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ELEMENTARY OBSERVATIONS ON 2-CATEGORICAL LIMITS

G.M. KELLY

With a view to further applications, we give a self-contained account of indexed limits for
2-categories, including necessary and sufficient conditions for 2-categorical completeness.
Many important 2-categories fail to be complete but do admit a wide class of limits. Ac-
cordingly, we introduce a variety of particular 2-categorical limits of practical importance,
and show that certain of these suffice for the existence of indexed lax- and pseudo-limits.
Other important 2-categories fail to admit even pseudo-limits, but do admit the weaker
bilimits; we end by discussing these.

1. INTRODUCTION

The author and his colleagues are preparing a series of articles on two-dimensional
universal algebra, the first two of which are to be [5] and [4]. These make heavy use of
2-categorical limit notions, of which there is no concerted account in print. An attempt
to incorporate such an account in the first article proved so disruptive to its unity and
readability that we decided to separate out this matter and discuss it in this present
preliminary article.

In Section 2 we adapt to the special case V = Cat of 2-categories the general
notion of indexed limit for V-categories, discussed in detail in Chapter 3 of Kelly [9]
- both to cater for the reader interested in 2-categories but not in V-categories, and
to give an elementary description in this simple case. In [5] and some later articles
our results need completeness (the existence of all indexed limits) and cocompleteness
of the base 2-category; so in Section 3 we discuss the reduction of completeness to the
existence of conical limits and cotensor products, applying this to show - a result needed
in [5] - that a complete 2-category remains complete when we discard its non-invertible
2-cells. However, the 2-categories of algebras erected on such a base are not themselves
complete, because the morphisrns of interest are not the strict ones; yet they do admit
a variety of important limits, and it behoves us to study these and their connexions.

Accordingly in Section 4 we name, and describe in elementary terms, various par-
ticular (indexed) limits peculiar to the 2-categorical case, and give relations between
them - some of which are known but unpublished, while others are new: as, for in-
stance, that powers, inserters, and equiHers suffice for cotensor products. In Section 5,
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302 G.M. Kelly [2]

we introduce, for the first time in print, (indexed) lax limits and pseudo-limits, observ-
ing that these can be exhibited as special indexed limits, and showing that they exist
whenever products, inserters, and equifiers do so. This will allow us to prove in [5] that
they exist in the 2-category of algebras for a 2-monad on a complete and cocomplete
base 2-category, and in later articles that they exist in the 2-category of algebras for a
suitable finite-limit theory.

We shall see in [5] that the 2-category of algebras for a good 2-monad on a good
base need not admit pseudo-coiimits; but that it does admit the (indexed) bicolimits
of Street [15]. We therefore recall these in Section 6, and use a recent result of Street
[16] to conclude that we can prove their existence in a 2-category by considering only
special cases involving 2-categories and 2-functors, without embarking on the further
complications of bicategories and their homomorphisms - an observation of great value
in [5] and later papers.

We include only what is needed for the reading of our planned articles, and accord-
ingly leave aside such examples of 2-categorical limits as the presentation in Street [13]
of the Eilenberg-Moore object, and that in Street [16] of the descent object, as indexed
limits. We shall in fact return to a deeper study of 2-categorical limits in [4] - to which
we make one or two harmless forward references - using the results of [5].

Our references are rather to convenient compedia than to original sources. In
some mitigation of this, we observe here that the notion of indexed limit for enriched
categories was introduced independently by Auderset [1], Borceux and Kelly [6], and (in
the special case of 2-categories) by Street [13]; and that various particular 2-categorical
limits, including many of those below, were introduced by Gray in [7] (with a different
nomenclature), by Street in [14] and [16], and by my student Bird in his thesis [3].

2. INDEXED LIMITS AND COLIMITS FOE 2-CATEGORIES

As a general reference to elementary 2-categorical notions, and for the meanings
of any terms not explained below, see Kelly and Street [12]. We write Ca t for the 2-
category of small categories; it is of course a cartesian closed category. Most 2-categories
K met with in practice are locally small, in the sense that each IC(A, B) is a small
category; and are thus V-categories for V = C a t . Nothing essential changes if they are
not locally small - they are then CAT-categories for the C A T of a higher universe.
Discarding the 2-cells of a 2-category K gives its underlying ordinary category /Co .

As is usual with V-categories, we abbreviate as follows wherever convenient. If
/C and C are 2-categories, by a functor G: K. —+ £ we mean a 2-functor (that is, a
Cat-functor; for a description in elementary terms, see [12]). If we wanted to speak of
a mere functor /Co —* £o between their underlying categories, we should say just this.
Similarly, by a natural transformation a: G —> H: K, —> C, we mean a 2-natural one;
see [12] again. If we speak of a 2-functor G: K, —» C, we imply that K. and C are
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[3] 2-categorical limits 303

2-categories. A 2-functor F': C —» Ca t is representable when, for some D £ C, there
is a 2-natural isomorphism C(D, C) = FC of categories. The 2-functor G: K. —> £
has a left adjoint when there is a 2-functor 5 : £ —> K. and a 2-natural isomorphism
K(SB, A) = C(B, GA) of categories; this is so precisely when C{B, G-): K —* C a t is
representable for each B. The functor 2-category [/C, £] is the 2-category of 2-functors,
2-natural transformations, and modifications; for these last, see [12]. A category may
be seen as a 2-category whose only 2-cells are identities (and a set as a category whose
only arrows are identities).

It is well-known that, to have a sufficiently wide notion of limit for V-categories,
and an appropriate concept of complete V-category, one needs the indexed limits of [9,
Chapter 3] (which some authors now prefer to call weighted limits). We here recall the
general notion in the case V = C a t . An indexing type is a 2-functor F: V —* Cat
where (for us) V is small. A 2-functor G: V —> K gives rise to a 2-functor K.op —> Cat
sending A to the right side of (2.1) below; if this latter 2-functor admits a representation

(2-1) K(A, {F, G}) S* [V, Cat](F, K{A, G-)),

with unit say

(2.2) £: F -> K{{F, G}, G-),

we call the object {F, G} of K, or more properly the pair ({F, G}, £), t ie F-indexed

limit of G. (The reader to whom this definition is unfamiliar should find clarification
of its scope and its meaning in the particular examples of the following sections.)

Observe that the functor from the left to the right side of (2.1) induced by the unit
£ is required to be an isomorphism of categories, and not just an isomorphism

(2.3) K0(A, {F, G}) S [V, Cat]0(F, K(A, <?-))

of sets. The isomorphism (2.3), asserting that every natural p: F —» /C(A, G—) is
K.(h, G—)£ for a unique arrow h: A —» {F, G} in K,, expresses what we may call
the oiie-dimensionai aspect of the universal property of {F, G}; but (2.1) expresses
a two-dimensional aspect as well: every modification 0: p —> p' is K.(a, G—)£ for a
unique 2-cell a: h —> h!. (Note that a is invertible if and only if 9 is so.) Examples
in Sections 3.7 and 3.8 of [9] show that the one-dimensional aspect (2.3) does not in
general imply the two-dimensional one, and hence does not suffice to exhibit a candidate
({F, &'}, £) as the limit. It does, however, suffice to determine {{F, G}, £) uniquely
to within isomorphism, since the Set-valued functor on the right of (2.3) is represented
by {F, G} with unit £.
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The 2-category K is complete when it admits all limits {F, G} (with V small).
If we write G: Kop -c [V, Ca t ] for the 2-functor given by

(2.4) GA = K(A,G-),

to say that K is complete is to say that, for all V and all G: V —> /C, the functor G

has a left adjoint {—, G}; then the £ of (2.2) is the F-component of the unit of the
adjunction.

The 2-category Cat is complete, an easy calculation showing that (2.1) is satisfied
by

(2.5) {F, G} = [V, Cat](F, G)when K = Cat,

with the evident unit. Accordingly we can re-write (2.1) as

(2.6) K(A, {F, G}) = {F, K(A, G-)},

exhibiting the definition of limit (like that of classical limits) as a representable one.

Colimits in K are just limits in Kop. The notation for the colimit of G: V —> K.
indexed by F: Vop —> Cat (note the variance) is F *G, and (2.1) becomes

(2.7) K{F *G,A)^ [Pop, Cat](F, K{G-, A)).

The analogue of the G of (2.4) is now G:K^> [Vop, Cat] given by

(2.8) GA = K{G-, A),

and K is cocomplete precisely when G has a left adjoint — *G for all G:V—>IC.

When K = Cat, so that in (2.7) we have F: Vop -» Cat and G: V -» Cat,
both F * G and G * F make sense; they are canonically isomorphic by (2.7) and the

2-natural isomorphism [FP, [GQ, A}] =* [GQ, [FP, A]}, where [X, Y] = Cat(X, Y) is

the internal horn in Cat.

Finally, taking F to be representable, the Yoneda Lemma [P, Cat](77(P, - ) , H) =

HP (see Section 2.4 of [9]), along with (2.1) and (2.7), gives the Yoneda isomorpliisms

(2.9) {V(P, - ) , G} =s GP, V{-, P)*G^ GP.

3. CONICAL LIMITS, COTENSOR PRODUCTS, AND COMPLETENESS

It was shown in Chapter 3 of [9] that a V-category is complete if and only if it

admits conical limits and cotensor products; or equivalently products, equalizers, and

cotensor products - all of these being particular indexed limits. We give here a brief
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[5] 2-categorical limits 305

independent discussion of this in the 2-categorical case, and an application (needed in
[5]) to groupoid-enriched categories.

When F is the 2-functor A l : V —* Ca t constant at the unit category 1, and
G: V —* K is any 2-functor, we write liinG for { A l , G}, and call such limits conical.

The point is that to give an object of the right side of (2.1) with F = A l is equally
to give a (projective) cone over G with vertex A, and to give a morphism is to give a
modification of such cones; while the unit £ in (2.2) corresponds to a particular cone
( over G with vertex lim G. The one-dimensional aspect of the universal property
asserts that any cone over G with vertex A is (,h for a unique h: A —• l imG , while
the two-dimensional aspect asserts that any modification £h —> £k is £a for a unique
2-cell a: h —> k. When V is a category rather than a general 2-category, the one-
dimensional aspect is clearly the assertion that (lirnG, J) is the classical limit in the
category /Co of the functor G: V —> /Co ; but when we call lim G the limit of G in K.

(and not merely in KQ ), we affirm the two-dimensional aspect as well.

Among such conical limits (with V a category) are the various familiar ones: prod-
ucts, equalizers, pullbacks, and so on. An example in Section 3.8 of [9] shows that even
a binary product in K.o need not be a product in K.

We write, of course, colim G for the conical limit in Kop of Gop: V" -»• K.op,
namely A l • G .

When we take for V in (2.1) the unit category 1, we may identify F and G with
objects of Cat and of K ; then {F, G} is called the cotensor product of F and G (and
F * G is called the tensor product). The universal properties (2.1) and (2.7) become

(3.1) K(A, {F, G}) S [F, K(A, G)}, K{F *G,A)^ [F, K(G, A)};

here [X, Y] is again the internal horn in Cat. When K = Cat, we have {F, G} =
[F, G) by (2.5); and we clearly have F*G -F xG.

It is useful, both for this article and for [5], to have a description in elementary
terms of the universal property of the cotensor product {F, G}. To give the unit
£: F -» K({F, G}, G) is to give maps (x: {F, G} -* G in K for each object x of the
category F, and to give 2-cells £^: (x —> £„ in K for each <j>: x —* y in F, these data
making £ into a functor. The one-dimensional aspect of the universal property asserts
that, whenever we have maps fx: A —» G and 2-cells / ^ : fx —> fy making / into a
functor F —* K{A, G), there is a unique map h: A —* {F, G} such that £xh — / ,
and £$h = f,p. The two-dimensional aspect asserts that, given h, k: A —> {F, G} and
2-cells /?, : £xh —* £xk for each x 6 F, satisfying {£<j,k)f3x = Py(t<t,h) for each <f>: x —> y
in JP, there is a unique 2-cell a: h —* k with £xa = f3x for all x .

The reader should note, for future purposes, the simplified version of this descrip-
tion in the special cases where F = 2, by which we denote the arrow-category 0 —* 1,
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and where F = I , the category with objects 0 and 1 and with inverse isomorphisms
0 - • 1 and 1 - ) 0. Observe that, when we write 0: 1 —> 2 and 1:1 - t 2 below, we
mean the functors which are the names of 0 € 2 and 1 € 2 ; the context makes it clear
that 1: 1 —» 2 cannot denote an identity functor.

When K admits tensor products of the form 2 * A, the two-dimensional universal
property of any limit does follow from the one-dimensional one. For the unit £ of the
representation (2.3) induces a functor p from the left to right side of (2.1); Cato(2, p)
is invertible since it is in effect the isomorphism (2.3) with 2 • A in place of A; and
Cato(2, - ) : Cat0 ->• Set reflects isomorphisms. (See Theorem 4.85 of [0].)

The 2-category K is complete if and only if it admits products, cotensor products,

and equalizers; for the general {F, G} of (2.1) can be constructed as the equalizer of v

and w in

(3.2) {F, G} —+ RPev{FP, GP} ^ nPtQ€V{V{P, Q) x FP, GQ},
u to

where v, w are the evident maps arising from V(P, Q) —> K.(GP, GQ) and V(P, Q) —•
[FP, FQ]. To verify such a statement, asserting that a limit may be constructed by
combining other limits, it suffices, because of the representable nature of limits expressed
by (2.6), to carry out the verification when K. = Cat - which, given (2.5), is easy.

Since Cat0 has classical colimits, while Cat has both tensor products and cotensor
products, it follows from the last two paragraphs that Cat (which we have seen to be
complete) is also cocomplete.

An example in Section 3.8 of [9] shows that JC may admit all conical limits -
even those where V is not just a category but a general 2-category - but fail to be
complete. However a K with products and equalizers is complete if it admits those
cotensor products of the form {2, B}, since the general cotensor product {X, B} can
be constructed from these using products and equalizers. This is because, 2 being
a strong generator of Cat0 , every small category X is in the closure of 2 under
coproducts and coequalizers in Cato and hence, by the last paragraph, in Cat; while
{—, B} sends colimits into limits.

We call K finitely complete if it admits finite products, equalizers, and the cotensor
products {2, B}; by Section 4 of Kelly [10] it then admits the limit {F, G} whenever
ob V is finite and each category V(P, Q) and each category F P is finitely presentable.

A number of operations on 2-categories preserve completeness. It is easy to see that
the functor-2-category ['P, fC] is complete or cocomplete if K is so, limits and colimits
in it being formed pointwise; a special case is the power Kx for a set X. Again, the
usual arguments show a full reflective sub-2-category of K is complete or cocomplete if
K. is so; see Section 3.5 of [0].
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The category Gpd of small groupoids is again a cartesian closed category; a Gpd-
category can be seen as a (locally-small) 2-category in which every 2-cell is invertible.
Since every 2-functor between Gpd-categories is a Gpd-functor, and similarly for natu-
ral transformations and modifications, we can regard Gpd-CAT as a full sub-3-category
of Ca t -CAT. The inclusion has both adjoints; the right adjoint sends the 2-category
K to the 2-category K.g obtained from K by leaving the objects and arrows untouched
but discarding all the non-invertible 2-cells. We need the following result in [5]:

PROPOSITION 3.1. If the 2-category K. is complete or cocomplete, so is the 2-
category K9 .

PROOF: It suffices to consider completeness, since (Kop)g = (Kg)
op. The conical

limits in Kg are just those in K.: the one-dimensional universal property is the same
assertion in Kg as in K., while the two-dimensional one in Kg is just the restriction
of that in K to the invertible 2-cells. The cotensor product {2, B} in K.g is not that
in /C, the unit £ of which involves two maps £0, £j : {2, B} —+ B and a mere (not
invertible) 2-cell A: £o —» £i; rather, as is very easily seen, arguing about the universal
properties as above, the {2, B} of Kg is the cotensor product {I, B} in K. |

4. SOME NOTABLE FINITE LIMITS

We now describe and name some important finite limits which, unlike conical limits
and cotensor products, are peculiar to the case V = Cat of 2-categories. Typically, the
components of the unit £ in (2.2) are determined, given G, by some subset of them;
we write only the independent ones (such as p and A in our first example).

When V and its images under F and G are

the limit is the universal diagram of the form

(4.1)

called the inserter of / and g. The one-dimensional aspect of its universal property
asserts that, given any q: A —> B and any 2-cell fi: fq —> gq, there is a unique
h: A —» {JF, G} satisfying ph = q and Xh = fi. The two-dimensional aspect asserts
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that , given h, k: A -> {F, G} and a 2-cell /3: ph -> pk satisfying (Afc)(//3) = {g(5){\h),
there is a unique 2-cell a : h —> k with pa — (3. If in the description above of .F we
replace 2 by I , we get the iso-inserter; now A in (4.1) is invertible, and the one-
dimensional universal property holds for invertibie p (but the two-dimensional one still
for any /?, invertible or not). Of course, replacing 2 not by I but by 1 give the
equalizer of / and g.

When V and its images under F and G are

—>2<— 1 B — > D < — C,
o i f 9

the limit

<«.*) - . * A . ,

D

is called the comma-object of / and g; here common notations for {F, G} are f/g and
fig. If we replace 2 here by I , we get instead the iso-comma-object: the universal
diagram of the form (4.2) with A invertible. We leave it to the reader to spell out the
universal property.

When V and its images under F and G are

y • 1 —> 2 B —> D,
o f

the limit is the universal diagram of the form

( 4 . 3 )

called the lax limit of t i e arrow / . Changing JF to 1: 1 —> 2 , and so reversing the
sense of A in (4.3), gives the op-lax limit of / ; while changing F to 0: 1 —* I , so that
the A of (4.3) is invertible, gives the pseudo-limit of / .
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[9] 2-categorical limits 309

The reader will note that the lax limit (4.3) is the special case of the comma-object
(4.2) in which g is 1: D —* D; and that the cotensor product {2, D} is the still
more special case in which both / and g are ID- The general principle about one
limit's appearing as a special case of another is the following, which is Proposition 4.57
of [9]; here L&nN F is the left Kan extension of F along N. Given F:V-^> Cat,
N-.V-+Q, and H: Q -» K , we have

(4.4) S {F, HN},

either existing if the other does.
The following simple observation is well known:

PROPOSITION 4.1. If K admits binary products and inserters [iso-inserters], it
admits comma-objects [iso-comma-objects] and their special cases: the lax limit and
the op-lax limit [the pseudo-limit] of an arrow, and the cotensor product {2, B} [the
cotensor product {I, B} ].

PROOF: Taking the product B x C with its projections p and q, we find the
comma-object (4.2) as the inserter of fp and gq; as usual it suffices to verify this when
K. = Cat, which it is easy to do. I

When V and its images under F and G are

the limit

(4 .5 )

is the equifier of a and /?. Here p is universal with the property that ap = /3p; given
any q: A —+ B with aq = /?</, there is a unique h: A —* {F, G} satisfying ph = q. The
two-dimensional aspect is the assertion that, given h, k: A —» {F, G} and any 2-cell
(i: ph —* pk, there is a unique 2-cell \: h ^ k satisfying pX — /j,.
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(4.6) {F,G} *~B

is the inverter of a; here A: is universal with the property that ak is invertible. If we
replace I here by 1, we get the identifier of a: a map k: {F, G} —> B as in (4.6), but
now universal with the properties fk = gk and ak = identity.

The identifier, like the equalizer, stands apart from the other limits we have intro-
duced in this section: the latter do exist, but equalizers and identifiers do not, in the
2-category Lex of finitely-complete categories, left-exact functors, and natural trans-
formations - see [5]. (Note that a 2-category which admits inserters and identifiers
must admit equalizers: if (4.1) is the inserter of / and g and k is the identifier of A,
then pk is the equalizer of / and g.) The condition fk = gk in the definition of the
identifier, and the corresponding condition for the equalizer, demanding actual equality
of two maps, make these limits of a "tight" kind, unapt to exist in such 2-categories as
Lex.

This "tightness" is lacking in the endo-identifier, which is the special case of the
identifier (4.6) in which g = f. This can of course be expressed as a limit in its own
right: the indexing type is A l : V —* Cat, where the underlying category of V is • —> •
and the 2-cells are the powers of a free endomorphism of the arrow. Similarly for the
auto-identifier - the identifier of an invertible 2-cell a: / —» / : B —» C.

Most of the following is in Bird's thesis [3]:

PROPOSITION 4.2. (&) If equifiers exist in a 2-category, so do endo-identifiers; (b) if
inserters and endo-identifiers exist, so do inverters; (c) if inserters and inverters exist, so
do iso-inserters. Hence a 2-category with inserters and equifiers admits endo-identifiers,
inverters, and iso-inserters; if it also admits binary products, it admits comma-objects
and iso-comma-objects, the lax limit, the op-lax limit, and the pseudo-limit of an arrow,
and the cotensor products {2, B} and {I, B} .

P R O O F : F o r ( a ) , t h e e n d o - i d e n t i f i e r of a : / — > j : B —>Cis t h e equ i f i e r of a

a n d t h e i d e n t i t y . F o r ( b ) , c o n s i d e r a : / - t j : 5 - » C ; f o r m t h e i n s e r t e r u: D —> B,
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[11] 2-categorical limits 311

/3: gu —> fu, of g and / ; then the endo-identifier v of /3(au): fu —* fu; and finally
the endo-identifier to of (auv)(/3v): guv —» guv; now uvw is the inverter of a . For
(c), consider f,g:B—>C; form the inserter u: D —> B, a : fu —> fftt of / and p ; and
then the inverter « of a ; now uv is the iso-inserter of / and g. The last assertion
follows from Proposition 4.1. I

As Street points out in [16], there is a partial converse to the (a) of Proposition 4.2:
when a is invertible, we can form the equifier of a and /3 in (4.5) as the endo-identifier
of a~1/3: f —» / . Accordingly, if we introduce the name iso-equiSer for an equifier (4.5)
where both a and f3 are invertible, we have:

PROPOSITION 4.3. (Street) T ie existence of auto-identifiers is equivalent to that

of iso-equifiers.

The following observation seems to be new.

PROPOSITION 4.4. If a 2-category /C admits products (or at least powers), insert-

ers, and equifiers, it admits cotensor products.

PROOF: Given a small category X , write U for its set of objects, V for its set of
morphisms, and W for the set of composable pairs (tp, <p) of morphisms. We have the
domain and codomain maps v, w: V —> U, the "identities" map i: U —> V, and the
maps r,s,t: W —> V given by r(V>, <p) = f, s(tf>, <p) = r/xp, t(tj), <p) = rj>. These maps

satisfy

vi — wi = 1, vr = vs, wr = vt, ws — wt;

what we have, of course, is a truncated simplicial set. Given 5 g / C , consider the maps
Bv, Bw: Bu -> Bv, and let p: C -> Bu, with A: Bvp -> Bwp, be their inserter. Let
h: D —> C be the equifier of the 2-cells

and

BrBvp = B'Bvp —> B'Bwp = BtBwp;
o A

and let k: E -> D be the equifier of the 2-cell

ph = BiBvph —» BiBwph = p/i
B;Ah

and the identity. Then JE7 is the cotensor product {X, 5 } , the unit £: X —> /C(i?, £?)
sending i' 6 I to the x-component of p/ifc and sending <p: x —> y to the ^-component
of \hk. I
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5. LAX LIMITS AND PSEUDO-LIMITS

Given 2-functors G, H: V - C, a lax natural transformation p: G - H assigns

to each object P of V an arrow , P : GP - # P and to each arrow f: P ^ Q m V

a 2-cell pf as in

(5 .1)

HP

PQ

these data being subject to three axioms: one expresses the compatibility of pf and pg

with Ga and Ha for a 2-cell a: / -» 5, the second requires p/ to be the identity when
/ = \P, and the third requires pgf to be the pasting composite of pg and pf; for the
details, see Section 2 of Kelly [8] or Section 4 of Street [14]. The lax natural p is pseudo-

natural if each pf is invertible; and it is just a 2-natural transformation if each pf is the
identity. The 2-functors G: V -> £ , the lax natural p: G -* H, and the modifications
0: p -* cr: G -> H (see either of the references above) form a 2-category LaxfP, C].

Restricting to pseudo-natural transformations gives a sub-2-category Psd^ , £] , and
we have locally-fully-faithful inclusions

(5.2) [V, C) -> Psd[7>, C] - Lax[7>, £].

For 2-functors F:V -* Cat and G:T->IC with 7> small, the iax iimit {F, G}/

and the pseudo-limit {F, G}p of G indexed by F are the representing objects, if they

exist, in

(5.3) K{A, {F, G}t) S Lux[P, Cat](F, K(A, G-)),

(5.4) /C(A, {F, G}p) a Psd[7>, Cat](F, /C(A, G-));

note that we are still asking for the representability of 2-functors K.op —> Ca t , so
that (5.3) and (5.4) are isomorphisms of categories, and not merely equivai'ences.
The unit of the representation (5.3) has the same general form as (2.2), namely
F —> fC{{F, G}t, G - ) ; but now of course this is only a lax natural transformation:
similarly in the pseudo case. When K = Cat we have the analogues

(5.5) {F, G}t = Lax[7>, Cat](F, G), {F, G}p = Psd[P, Cat](F, G),

of (2.5); so that once again the definitions are "representable".
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Lax- and pseudo- colimits in K. are the corresponding limits in K.op; for F: V°v —»
Cat and G: V —> K, the analogues of (2.7) are

(5.6) K{F *t G, A) S Lax[Pop, Cat](F,

(5.7) K{F *p G, A) S Psd[7>op, Cat](F, /C(G-,

Taking F — A l : V —* Cat gives the conical lax- and pseudo-limits,
lax lira G — {Al , G}( and psd lim G = {Al , G}p; the lax- and pseudo-limits (4.3)
of an arrow are the special case V = 2 . We exhibited these last two in Section 4
as ordinary indexed limits; and indeed Street showed in [14] that all conical lax- and
pseudo-limits reduce to ordinary indexed limits. In fact the same is true of the gen-
eral lax- and pseudo-limits of (5.3) and (5.4) which - except for some comments on
pseudo-limits in Street [15] - have not hitherto been discussed in print. It will be
shown in [5] that, when C is cocomplete, the inclusion 2-functors [P, C] —* Lax[P, C]

and [P, C] -> Psd[7>, C] of (5.2) have left adjoints ( ) f and ( ) ' , and these adjoints will
be studied further in [4]. Taking C — Ca t here, comparison of (5.3) and (5.4) with
(2.1) gives

(5.8) {F, G}( = {Ft, G}, {F, G}p = {F\ G}.

Accordingly pseudo-limits may be seen as those limits whose indexing type F is
of the form E' for some E:V^> C a t , and similarly for lax limits. It will be shown
in [4] that inserters and equifiers are neither pseudo-limits nor lax limits; that the lax
limit of an arrow is not a pseudo-limit; and that the pseudo-limit of an arrow is not a
lax limit.

When V is a discrete category, Psd[P, Cat] and LaxfJ*, Cat] both coincide
with [P, Ca t ] ; so pseudo-products and lax products are just products, while pseudo-
cotensor-products and lax cotensor products are just cotensor products. The pseudo
case of the following proposition is in Street [16], which corrects an error in (1.25) of
his [15]; the lax case is a simple modification of his argument.

PROPOSITION 5.1. (a) If a 2-category K. admits products, cotensor products, in-
serters, and equifiers, it admits all lax limits, (b) If K. admits products, cotensor
products, iso-inserters, and iso-equifiers, it admits all pseudo-limits.

PROOF: (a) Let v and w be the maps so denoted in (3.2). There is a map

i: HP,Q{V(P, Q) x FP, GQ} -» UP{FP, GQ}

arising from the idnetity 1 —> V{P, P), and there are maps

r,s,t: UP,Q{P(P, (?) x FP, GQ} -» UP,Q,R{V(Q, R) x V(P, Q) x FP, GR}
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arising respectively from V(Q, R) —• K{GQ, GR), from the composition V(Q, R) x
V(P, Q) —> V{P, R), and from V(Q, R) - • [FQ, FR\. These maps satisfy

iv = iw — 1, rv = sv, rw = tv, sw = tw;

so that what we have is a truncated co-simplicial object. Let p: C —* H.p{FP, GP},
with A: vp —* wp, be the inserter of v and w. Let h: D —*• C be the equifier of the
2-cells

rvp —> rwp = tvp • twp
rX t\

and

rvp = avp —y swp = twp,

and let k: E -> D be the equifier of the 2-cell

ph = ivph • iwph = ph
iXh

and the identity. Then E = {F, G}t, the unit being the lax natural F -* K{E, G-)
whose data correspond to the components of phk and of Xhk. For (b), the construction
is the same, except that p is now the iso-inserter, and that the 2-cells to be equified
are now invertible; this time we have E = {F, G}p. |

Combining this result with Propositions 4.2 and 4.4 gives:

PROPOSITION 5.2. A 2-category that admits products, inserters, and equxfiers,

admits all lax limits and all pseudo-limits.

6. INDEXED BILIMITS

Since these have been discussed in detail in Section 1 of Street [15] - the error in
his (1.24) and (1.25) being rectified in his [16] - we can be brief. We need the general
notion, and such specialisations from bicategories to 2-categories as we shall use in [5]
to prove the existence of bicoliinits in 2-categories of algebras for a 2-monad.

From bicategories V and K we can form the bicategory Hom['P, K\ whose objects
are homomorphisms V —> K of bicategories3 whose arrows are strong transformations,
and whose 2-cells are modifications. For the definitions of these terms, see Benabou [2]
and Street [15]; the strong transformations, and the modifications between them, are
just the evident extensions to the bicategorical context of the pseudo-natural transfor-
mations of Section 5 above and the modifications between these. Accordingly, when
V and K are in fact 2-categories, Psd[P, K\ is a full sub-2-category of HomCP, K];
note that, for any bicategory V, the bicategory HoinfP, K] is a 2-category if K is a
2-category.

https://doi.org/10.1017/S0004972700002781 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002781


[15] 2-categorical limits 315

Given homomorphisms F:V—> Cat and G:V—>Koi bicategories, with V

small, we have a homomorphism Kop —> Cat sending A to the right side of (6.1)
below; when this homomorpliism admits a birepresentation

(6.1) K{A, {F, G}b) ~ Eom[T, Cat](F, K{A, G-)),

with unit say

(6.2) (:F^K({F, G}b, G-),

we call the object {F, G}b of K , or more properly the pair ({F, G}b, £) , the F-indexed

bilimit of G.

Recall from [15] that ({F, G}b, () is said to be a birepresent&tion of the homo-
morphism above when the functor from the left to the right side of (6.1), sending / to
/C(/, G—)£ and sending a: f —> g to lC[a, G—)£, is an equivaJence of categories. (We
use ~ for equivalences and reserve = for isomorphisms.)

Note that we call a functor T: A —> B an equivalence when there are a functor
5 : B —» A and natural isomorphisms rj: 1 = TS and p: ST = 1; in which case,
replacing p by the isomorphism e = p^Sij'1^ (p~*ST) , we in fact have an adjunction
77,e: S —> T: A—> B. Such an equivalence T is fully faithful and essentially surjective
on objects; and the conver.se is true if our category Set of sets satisfies the axiom of
choice. However, we deliberately refrain from imposing this axiom on Set, in order that
our results may continue to hold in wider contexts. All the equivalences we establish in
[5] are honest ones with explicit equivalence-inverses.

Because (6.1) (unlike (2.1), (5.3), and (5.4)) is only required to be an equivalence,
the bilimit {F, G}b (unlike {F, G}, {F, G}t and {F, G}p) is determined only to
within equivalence, and not to within isomorphism. Bicolimits in K are just bilimits in
K°v , the bicolimit of G: V -* K indexed by F:Top -» Ca t being denoted by F *b G.
In the conical case F — A l , we can write bilim G and bicolim G.

When V and K are 2-categories and F and G are 2-functors, we may by the
fifth-last paragraph write (6.1) as

(6.3) K{A, {F, G}6) ~ Psd[P, Cat](F, K{A, G-)).

It follows from (5.7) that, if the pseudo-limit {F, G}p exists, it is a fortiori the bilimit
{F, G}b - as is any object equivalent to it. Even in this case of 2-functors, however,
the bilimit may well exist when the pseudo-limit does not; a pseudo-initial-object in a
2-category is the same thing as an initial object, and it is easily seen that the 2-category
Lex mentioned in Section 4 above has no initial object, although it has the category 1
as a bi-initial object.
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A bicategory K may be called bicategorically complete if it admits all bilimits
{F, G}b; the term "bicomplete" would be preferable, had it not been used elsewhere to
mean "complete and cocomplete". Street shows in [16] that, although the construction
in (1-24) of his [15] is wrong, the conclusion is after all correct: K. admits all bilimits
precisely when it admits biproducts, bi-equalizers, and bi-cotensor-products. For these
three particular bilimits, V is merely a category, and the indexing type F: V —* Cat
and the homomorphism G: V —» K are honest functors; so that, when K is in fact a
2-category, these bilimits fall within the ambit of (6.3). We conclude that:

PROPOSITION 6.1. A 2-category K admits all bilimits if and only if, for all 2-
functors F: V —• Cat and G: T7 —> £ with V small, we have a birepresentation (6.3);
it suffices in fact to suppose V merely a category.

A homomorphism N: C —• K of bicategories is said to be a left biadjoint of
the homomorphism M: K —> C if there is an equivalence /C(iV7, —) ~ £(?, M—) in
Hom[£op, Hom[/C, Cat]]. Such a left biadjoint N of M is unique to within equivalence
if it exists; and it exists exactly when each C(B, M-): K —» Cat admits a birepresen-
tation. { This precise formulation is not given explicitly in (1.30) of [15], but it can be
checked without too much trouble. The details will be given in [11]. } Even when M is
a 2-functor between 2-categories, it may admit a left biadjoint N although admitting
no left adjoint; then, of course, it is not in general possible so to choose N that it is a
2-functor.

This language allows an alternative formulation of Proposition 6.1; we write it in the
colimit form in which we shall apply it in [5]. Recall the 2-functor G: K. —+ [Pop, Cat]
of (2.8) induced by G: V -• K., and write J : [Pop, Cat] -> Psd[7>°P, Cat] for the
inclusion 2-functor.

PROPOSITION 6.2. A 2-category K admits all bicolimits if and only if, for every
2-functor G:V ->K with V small, the 2-functor JG: K -> Psd[P°P, Cat] has a left
biadjoint; it suffices in fact to suppose V merely a category.
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