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Polynomials for Kloosterman Sums

S. Gurak

Abstract. Fix an integer m > 1, and set ζm = exp(2πi/m). Let x̄ denote the multiplicative inverse of x

modulo m. The Kloosterman sums R(d) =

∑

x
ζx+dx̄

m , 1 ≤ d ≤ m, (d,m) = 1, satisfy the polynomial

fm(x) =

∏

d

(x − R(d)) = xφ(m) + c1xφ(m)−1 + · · · + cφ(m),

where the sum and product are taken over a complete system of reduced residues modulo m. Here we

give a natural factorization of fm(x), namely,

fm(x) =

∏

σ

f (σ)
m (x),

where σ runs through the square classes of the group Z∗

m of reduced residues modulo m. Questions

concerning the explicit determination of the factors f (σ)
m (x) (or at least their beginning coefficients),

their reducibility over the rational field Q and duplication among the factors are studied. The treat-

ment is similar to what has been done for period polynomials for finite fields.

1 Introduction

For fixed integers a and m with m > 1 and (a,m) = 1, the Kloosterman sums of order

m are

(1) R(a, d,m) = R(d) =

∑

x

ζa(x+dx̄)
m 1 ≤ d ≤ m, (d,m) = 1,

where ζm = exp(2πi/m) and x̄ denotes the multiplicative inverse of x modulo m.
(The sum is over a complete system of reduced residues modulo m.) The Klooster-
man sums (1) satisfy the polynomial

(2) fm(x) =

∏

d

(x − R(d)) = xφ(m) + c1xφ(m)−1 + · · · + cφ(m),

where the product is taken over a complete system of reduced residues modulo m.
The polynomial fm(x) is independent of the choice of a, so we will choose a = 1
throughout.

The Kloosterman sums (1) and their generalizations have been widely studied,

particularly their connections to modular forms [9, 13]. Little attention has been
given to the Kloosterman polynomial (2) though, so here we study questions re-
garding the factorization of fm(x) over the rational field Q, and certain arithmetic

Received by the editors December 17, 2004; revised July 5, 2005.
AMS subject classification: 11L05, 11T24.
c©Canadian Mathematical Society 2007.

71

https://doi.org/10.4153/CMB-2007-007-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-007-2


72 S. Gurak

properties of the n-th power sums associated to its factors. The treatment is similar
to what has been done for period polynomials for finite fields [6, 7, 11].

We begin by stating results known for the case m = p, an odd prime, which

essentially date back to Salie [12]. For m = p, an odd prime, it is known that

(3) fp(x) = f +
p (x) · f −p (x)

as a product of two distinct irreducible polynomials, each of degree (p − 1)/2, where

(4) f +
p (x) =

∏

(

d
p

)

=1

(x − R(d)) = x(p−1)/2 + c+
1 x(p−3)/2 + · · · + c+

(p−1)/2

and

(5) f −p (x) =

∏

(

d
p

)

=−1

(x − R(d)) = x(p−1)/2 + c−1 x(p−3)/2 + · · · + c−
(p−1)/2

.

Salie evaluated the power sums

(6)

S+
n (p) =

∑

(

d
p

)

=1

R(d)n, S−n (p) =

∑

(

d
p

)

=−1

R(d)n,

Sn(p) =

∑

(d,p)=1

R(d)n
= S+

n (p) + S−n (p)

for small values of n. Namely,

(7)

S1 = 1, S2 = p2 − p − 1, S3 =

(

−3
p

)

p2 + 2p + 1,

S4 = 2p3 − 3p2 − 3p − 1, S+
1 =

1

2
(1 +

(

−1
p

)

p),

S+
2 =

1

2
(p2 − 2p − 1), S−1 =

1

2
(1 −

(

−1
p

)

p), S−2 =

1

2
(p2 − 1),

where
( )

denotes the usual Legendre symbol.

Later, D. Lehmer [10] showed that

S+
3 = p2 + 2p(1 + 2

(

−1
p

)

A2) or S+
3 = p2(2

(

−1
p

)

− 1) + 2p

and

S−3 = p2 + 2p(1 − 2
(

−1
p

)

A2) or S−3 = −p2(2
(

−1
p

)

+ 1) + 2p

as p ≡ 1 or 5 (mod 6), where p = A2 + 3B2 when p ≡ 1 (mod 6). But beyond this,
little else is known in the case m = p.
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Of course, from the Newton identities

(8) cr = −1

r
(Sr + c1Sr−1 + · · · + cr−1S1) for 1 ≤ r ≤ p − 1,

one obtains the formulas

c1 = −1, c2 = −1

2
(p2 − p − 2), c3 = −1

6

(

p2(2
(

−3
p

)

− 3) + 7p + 6
)

,

and similarly,

c+
1 = −1

2
(1 +

(

−1
p

)

p), c+
2 = −1

8
(p2 − 2p

(

2 +
(

−1
p

))

− 3),

and

c+
3 =

1

48

(

5
(

−1
p

)

p3 − p2
(

5 + 12
(

−1
p

))

− p
(

28 +
(

−1
p

)

(9 + 32A2)
)

− 15
)

or

c+
3 =

1

48

(

5
(

−1
p

)

p3 + p2
(

11 − 28
(

−1
p

))

− p(28 +
(

−1
p

)

9) − 15
)

as p ≡ 1 or 5 (mod 6); and

c−1 = −1

2
(1 −

(

−1
p

)

p), c−2 = −1

8
(p2 + 2

(

−1
p

)

p − 3)

and

c−3 =

1

48

(

−5
(

−1
p

)

p3 − 5p2 + p
((

−1
p

)

(9 + 32A2) − 16
)

− 15
)

or
1

48

(

− 5
(

−1
p

)

p3 + p2
(

11 + 16
(

−1
p

))

− p
(

16 − 9
(

−1
p

))

− 15
)

as p ≡ 1 or 5 (mod 6), for the beginning coefficients of fp(x), f +
p (x) and f −p (x),

respectively.
Here we investigate the general case for composite m, first giving a natural factor-

ization of fm(x) as in (3), namely,

fm(x) =

∏

σ

f (σ)
m (x)

with σ running through the various square classes (mod m) and each f (σ)
m (x) either

irreducible or a power of an irreducible over Q. The n-th power sums S(σ)
n associated

with each factor of f (σ)
m (x) are seen to be products of the Salie sums (6) or their prime

power analogs. Consequences of Salie’s explicit evaluation of R(1, d, pα) for prime
powers pα with α > 1 are detailed next in Section 3. In particular, the sums S(σ)

n (pα)
are explicitly given, together with formulas for the corresponding factors f (σ)

m (x). In

the last section, questions concerning duplication and reducibility among the factors
f (σ)
m (x) of fm(x) are examined in general for composite m. Evidence suggested that

f (σ)
m (x) is either of the form xk or irreducible, and indeed we demonstrate this is

always the case.

We consider only the classical Kloosterman sums (1) here. There are natural ex-
tensions of the theory for higher dimensional Kloosterman sums, hyper Kloosterman
sums and certain Kloosterman sums defined over residue rings of algebraic integers.
These generalizations will appear in a sequel.
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2 Factorization of the Kloosterman Polynomial

Here we give a generalization of the factorization of fm(x) in (3) for any composite m.
First note that the set of conjugates of a given Kloosterman sum R(1, d,m) is

{R(a, d,m) = R(1, da2,m) | 1 ≤ a ≤ [m/2], (a,m) = 1},

since R(1, d,m) is sent to R(a, d,m) =

∑

x ζ
ax+adx̄
m =

∑

ax ζ
ax+a2dāx̄
m =

∑

x ζ
x+da2 x̄
m

= R(1, da2,m) under the action induced by ζm → ζa
m. Further, R(1, d,m) is fixed

by the actions induced by ζm → ζc
m where c2 ≡ 1 (mod m), and so lies in the field

K which is the compositum of the real cyclotomic subfields Q(ζpα + ζ−1
pα ) for odd

primes p where pα||m and also Q(ζ2α−1 + ζ−1

2α−1 ) when 2α||m with α > 3. In any case,
it follows from Galois theory that fm(x) factors in Z[x] as

(9) fm(x) =

∏

σ∈Z∗

m/Z∗2
m

f (σ)
m (x)

with each factor

(10) f (σ)
m (x) =

∏

d∈σZ∗2
m

(x − R(d)) = xk + c(σ)
1 xk−1 + · · · + c(σ)

k

irreducible or a power of an irreducible, and of degree k = [K : Q] = |Z∗2
m |. We

may distinguish the various square classes (mod m) by denoting the signature of d,
s(d) = (sp(d)) as a tuple of ±1’s for each prime p|m, where

s2(d) =











( ) if 2||m,
(

−1
d

)

if 4||m,
(
(

−1
d

)

,
(

2
d

)

) if 8|m,

s2(d) = ( ) if 2||m or
(

−1
d

)

if 4||m or
((

−1
d

)

,
(

2
d

))

if 8|m
and

sp(d) =

(

d
p

)

for any odd prime p|m.

A square class σZ∗2
m is then identified by the common signature of any d in σZ∗2

m .
To illustrate, consider the case m = 15 = 3 · 5. Then Z∗2

15 ={1, 4}, so k = 2 and

s(d) = (
(

d
3

)

,
(

d
5

)

). One finds

f15(x) = (x2 + 3x − 1)(x2 − 2x − 4)(x2 − 6x + 4)(x2 + 4x − 16),

with respective factors f (1,1), f (1,−1), f (−1,1) and f (−1,−1) irreducible and distinct.
When m = 48 = 16 · 3, Z∗2

48 = {1, 25}, so again k = 2, now with s(d) =
((

−1
d

)

,
(

2
d

)

,
(

d
3

))

. One finds

f48(x) = (x2 − 32)(x2 − 128)x2 · x2(x2 − 32)(x2 − 128)x2 · x2
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with respective factors f (1,1,1), f (1,1,−1), f (−1,−1,1), f (−1,−1,−1), f (1,−1,1), f (1,−1,−1),
f (−1,1,1) and f (−1,1,−1). Here, duplications and some reducibility occur.

Next, consider the power sums associated with each factor f (σ)
m (x),

(11) S(σ)
n (m) =

∑

d,s(d)=σ

(R(d,m))n,

so

(12) Sn(m) =

∑

σ∈Z∗

m/Z∗2
m

S(σ)
n (m),

where m = pα1

1 · · · pαr
r as a product of distinct prime powers with p1 < p2 < · · · <

pr and αi > 0(1 ≤ i ≤ r). Then it is easily seen that k = |Z∗2
m | = φ(m)/2r−1,

φ(m)/2r or φ(m)/2r+1 according as (i) 2||m, (ii) m odd or 4||m or (iii) 8|m, respec-

tively. Now identify each square class σ = (σp1
, . . . , σpr

), where σpi
= spi

(d) for
any d in σZ∗2

m . Then the sums S(σ)
n (m) and Sn(m) factor nicely as a product of their

respective prime power components. Namely,

Theorem 2.1 With notation as above,

S(σ)
n (m) =

r
∏

i=1

S
σpi
n (pαi

i ) and Sn(m) =

r
∏

i=1

Sn(pαi

i ).

Before proving the theorem we require the following lemma.

Lemma 2.2 Let m = pα1

1 · · · pαr
r as a product of prime powers as above. Then for

any (d,m) = 1, R(1, d,m) =

∏r
i=1 R(1, di, pαi

i ) with di uniquely determined by the

congruences

(13) di ≡ d(m̄i)
2 mod pαi

i (1 ≤ i ≤ r),

where mi = mp−αi

i , (1 ≤ i ≤ r).

Proof Now each R(1, di, pαi

i ) =

∑

xi
ζmi (xi +di x̄i )

m (1 ≤ i ≤ r), so

r
∏

i=1

R(1, di, pαi

i ) =

∑

x1,...,xr

ζm1x1+···+mrxr+m1d1 x̄1+···+mrdr x̄r
m

=

∑

x1,...,xr

ζm1x1+···+mrxr+dd̄(m1d1 x̄1+···+mrdr x̄r)
m .

Since the congruences x ≡ mixi (mod pαi

i ) (1 ≤ i ≤ r) have a unique solution
x (mod m) for each choice of xi relatively prime to pαi

i , (1 ≤ i ≤ r), it follows
from the Chinese Remainder Theorem that x = m1x1 + · · · + mrxr runs through a
reduced system of residues mod m as the xi independently run through a reduced
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system of residues modpαi

i (1 ≤ i ≤ r). To establish the lemma it suffices to show
that d̄(m1d1x̄1 + · · · + mrdrx̄r) equals x̄ precisely when (13) holds. But xd̄(m1d1x̄1 +

· · · + mrdrx̄r) ≡ mixi d̄midi x̄i ≡ m2
i d̄di ≡ 1 (mod pαi

i ) if and only if di ≡ d(m̄i)
2

(mod pαi

i ) (1 ≤ i ≤ r), so the last assertion follows readily from the Chinese Re-
mainder Theorem.

Proof of Theorem 2.1 From Lemma 2.2,

S(σ)
n (m) =

∑

d,s(d)=σ

R(d)n
=

∑

d,s(d)=σ

r
∏

i=1

R(1, di, pαi

i )n,

where di ≡ d(m̄i)
2 (mod )pαi

i (1 ≤ i ≤ r). Expanding the right-hand side and

comparing terms with those obtained in expanding the product

r
∏

i=1

∑

di ,spi
(di )=σpi

R(1, di, pαi

i )n,

one finds equality by the Chinese Remainder Theorem, since spi
(di) = spi

(d) for

1 ≤ i ≤ r, from (13). This establishes the first product identity. The latter follows
similarly by considering all d with (d,m) = 1.

The following corollary is readily deduced from Lemma 2.2 and Theorem 2.1 us-
ing Galois theory and the fact R(1, 1, 2) = 1.

Corollary 2.3 For odd m > 1, f (σ)
2m (x) = f (σ)

m (x).

3 The Prime Power Case m = pα, α > 1

Here we give explicit expressions for the sums S(σ)
n (pα) and formulas for the factors

f (σ)
m (x) for prime powers pα when α > 1, using the results of Salie [12]. To this end,

we first mention some facts concerning the minimal polynomials for certain Gauss
periods and their quadratic twists [8] which will be needed. Note that the quantity

2 cos(2π/2α) = ζ2α + ζ−1
2α for α ≥ 3 has minimal polynomial Q2α(x) of degree 2α−2

given recursively by

(14) Q8(x) = x2 − 2, Q2α(x) = Q2α−1 (x2 − 2) for α ≥ 4,

since (2 cos(2π/2α))2−2 = 2 cos(2π/2α−1). The corresponding sums of n-th powers
of zeros of Q2α(x) are seen [8] to satisfy Sn = 0 if n is odd; otherwise for even n,

(15) Sn = 2α−2

(

n

n/2

)

+ 2α−1

[n21−α]
∑

t=1

(−1)t

(

n

(n − 2α−1t)/2

)

.
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The polynomial Q2α(x) is just A2α−2 (x) (chiefly, [8, Corollary 1]), where

(16) Ad(x) =

[d/2]
∑

n=0

(−1)n d

d − n

(

d − n

n

)

xd−2n

is defined for any integer d > 0. Here [ ] denotes the greatest integer function.

When p is an odd prime with α ≥ 2, the quantity 2 cos(2π/pα) = ζpα + ζ−1
pα

has minimal polynomial Qpα(x) of degree φ(pα)/2 and sums of n-th powers of zeros
satisfying [8]

(17)

Sn =

(

n

n/2

)

φ(pα)

2
+ pα

[np−α/2]
∑

t=1

(

n

n/2 − pαt

)

− pα−1

[np1−α/2]
∑

t=1

(

n

n/2 − pα−1t

)

if n is even, or

pα
[np−α]
∑

t=1,t odd

(

n

(n − pαt)/2

)

− pα−1

[np1−α]
∑

t=1,t odd

(

n

(n − pα−1t)/2

)

if n is odd. Its minimal polynomial is explicitly given (chiefly, [8, Corollary 2]) by

(18) Qpα(x) = 1 +

(p−3)/2
∑

j=0

Apα−1(p−1−2 j)/2(x)

in terms of the polynomials Ad(x), with coefficient cr of xφ(pα)/2−r for 1 ≤ r <
φ(pα)/2 given by

[rp1−α]
∑

j=0, j≡r (mod 2)

(−1)t j
pα−1( p−1

2
− j)

pα−1(
p−1

2
− j) − t j

(

pα−1( p−1

2
− j) − t j

t j

)

and cφ(pα)/2 =

(

−2
p

)

, where t j = (r − pα−1 j)/2.

Finally, consider the quantity i∗
√

p(ζpα +(−1)(p−1)/2ζ−1
pα ) when p is an odd prime

with α ≥ 2, where i∗ = i(p−1)2/4. It has minimal polynomial U pα(x) of degree
φ(pα)/2 with sums of n-th powers of zeros satisfying [8]

(19) Sn = pn/2φ(pα)

2

(

n

n/2

)

+ pα+n/2

[np−α/2]
∑

t=1

(−1)t(p−1)/2

(

n

n/2 − t pα

)

− pα−1+n/2

[np1−α/2]
∑

t=1

(−1)t(p−1)/2

(

n

n/2 − t pα−1

)

,
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if n is even, or

pα−1+(n+1)/2

[np1−α]
∑

t=1,(t,2p)=1

(−1)(p−1)(1+t pα−1)/4
(

t
p

)

(

n

(n − t pα−1)/2

)

,

if n is odd. The minimal polynomial U pα(x) is explicitly described in terms of the

coefficients of the Aurifeuille factors of the p-th cyclotomic polynomial xp−1 +xp−2 +
· · · + 1. It has the form

(20) U pα(x) = a(p−1)/2 ppα−1[(p+1)/4] +

[(p−3)/4]
∑

j=0

a2 j ppα−1 jB
pα−1(

p−1

2
−2 j)

(x)

+

[(p−1)/4]
∑

j=0

a2 j−1 p(pα−1(2 j−1)+1)/2Bpα−1(
p−1

2
−2 j+1)

(x)

in terms of the polynomials

(21) Bd(x) =

[d/2]
∑

n=0

(−1)n pn d

d − n

(

d − n

n

)

xd−2n

(chiefly, in [8, Corollary 3]), with coefficient cr of xφ(pα)/2−r given for 1 ≤ r <
φ(pα)/2 by

p[ r+1

2
]

[rp1−α]
∑

j=0, j≡r (mod 2)

(−1)t j a j

pα−1(
p−1

2
− j)

pα−1( p−1

2
− j) − t j

(

pα−1( p−1

2
− j) − t j

t j

)

,

where t j = (r − pα−1 j)/2 as before, and

cφ(pα)/2 =

{

(

2
p

)

pφ(pα)/4 if p ≡ 1 (mod 4),

(−1)N
(

2
p

)

(−p)(φ(pα)+2)/4 if p ≡ 3 (mod 4),

where N is the number of quadratic non-residues of p in (0, p/2). Here the coeffi-
cients ai arise from an Aurifeuille factor

a0 + a2x + · · · + ap−1x(p−1)/2 +
√

px(a1 + a3x + · · · + ap−2x(p−3)/2)

of the p-th cyclotomic polynomial. The reader is referred to [8, §3] for details.
Now, from Salie [12] one finds the Kloosterman sums R(1, d, pα) for α > 1 ex-

plicitly up to conjugacy. Namely,

R(1, 1, 4) = −2, R(1, 3, 4) = 2, R(1, 3, 8) = −4, R(1, 7, 8) = 4,

R(1, 1, 8) = R(1, 5, 8) = 0, R(1, d, 16) =

{

0 if d ≡ 3(mod 4),

±4
√

2 if d ≡ 1(mod 4),

R(1, d, 32) =

{

0 if d ≡ 1, 3, 7(mod 8),

a conjugate of 16 cos(2π/16) if d ≡ 5(mod 8),
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and for α ≥ 6, R(1, d, 2α) is a conjugate of 2(α+3)/2 cos(2π/2α−1) or 0 as d ≡ 1 or not
(mod 8).

For odd primes p with α > 1, R(1, d, pα) = 0 if
(

d
p

)

= −1. If
(

d
p

)

, then R(1, d, pα)

is a conjugate of










2pα/2 cos(2π/pα) if α is even,

2
√

pp(α−1)/2 cos(2π/pα) if α is odd and p ≡ 1 (mod 4),

2(−2
p

)
√

pp(α−1)/2 sin(2π/pα) if α is odd and p ≡ 3 (mod 4).

The corresponding sums S(σ)
n (pα) are, in view of (15), (17) and (19), tabulated

below.

Proposition 3.1 (i) For n > 0,

S±1
n (4) = (∓2)n, S(1,±1)

n (8) = 0, S(−1,±1)
n (8) = (±4)n,

S(−1,±1)
n (16) = 0, S(1,±1)

n (16) =

{

0 n odd,

2(32)n/2 n even,

S(−1,±1)
n (32) = S(1,1)

n (32) = 0,

S(1,−1)
n (32) =

{

0 n odd,

8n(4
(

n
n/2

)

+ 8
(
∑[n/8]

n=1 (−1)t
(

n
(n−2α−1t)/2

))

n even.

For α ≥ 6,

S(±1,−1)
n (2α) = S(−1,±1)

n (2α) = 0

S1,1
n (2α) =

{

0 n odd,

2(α+1)n/2
(

2α−3
(

n
n/2

)

+ 2α−2
∑[n22−α]

t=1 (−1)t
(

n
(n−2α−2t)/2

))

n even.

(ii) Assume α ≥ 2. For n > 0, S−n (pα) = 0.

For n even, S+
n (pα) equals

pnα/2

(

φ(pα)

2

(

n

n/2

)

+ pα
[np−α/2]

∑

t=1

(−1)(p−1)t/2

(

n

n/2 − t pα

)

− pα−1

[np1−α/2]
∑

t=1

(

n

n/2 − pα−1t

))

if α is even or p ≡ 1 (mod 4), and equals

pnα/2

(

φ(pα)

2

(

n

n/2

)

+ pα
[np−α/2]

∑

t=1

(−1)t

(

n

n/2 − pαt

)

− pα−1

[np1−α/2]
∑

t=1

(−1)t

(

n

n/2 − pα−1t

))
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if α is odd and p ≡ 3 (mod 4).

For n odd with α even, S+
n (pα) equals

pnα/2

(

pα
[npα]
∑

t=1, t odd

(

n

(n − pαt)/2

)

− pα−1

[np1−α]
∑

t=1,t odd

(

n

(n − pα−1t)/2

))

.

For n odd with α odd, S+
n (pα) equals

p(nα+1)/2 · pα−1

[np1−α]
∑

t=1,(t,2p)=1

(

t

p

)(

n

(n − t pα−1)/2

)

if p ≡ 1 (mod 4), and equals

(−1)(p−3)/4 p(nα+1)/2 · pα−1

[np1−α]
∑

t=1,(t,2p)=1

(−1)(1+t)/2

(

t

p

)(

n

(n − t pα−1)/2

)

if p ≡ 3 (mod 4).

From the above proposition, formula (16) and remarks at the beginning of this
section, one finds f (σ)

pα (x) for α > 1 In particular,

(22)

f ±4 (x) = x ± 2, f
(−1,±1)

8 (x) = x ∓ 4,

f
(1,±1)

16 (x) = x2 − 32 f
(1,−1)

32 (x) = x4 − 256x2 + 8192,

f (1,1)
2α (x) =

2α−4

∑

n=0

(−1)n 2α−3

2α−3 − n
2(α+1)i

(

2α−3 − n

n

)

x2α−3
−2n

for α ≥ 6. For p odd, f +
pα(x) equals pαφ(pα)/4 · Qpα(x/pα/2) if α is even; otherwise

f +
pα(x) equals p(α−1)φ(pα)/4 · U pα(x/p(α−1)/2) if p 6≡ 7 (mod 8) or −p(α−1)φ(pα)/4 ·

U pα(−x/p(α−1)/2) if p ≡ 7 (mod 8) when α > 1 is odd, in terms of the polynomials
Qpα(x) and U pα(x) described before. In each of these cases with p odd, the first pα−1

coefficients of f +
pα(x) are seen to satisfy

(23) cr = 0 or (−1)r/2 pαr/2 φ(pα)

φ(pα) − r

(

φ(pα)/2 − r/2

r/2

)

according as r is odd or even with 1 ≤ r < pα−1.

Each of the aforementioned polynomials is irreducible. In all other cases with
α > 1, f (σ)

pα (x) = xk.
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4 Duplications and Reducibility among the f (σ)
m (x)

Here we examine what duplications and reducibility may appear among the factors
f (σ)
m (x) of fm(x) in (9). Using Theorem 2.1 and Proposition 3.1, it is easy to determine

the conditions for a given factor f (σ)
m (x) to equal xk (necessarily some component

sum S(σp)
n (pα) equals 0 for all n > 0). Additional duplications can occur among the

factors f (σ)
m (x) when 16||m for σ2 = (1, 1) and (1,−1). In particular, one notes the

following.

Proposition 4.1 A factor f (σ)
m (x) = xk if and only if one of the following holds:

(i) p2|m for some odd prime p with σp = −1,

(ii) 8||m with σ2 = (1,±1),

(iii) 16||m with σ2 = (−1,±1),

(iv) 32||m with σ2 6= (1,−1),

(v) 64|m with σ2 6= (1, 1).

Corollary 4.2 Factors f (σ ′)
m (x) = f (σ)

m (x) if and only if one of the conditions (i)–(v)

of Proposition 4.1 holds or 16||m with σ ′
p = σp for all odd primes p|m and σ ′

2, σ2 ∈
{(1, 1), (1,−1)}.

Computational evidence seems to suggest that f (σ)
m (x) is irreducible whenever

f (σ)
m (x) 6= xk. Indeed we can show this holds in full generality. For this we require

some elementary class field theory and a generalization of the argument regarding
“Lagrange” resolvents [5, Appendix].

Consider a congruence group H of conductor m and let L be the subfield of Q(ζm)

corresponding to H through class field theory, say with [L : Q] = k. Choose coset
representatives t1 = 1, t2, . . . , tk in Z∗

m for Gal(L/Q) with each ti relatively prime
to k, and any element η in L. Label the conjugates of η as ηi = σti

(η) (1 ≤ i ≤ k),
where σt denotes the automorphism of L/Q induced by sending ζm → ζt

m. Finally,

set

(24) T(χ) =

k
∑

i=1

χ(ti)ηi

for any character χ annihilating H. Then

ηi =

1

k

∑

χ

χ̄(ti)T(χ) (1 ≤ i ≤ k),

the sum taken over χ annihilating H. Generalizing the argument in [5, Appendix],

one finds in view of the lemma there that

Proposition 4.3 The ηi (1 ≤ i ≤ k) are distinct if T(χ) 6= 0 for all χ annihilating H

with conductor f (χ) > 1 satisfying (m/ f (χ), f (χ)) = 1 where m/ f (χ) is square-free.

In the classical case m = p, an odd prime, with primitive root g and congru-
ence group H = {±1} of conductor p, one may choose ti = g i−1 with ηi =

R(1, dg2i−2, p) (1 ≤ i ≤ (p − 1)/2) in (24) where d ∈ Z∗
p.
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Proposition 4.4 With H = {±1} modulo p and ηi = R(1, dg2i−2, p) (1 ≤ i ≤
(p − 1)/2) as above, T(χ) 6= 0 for any even character χ modulo p. In particular, each

ηi generates Q(ζp + ζ−1
p ).

Proof Fix a character ψ to generate the group of numerical characters modulo p.

Any character which annihilates H is even and of the formψ2v for 0 ≤ v < (p−1)/2.
Using [12, (59)] to express the Kloosterman sums for m = p in terms of the Gauss
sums G(χ) =

∑

x∈Z∗

p
χ(x)ζx

p for characters χ modulo p and setting ρ =

( ·
p

)

, one

finds

T(ψ2v) =

p−1

2
∑

i=1

ψ2v(g i−1)ηi =

1

p − 1

p−1

2
∑

i=1

ψ2v(g i−1)

p−1
∑

j=1

ψ̄ j(dg2i−2)G(ψ j )2

=

1

p − 1

p−1
∑

j=1

ψ̄ j(d)G(ψ j )2

p−1

2
∑

i=1

ψv− j(g2i−2)

=

1

2
(ψ̄v(d)G(ψv)2 + ψ̄vρ(d)G(ψvρ)2),

since
p−1

2
∑

i=1

ψv− j(g2i−2) =

{

p−1

2
if j ≡ v (mod p−1

2
)

0 otherwise.

Choosing ψ to be the Teichmuller character one readily confirms that T(ψ2v) 6= 0
for 1 ≤ v < p−1

2
using Stickelberger’s theorem [1, Theorem 11.2.1]; whereas T(1) =

(1 ± p)/2 6= 0 from (7). Thus T(χ) 6= 0 for any even character χ modulo p, and so
the last assertion of the proposition follows now from Proposition 4.3.

We now can establish

Theorem 4.5 Each factor f (σ)
m (x) of fm(x) in (9) is either irreducible or equals xk.

Proof In view of Salie’s results and Corollary 2.3, it suffices to consider square

classes σ where, in Theorem 2.1, no component sum S
(σp )
n (pα) is 0 for all n > 0

and with 16|m if m is even. We assert that the corresponding factors f (σ)
m (x) are

irreducible. We consider the case m is odd first, and choose any d in σZ∗2
m . Set

η = R(1, d,m), which by Lemma 2.2 is the product of R(1, d j , p
α j

j ) (1 ≤ j ≤ r), with

each R(1, d j , p
α j

j ) generating the real subfield K j of Q(ζp j
α j ) of degree e j = φ(p

α j

j )/2

by our assumptions on σ above. Here, d j ≡ d(m̄ j)
2 (mod p

α j

j ) (1 ≤ j ≤ r), where
m j = mp

−α j

j as before. Now η lies in K, the compositum of the fields K j , and
corresponds to the congruence group H = {x ≡ ±1 (mod p

α j

j ) (1 ≤ j ≤ r)} of
conductor m.
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Next choose generators s j for Z∗

p
α j

j

/(±1) with s j prime to k and s j ≡ 1 (mod m j)

(1 ≤ j ≤ r). Any coset representative s in Z∗
m/H can be uniquely expressed sv1

1 · · · svr
r

with 0 ≤ v j < e j (1 ≤ j ≤ r) via the canonical identification

Z∗
m/H ≃

r
∏

j=1

Z∗

p
α j

j

/(±1).

Given a character χ of Z∗
m annihilating H, let χ =

∏r
j=1 χ j denote its corresponding

decomposition into p-components, where each χ j(−1) = 1. Specifically, we obtain
χ j(x) for any x in Z∗

pα , by setting χ j(x) = χ(x ′) for x ′ satisfying x ′ ≡ x (mod p
α j

j ),

x ′ ≡ 1 (mod m j). If χ has conductor f (χ) = pβ1

1 · · · pβr
r where 0 ≤ β j ≤ α j , then

χ j has conductor p
β j

j .
Now consider the sum

T j(χ j) =

e j−1
∑

v j=0

χ j(s
v j

j )R(1, d js
2v j

j , p
α j

j )

associated to R(1, d j , p
α j

j ). We first assert that T j(χ j) 6= 0 when χ j has conductor

p
α j

j (α j > 1). Indeed, in view of Salie’s results R(1, d j , p
α j

j ) is, up to sign conjugate,

equal to i(pα−1)2/4 pα/2(ζpα + (−1
p

)αζ−1
pα ), where for convenience we put α = α j and

p = p j . Thus up to a fourth root of unity T j(χ j) equals
∑

s∈Z∗

pα
/(±1)

χ j(s)
(

s
p

)α
pα/2(ζ s

pα +
(

−1
p

)α
ζ−s

pα ) = pα/2
∑

s∈Z∗

pα

χ j(s)
(

s
p

)α
ζ s

pα ,

just a non-zero multiple of the non-vanishing Gauss sum
∑

s∈Z∗

pα
χ j(s)

(

s
p

)α
ζ s

pα since

χ j

( ·
p

)α
has conductor pα. Note also that T j(χ) 6= 0 from Proposition 4.4 for any

even character χ modulo p when α j = 1. We now assert that T(χ) =

∏r
j=1 T j(χ j).

Expanding the right side yields a sum of terms

χ1(sv1

1 ) · · ·χr(svr
r )R(1, d1s2v1

1 , pα1

1 ) · · ·R(1, drs
2vr
r , pαr

r ) =

χ(sv1

1 · · · svr
r )R(1, d(sv1

1 · · · svr
r )2,m)

by the choice of s j and Lemma 2.2, one for each choice of exponents 0 ≤ v j < e j

(1 ≤ j ≤ r). But this sum is just T(χ).
Suppose further that χ has conductor f (χ) > 1 with (m/ f (χ), f (χ)) = 1 and

m/ f (χ) square-free. Then a given p-component χ j has conductor p
α j

j or may be
trivial if α j = 1, so satisfies T j(χ j) 6= 0. Thus T(χ) 6= 0 as claimed. From Proposi-

tion 4.3, it now follows that η generates K with f (σ)
m (x) irreducible.

The case m even is argued similarly, though now H has conductor m/2, with
K1, the real subfield of Q(ζ2α1−1 ) of degree 2α1−2 corresponding to the congruence
group {±1 (mod 2α1−1)}. One chooses s1 ≡ 5 (mod 2α1 ) to simultaneously gener-

ate Z∗
2α1
/{±1,±1 + 2α1−1} isomorphic to Z∗

2α1−1/(±1) with s1 ≡ 1 (mod m1) and η
as before. The details are left to the reader.

This concludes the proof of the theorem.
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