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A perfect Morse function for the moduli space of
flat connections
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Abstract. We show that the cohomology of the moduli space of flat SU(2) connections on a two-
manifold may be computed using a perfect Morse function.
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Let �g be a Riemann surface of genus g > 1. The moduli space Sg(�1) of
semistable holomorphic vector bundles of rank 2, degree 1, and fixed determinant
on �g may be described as follows. Let Rg � SU(2)2g be defined by

Rg =

(
(A1; : : : ; Ag; B1; : : : ; Bg) 2 SU(2)2g :

gY
i=1

AiBiA
�1
i B�1

i = �1

)
: (1)

The group SU(2) acts freely on Rg by simultaneous conjugation: Ai ! g�1Aig;

Bi ! g�1Big; for g 2SU(2); and the quotient Rg=SU(2) may be identified by
the Narasimhan-Seshadri theorem with Sg(�1). This moduli space is therefore
a smooth manifold of real dimension 6g � 6; it possesses a symplectic structure
which may be defined using only the structure of �g as a smooth manifold and is
independent of its Riemann surface structure, and a Kähler structure which does
depend on the Riemann surface structure of �g. The space Sg(�1) may be viewed
therefore as a moduli space of representations � 2 Hom(�1(�

gnfpg);SU(2));
where p 2 �g, and where �(c) = �1, where c is the element of �1(�

gnfpg)

which may be represented by an oriented curve traversing the boundary of a disc
containing p.

The cohomology of Sg(�1) has been extensively studied in the literature.
The Betti numbers of Sg(�1) were computed by Newstead in [N]; the Poincaré
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Figure 1. The surface � and a fixed nonseparating curve .

polynomials of this space, as well as of moduli spaces associated to higher-
rank vector bundles, were computed by Harder [H], Harder–Narasimhan [HN],
Desale–Ramanan [DR], and Atiyah–Bott [AB]. In this paper we show how the
Poincaré polynomial of Sg(�1) may be obtained from a perfect Morse function
f : Sg(�1) ! R: Our proof is a posteriori: we compute the Morse polynomial
of f and recognize that it is identical with the (known) Poincaré polynomial of
Sg(�1). It would be interesting to construct an a priori argument for this function
being perfect; this might enable one to understand whether our methods might
extend to moduli spaces associated to higher-rank vector bundles.? Now to define
our function f : Sg(�1)! R.

Let ~f : Rg ! R be given by

~f((A1; : : : ; Ag; B1; : : : ; Bg)) = trace(Ag): (2)

Then ~f is conjugation-invariant and hence descends to a function f : Sg(�1)! R.
If we viewSg(�1) as a moduli space of representations of�1(�

gnfpg), the function
f assigns to each equivalence class [�] of such representations the trace tr �() of
the value of � on the homotopy class of a fixed nonseparating simple closed curve
 2 �g (See figure 1).

Our main result is as follows:

THEOREM. The function f is a perfect Morse function on Sg(�1).
Proof. We study the critical values of f . There are two obvious critical values,

corresponding to the minimum of f , attained where f = �2, and the maximum
of f , attained where f = 2. These are easily seen to be nondegenerate. Any
other critical values of f occur where �2 < f < 2, and are also critical values
for the function � = 1=� cos�1 1

2f . But by the results of [D, JW], the function
�jf�1((�2;2)) is the moment map for a circle action on f�1((�2; 2)), and hence
its critical manifolds correspond to the fixed manifolds of this circle action. These
were computed by Donaldson in [D]; they are given by the imageCg in Sg(�1) of

? While this paper was being revised for publication we learned of recent work of Thaddeus [T]
which gives such an a priori proof.
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Figure 2. The subsurface �0 on which representations corresponding to points in Vg are
reducible.

the subvariety Vg � Rg defined by

Vg = f(A1; : : : ; Ag; B1; : : : ; Bg) 2 T 2g�1

�SU(2) � SU(2)2g : tr Ag = 0g \Rg; (3)

whereT � SU(2) denotes a fixed maximal torus of SU(2). Geometrically, consider
the two-manifold �0 of genus g � 1 obtained by removing one handle from �g

(see figure 2). Then Vg corresponds to representations of �1(�
gnfpg) which send

the homotopy classes in �1(�
g � fpg) represented by loops lying entirely in the

two-manifold �0 to elements of T .
In any event, the corresponding critical manifold Cg is immediately non-

degenerate (as it is a fixed point set of a Hamiltonian circle action).
Let us now compute the Poincaré polynomials and indices of these critical

manifolds. The maximum f�1(2) is given by the image in Sg(�1) of the subvariety
Mg � Rg given by

Mg =

(
(A1; : : : ; Ag�1; 1; B1; : : : ; Bg) 2 SU(2)2g :

g�1Y
i=1

AiBiA
�1
i B�1

i = �1

)
: (4)

We see that Mg = Rg�1 � SU(2); furthermore the SO(3)-bundle Mg ! Mg=

SU(2) = f�1(2) has a section, so that H�(f�1(2);Q) = H�(SU(2);Q) �

H�(Sg�1(�1);Q). Thus the Poincaré polynomial Pt(f
�1(2)) is given by (1 +

t3)Pt(Sg�1); while the index of f�1(2) is given by its codimension, which is 3.
Hence the contribution of f�1(2) to the Morse polynomial of f is

St(f
�1(2)) = t3(1 + t3)Pt(Sg�1(�1)): (5)
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Similarly the minimum f�1(�2) is the image inSg(�1) of the subvarietyNg � Rg

given by

Ng =

(
(A1; : : : ; Ag�1;�1; B1; : : : ; Bg) 2 SU(2)2g :

g�1Y
i=1

AiBiA
�1
i B�1

i = �1

)
: (6)

Thus again, H�(f�1(�2);Q) = H�(SU(2);Q) � H�(Sg�1(�1);Q), while the
index of the minimum f�1(�2) is 0; so that the contribution of f�1(�2) to the
Morse polynomial of f is

St(f
�1(2)) = (1 + t3)Pt(Sg�1(�1)): (7)

Finally we must compute the contribution of Cg to the Morse polynomial of f .
By Equation (3) we see that Cg = (S1)2g�2. To compute the index of Cg, we note
that the involution a : Sg(�1)! Sg(�1) arising from ~a : Rg ! Rg defined by

~a((A1; : : : ; Ag; B1; : : : ; Bg)) = (A1; : : : ;�Ag; B1; : : : ; Bg)

interchanges the ascending and descending flows of f at Cg. Hence index(Cg) =
1
2codim(Cg) = 2g � 2; so that the contribution of Cg to the Morse polynomial of
f is given by

St(Cg) = t2g�2
(1 + t)2g�2: (8)

Combining (5), (7), and (8) we see that the Morse polynomial Mt(f) is given by

Mt(f) = (1 + t3)2Pt(Sg�1(�1)) + t2g�2(1 + t)2g�2: (9)

On the other hand the Poincaré polynomial of Sg(�1) is given by

Pt(Sg(�1)) =
(1 + t3)2g � t2g(1 + t)2g

(1� t2)(1 � t4)
:

Given that Pt(S1(�1)) = 1, it is easily seen that Mt(f) = Pt(Sg(�1)).
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