(5)) —15)

as p = 1 or5 (mod 6), for the beginning coefficients of f,(x), prr (x) and f, (x),
respectively.

Here we investigate the general case for composite m, first giving a natural factor-
ization of f,,(x) as in (3), namely,

() =T £ x)

with ¢ running through the various square classes (mod m) and each f{?)(x) either
irreducible or a power of an irreducible over Q. The n-th power sums S'?) associated
with each factor of f,ﬁf’) (x) are seen to be products of the Salie sums (6) or their prime
power analogs. Consequences of Salie’s explicit evaluation of R(1, d, p®) for prime
powers p® with & > 1 are detailed next in Section 3. In particular, the sums S (p®)
are explicitly given, together with formulas for the corresponding factors f\”(x). In
the last section, questions concerning duplication and reducibility among the factors
f'9)(x) of f,,(x) are examined in general for composite m. Evidence suggested that

n(f)(x) is either of the form x* or irreducible, and indeed we demonstrate this is
always the case.

We consider only the classical Kloosterman sums (1) here. There are natural ex-
tensions of the theory for higher dimensional Kloosterman sums, hyper Kloosterman
sums and certain Kloosterman sums defined over residue rings of algebraic integers.
These generalizations will appear in a sequel.
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2 Factorization of the Kloosterman Polynomial

Here we give a generalization of the factorization of f,,(x) in (3) for any composite .
First note that the set of conjugates of a given Kloosterman sum R(1, d, m) is

{R(a,d,m) = R(1,da*,m) | 1 < a < [m/2],(a,m) =1},

since R(1,d, m) is sent to R(a,d,m) = Y (&t = Y covtadas — $° cxrdas
= R(1,da*, m) under the action induced by ¢,, — (%. Further, R(1,d, m) is fixed
by the actions induced by (,, — (¢, where ¢> = 1 (mod m), and so lies in the field
K which is the compositum of the real cyclotomic subfields Q((y« + CPZI) for odd

primes p where p®||m and also Q((ye-1 +¢,." ) when 22| |m with o > 3. In any case,
it follows from Galois theory that f,,(x) factors in Z[x] as

9) = ] 2w

0E€Zr /L
with each factor

(10) P = ] = R@) =x"+c75" 447
deoZy?

irreducible or a power of an irreducible, and of degree k = [K:Q] = |Z}?|. We
may distinguish the various square classes (mod m) by denoting the signature of d,
s(d) = (sp(d)) as a tuple of +1’s for each prime p|m, where

O if 2||m,
s2(d) =< (F) if 4||m,

(), @) if8m,

s(d) = () if2||mor (%) if 4||m or ((%1), (é)) if 8|m

and
sp(d) = (%) for any odd prime p|m.

A square class 0Z? is then identified by the common signature of any d in ¢Z}?.
To illustrate, consider the case m = 15 = 3 - 5. Then Z}2 ={1,4}, so k = 2 and
s(d) = ((9), (2)). One finds
fis(x) = (x* +3x — 1)(x* — 2x — 4)(x* — 6x + 4)(x* + 4x — 16),

with respective factors f(1:D, f(L=D f(=L1) and f(=1.=D jrreducible and distinct.
When m = 48 = 16 - 3, Z;3 = {1,25}, so again k = 2, now with s(d) =
-1\ (2) (d

((Z): (@), (5)) - One finds

fag(x) = (x® —32)(x* — 128)x - x2(x* — 32)(x* — 128)x% - x°
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with respective factors f(L1D, fLL=D " f(=L=1D " f(=1,=1,=1) (0,11 £1,=1,=1)
f=LLD and f(=1L=D, Here, duplications and some reducibility occur.
Next, consider the power sums associated with each factor £\ (x),

(11) S (m)= Y (R(d,m))",
d,s(d)y=0
)
(12) Su(m) =Y S (m),
0€Z: /T
where m = p{'--- p% as a product of distinct prime powers with p; < p, < -+ <

prand o; > 0(1 < i < r). Then it is easily seen that k = |Z}?| = ¢(m)/2" !,
d(m) /2" or ¢p(m) /2! according as (i) 2||m, (ii) m odd or 4||m or (iii) 8|m, respec-
tively. Now identify each square class o = (0y,,...,0p, ), where 0, = s,(d) for
any d in 0Z*2. Then the sums S'”)(m) and S, (m) factor nicely as a product of their
respective prime power components. Namely,

Theorem 2.1  With notation as above,
S (m) = T[S (pf") and  S,(m) =[] Su(p{").
i=1 i=1

Before proving the theorem we require the following lemma.
Lemma 2.2 Letm = pi*---p% as a product of prime powers as above. Then for
any (d,m) = 1, R(1,d, m) = H;Zl R(1,d;, p) with d; uniquely determined by the
congruences
(13) d; =d(m;)* mod p (1<i<r),

where m; = mp;“, (1 <i <r).

Proof Now each R(1,d;, pi*) = >, (it (1 <i <), 50

E Cm1x1+~-~+m,x,+m1d121+-~~+m,d,£,
m

TR, 4 pi)
i=1

X1 yeeeyXr

Z Cm1x1+-~»+m,x,+dd_(m1d13€1+-~»+m,d,5c,)
ik .
X1 yeeesXr
Since the congruences x = m;x; (mod pj*) (1 < i < r) have a unique solution
x (modm) for each choice of x; relatively prime to pi“, (1 < i < r), it follows

from the Chinese Remainder Theorem that x = m;x; + - - - + m,x, runs through a
reduced system of residues mod m as the x; independently run through a reduced
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system of residues modp{* (1 < i < r). To establish the lemma it suffices to show
that d(mydi %, + - - - + m,d, %) equals x precisely when (13) holds. But xd(myd %) +
o+ md %) = mixdmdix; = midd; = 1 (mod pf) if and only if d; = d(m;)?
(mod pi") (1 < i < r), so the last assertion follows readily from the Chinese Re-
mainder Theorem. [ |

Proof of Theorem 2.1 From Lemma 2.2,

SPm)y= > R@"= Y[R dpi)",

d,s(d)=0 ds(d)=c i=1

where d; = d(m;)* (mod )p{" (1 < i < r). Expanding the right-hand side and
comparing terms with those obtained in expanding the product

I > Rra.dpi,

i=1d;,sp, (dj)=0p,

one finds equality by the Chinese Remainder Theorem, since s, (d;) = s,,(d) for
1 <i < r, from (13). This establishes the first product identity. The latter follows
similarly by considering all d with (d,m) = 1. ]

The following corollary is readily deduced from Lemma 2.2 and Theorem 2.1 us-
ing Galois theory and the fact R(1,1,2) = 1.

Corollary 2.3  For odd m > 1, fz(f;) (x) = f\9(x).

3 The Prime Power Case m = p®, a > 1

Here we give explicit expressions for the sums S’ (p®) and formulas for the factors
£'9)(x) for prime powers p® when o > 1, using the results of Salie [12]. To this end,
we first mention some facts concerning the minimal polynomials for certain Gauss
periods and their quadratic twists [8] which will be needed. Note that the quantity
2cos(2m/2%) = G + CZZI for v > 3 has minimal polynomial Q,. (x) of degree 292
given recursively by

(14) Qs(x) =x* —2, Qu(x) = Qu-1(x*—2) fora >4,

since (2 cos(27/2%))*—2 = 2 cos(27 /2% ). The corresponding sums of n-th powers
of zeros of Q,. (x) are seen [8] to satisfy S, = 0 if n is odd; otherwise for even n,

[n2!=]
_ ~Ha—2 n a—1 1) n
(15) Su=2 <n/2> +27 ) D <(n - 2(1—1t)/2)'

t=1
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The polynomial Q,(x) is just Aye—2(x) (chiefly, [8, Corollary 1]), where

& d (d—n\ 4,
(16) Ad(x>:n§<—1> m( . )x

is defined for any integer d > 0. Here [ ] denotes the greatest integer function.
When p is an odd prime with o > 2, the quantity 2 cos(27/p®) = (pe + {1;1

has minimal polynomial Q- (x) of degree ¢(p®)/2 and sums of n-th powers of zeros

satisfying [8]

(17)

N (np=/2] : [np! = /2] .
= R a _ a1
Sn = (n/2> , P ; (n/Z - p"‘t> p Z (n/z - p“_lt>

if n is even, or

(np™] (np' =]
« n a—1 n
p Z < PN ) —-p Z ( _ pa—1 )
t=1,t odd (n P t)/z t=1,t odd (Tl p t)/z
if n is odd. Its minimal polynomial is explicitly given (chiefly, [8, Corollary 2]) by
(p—3)/2
(18) Q) =1+ D Apip12jp()
j=0

in terms of the polynomials A4(x), with coefficient ¢, of x?*)/2=" for 1 < r <
d(p*)/2 given by

[rplfu]

Y o)) (p”‘l("%—j)—a)
]

Pt = )~ b

j=0, j=r (mod?2)

and cy(pey /2 = (%2), where t; = (r — p*~'j)/2.

Finally, consider the quantity i* \/p((pe +(—1)P~D/2¢.") when p is an odd prime
with @ > 2, where i* = i?~V"/%_ It has minimal polynomial Upe(x) of degree
¢(p™)/2 with sums of n-th powers of zeros satisfying [8]

y o(p*) [ n ) (np~"/2] ) "
— pn/2 ot+n/2 _1\t(p—1)/2
(19) S = p"" = (n/Z) tp ; =0 (n/z - tp“)

[nplfu/z] ;
_ pa—1+n/2 -1 t(p—1)/2
P (),

t=1
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if n is even, or

[nplfu]

a—1+(n+1)/2 -1 (p—1)(+p* ) /4t n
gt S e ()

1=1,(t.2p)=1

if n is odd. The minimal polynomial U,.(x) is explicitly described in terms of the
coefficients of the Aurifeuille factors of the p-th cyclotomic polynomial xP~1 +xP~2 +
-+ + 1. It has the form

[(p—3)/4]
a—1 1)/4 a—1 -
(20) Upe(x) = agpnyop? P4 + Z; a;p” IBai(ozt ()
=
[((p—1)/4] :
e=l(2j—1)+1)/2
+ Z azj—lp(P (2j—D+1)/ Bpufl(PTfl_zj_'_l)(x)
=0

in terms of the polynomials

[d/2]

d d—n

21 B x) = _1 ngn_ dfzn
(21) i) = ( )pd_n<n>x

n=0
(chiefly, in [8, Corollary 3]), with coefficient ¢, of xP*)/2=r given for 1 < r <

o(p*)/2 by

U

a—1¢p—1 . a—1¢p—1 H
(2] D A ) (P (T—J)—fj>
P 2 (—1)’0 )
> ]

AR L) tj

=0, j=r (mod?2)

where t; = (r — p*~'j)/2 as before, and
) B (%)pd)(lf')/‘l ifp=1 (mod 4),
(p*)/2 (=1)N (%)(_p)(¢(p")+2)/4 if p=3 (mod 4),

where N is the number of quadratic non-residues of p in (0, p/2). Here the coeffi-
cients a; arise from an Aurifeuille factor

agt+ayx+---+ ap,lx(p_l)/2 +/px(a; +asx+ - + apizx(p—3)/2)

of the p-th cyclotomic polynomial. The reader is referred to [8, §3] for details.
Now, from Salie [12] one finds the Kloosterman sums R(1,d, p®) for « > 1 ex-
plicitly up to conjugacy. Namely,

R(1,1,4) = -2, R(1,3,4) =2, R(1,3,8)=—4, R(1,7,8) =4,

0 if d = 3(mod 4),

R(1,1,8) = R(1,5,8) =0, R(1,d,16) =
(7 7) (7 7) ) (77 ) {:l:4\/i idel(m0d4)’

0 ifd =1,3,7(mod 8),
R(1,d,32) = . .
a conjugate of 16 cos(2w/16) if d = 5(mod 8),
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and for o > 6, R(1,d, 2) is a conjugate of 2(**¥/2 cos(27r /24~ ) or 0 as d = 1 or not
(mod 8).

For odd primes p with o > 1, R(1,d, p) = 0if (%) =_1.1If (%), then R(1,d, p®)
is a conjugate of

2p/% cos(2m / p®) if o is even,
2y/pp V2 cos(2m/p®) ifaisoddand p =1 (mod4),
2(_72)\/@)(0‘*1)/2 sin(2/p®) ifaisoddand p =3 (mod4).

The corresponding sums SL")(p“) are, in view of (15), (17) and (19), tabulated
below.

Proposition 3.1 (i) Forn > 0,
Sl =F", §FE) =0, S7EVE) = (+4)"

Si—l,il)(l6) _ 07 Sil’il)(l6) _ 0 n Odd,
2(32)"*  neven,

SehEN(32) = SV (32) =0,

0 n odd,
8"(4(,),) +8( 2, A =1y (noaitipy))  meven.

101 « > 6,
+1,—1 —1,%£1 2
Sgt s )(2(!) S( ) )( (!) — 0

0 n odd,
51,1(20) —
n 2la+in/2 (ga= 3( ) +202 ZW 1(_1)t((n72(312t)/2)) n even.

(ii) Assume o > 2. Forn >0, S, (p®) = 0.
For n even, St (p®) equals

N (np=°/2]
no/2 ¢(p) n « _1\(p—Dt/2 n
P ( 2 \np) " F ; (=1 n/2 — tpe
[np'™" /2] "
_ o=l
AR )

ifaciseven or p =1 (mod4), and equals

(np=° /2]

no/2 d)(p ) t

P ( 2 (n/z) ADPRS (n/z pat)
np‘ °/2)

% )
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ifaisodd and p =3 (mod4).
For n odd with o even, St (p®) equals

l—n]

[np®] [np
no/2 « n _ a—1 n
P (p 2 ((n - p(”t)/Z) P 2 ((n - p“—lt)/2)> '

t=1, t odd t=1,t odd

For n odd with o odd, S} (p®) equals

1,(,(]

(np
(na+1)/2 . a—1 t n )
P P 2 (p) ((n —tp*1)/2

t=1,(t,2p)=1

if p =1 (mod4), and equals

1,,,]

(np

1 (p—3)/4 ,(na+1)/2 a—1 1 (l+t)/2(£)< n >
(~1)*Vp Pty D ) o epomy 2

t=1,(t,2p)=1
if p=3 (mod4).

From the above proposition, formula (16) and remarks at the beginning of this
section, one finds f,« @) (x) fora > 1In particular,

o =x+2, ) =x7F4,

- $ED () =2 =32 f0 V(%) = x* — 2562 + 8192,
22

20— 4

f(al-,l)(x Z( 1 2(a+l)1 20473_n xZ"_372n
2 n

for o > 6. For p odd fa (x) equals PP/ Que(x/p®/?) if v is even; otherwise
f(x) equals plem DD/ U (x/ple=V/2) if p # 7 (mod8) or —pla=Der™)/4.
Upa(—x/p(“_l)/z) 1fp =7 (mod 8) when o« > 1 is odd, in terms ofthe polynomials
Qpe (x) and U e (x) described before. In each of these cases with p odd, the first pot
coefficients of f; (x) are seen to satisfy

(23) 6 =0 or (_1)r/2par/2M (¢(p“)/2 - r/2>

o(p*) —r r/2

according as r is odd or even with 1 < r < p®~!
Each of the aforementioned polynomials is irreducible. In all other cases with

o> l,flgf)(x) = xk,
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4 Duplications and Reducibility among the 7 (x)

Here we examine what duplications and reducibility may appear among the factors
fn(f) (x) of fin(x) in (9). Using Theorem 2.1 and Proposition 3.1, it is easy to determine
the conditions for a given factor f{”)(x) to equal x* (necessarily some component
sum S\ (p®) equals 0 for all n > 0). Additional duplications can occur among the
factors fr(f) (x) when 16||m for o, = (1,1) and (1, —1). In particular, one notes the
following.

Proposition 4.1 A factor f\7)(x) = x* if and only if one of the following holds:
(i)  p?|m for some odd prime p with o, = —1,

(i) 8||mwith oy = (1,+1),

(i) 16||m with o, = (—1,£1),

(iv) 32||mwitho, # (1,-1),

(v) 64|mwitho, # (1,1).

Corollary 4.2  Factors f,ﬁf’/)(x) = fr(f) (x) if and only if one of the conditions (i)—(v)
of Proposition 4.1 holds or 16||m with o, = o, for all odd primes p|m and 0,,0, €

Computational evidence seems to suggest that f(?)(x) is irreducible whenever
f9(x) # x*. Indeed we can show this holds in full generality. For this we require
some elementary class field theory and a generalization of the argument regarding
“Lagrange” resolvents [5, Appendix].

Consider a congruence group H of conductor m and let L be the subfield of Q((,,)
corresponding to H through class field theory, say with [L:Q] = k. Choose coset
representatives t; = 1,t,,...,# in Z for Gal(L/Q) with each #; relatively prime
to k, and any element 7 in L. Label the conjugates of n as n; = o, (n) (1 < i < k),
where o, denotes the automorphism of L/Q induced by sending ¢,, — (’,. Finally,
set

k

(24) TO) = Xt

i=1
for any character x annihilating H. Then

1 _ :
=1 D XHTC) (1 <i<k),
X

the sum taken over y annihilating H. Generalizing the argument in [5, Appendix],

one finds in view of the lemma there that

Proposition 4.3  Then; (1 < i < k) are distinctif T(x) # 0 for all x annihilating H
with conductor f(x) > 1 satisfying (m/ f(x), f(x)) = 1 where m/ f(x) is square-free.

In the classical case m = p, an odd prime, with primitive root ¢ and congru-
ence group H = {+1} of conductor p, one may choose t; = g¢'~! with n; =
R(1,dg¥ =2, p) (1 <i<(p—1)/2)in (24) whered € Z;.
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Proposition 4.4  With H = {£1} modulo p and n; = R(1,dg*"2,p) (1 < i <
(p — 1)/2) as above, T(x) # 0 for any even character x modulo p. In particular, each
n; generates Q(Cp + ¢, ).

Proof Fix a character v to generate the group of numerical characters modulo p.
Any character which annihilates H is even and of the form 1% for0 < v < (p—1)/2.
Using [12, (59)] to express the Kloosterman sums for m = p in terms of the Gauss
sums G(x) = erz; X(x)¢, for characters x modulo p and setting p = (;), one

finds
T@W™) =Y ™ (@ m = p— Z V(g Z P (dg ) G()
i=1 j=1
p— Z PG Y I (g )
j=1 i=1
= 5(zZ)”(d)G(W +4" p(d)G("p)),
since

p—1

zz:q/}vfj(gZifZ): {1721 lf]EV(mOdel)

— 0 otherwise.
Choosing 1 to be the Teichmuller character one readily confirms that T(¥*") # 0
forl <v< = usmg Stickelberger’s theorem [1, Theorem 11.2.1]; whereas T(1) =
(1£p)/2+# 0 from (7). Thus T(x) # 0 for any even character y modulo p, and so
the last assertion of the proposition follows now from Proposition 4.3. ]

We now can establish

Theorem 4.5  Each factor f\7)(x) of f,,(x) in (9) is either irreducible or equals x*.

Proof In view of Salie’s results and Corollary 2.3, it suffices to consider square
classes o where, in Theorem 2.1, no component sum S,(f" )( p*)isOforaln > 0
and with 16|m if m is even. We assert that the corresponding factors f”)(x) are
irreducible. We consider the case m is odd first, and choose any d in 0Z}2. Set
n = R(1,d, m), which by Lemma 2.2 is the product of R(1, d;, p(;”) (1 <j<r),with
each R(1,d;, p?j) generating the real subfield K; on(Cp oj) of degree e; = (b(p(;j)/z

by our assumptlons on o above. Here, d; = d(m])2 (modp ) (1 < j <r), where
mj = mp; %" as before. Now 7 lies in K, the comp051tum of the fields Kj, and
corresponds to the congruence group H = {x = +1 (mod pa]) (1 <j<n}of
conductor m.
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Next choose generators s; for Z;uj /(£1) with s; prime to k and s; = 1 (mod m;)
i

(1 < j < r). Any coset representative s in Z /H can be uniquely expressed s' - - - s!"
with 0 < v; <e; (1 < j < r) via the canonical identification

Z¥/H ~ Hzlju,»/(ﬂ).
=t

Given a character x of Z, annihilating H, let x = H;‘:1 X j denote its corresponding
decomposition into p-components, where each x;(—1) = 1. Specifically, we obtain
Xj(x) for any x in Z7., by setting x;(x) = x(x') for x’ satisfying x’ = x (mod p;-”%
x" =1 (modm;j). If x has conductor f(x) = p1 -+ p% where 0 < B; < «j, then
X j has conductor pf .
Now consider the sum
ej—1
2
Ti(xj) = > xj(s) )R, djs;”, p’)

v;=0
associated to R(1,d;, p?j). We first assert that T;(x;) # 0 when x; has conductor
p?j (aj > 1). Indeed, in view of Salie’s results R(1, d;, p?j ) is, up to sign conjugate,
equal to i(P“*”Z/“p‘l/Z(QDu + (’71)“(1;1 ), where for convenience we put a = «; and
p = pj. Thus up to a fourth root of unity T;(x;) equals

> xOE) PG+ (5HG = D X9 (E) G

sezpu/ (£1) S€EZ50

just a non-zero multiple of the non-vanishing Gauss sum > __,. x;(s) (é) QC;,Q since
43

Xj (?) “ has conductor p®. Note also that T;(x) # 0 from Proposition 4.4 for any

even character x modulo p when a; = 1. We now assert that T(x) = H;Zl T;(x;)-
Expanding the right side yields a sum of terms

XI(SYI) tee Xr(srr)R(ladIS%Vva(1YI) : R(la d var;pr )
X(sy' - sy)R(, d(st - 577)%, m)

by the choice of s; and Lemma 2.2, one for each choice of exponents 0 < v; < ¢;
(1 < j <r). But this sum is just T(x).

Suppose further that y has conductor f(x) > 1 with (m/f(x), f(x)) = 1 and
m/ f(x) square-free. Then a given p-component y; has conductor p or may be
trivial if a; = 1, so satisfies T;(x;) # 0. Thus T(x) # 0 as claimed. From Proposi-
tion 4.3, it now follows that 7 generates K with f\”)(x) irreducible.

The case m even is argued similarly, though now H has conductor m/2, with
K, the real subfield of Q((y. 1) of degree 2¢1~2 corresponding to the congruence
group {£1 (mod 2?71)}. One chooses s; = 5 (mod 2) to simultaneously gener-

ate Z3., /{1, £1 + 27!} isomorphic to Z, _, /(£1) with s; = 1 (modm,) and n
as before. The details are left to the reader.
This concludes the proof of the theorem. ]
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